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Basic concepts

Magnetic phenomena have been known since antiquity when a natural ore later
called lodestone was discovered to attract bits of iron. The scientific study of
magnetism dates from around 1600, when William Gilbert summarized experi-
ments on the subject in his treatise De Magnete.[1] However, interest in the
subject greatly increased after 1820, when Hans Christian Øersted reported that
electrical currents could deflect magnetic needles, thereby establishing a con-
nection between the subjects of electricity and magnetism.[2] Almost immedi-
ately, André-Marie Ampère, Jean-Baptiste Biot, and Félix Savart performed a
series of seminal experiments that determined the forces acting between current
loops. Experimental work and theoretical developments continued throughout
the first half of the nineteenth century. A long program of experimental inves-
tigations by Michael Faraday lead him to the conception that the force between
current loops occurred through the action of an intermediary field that existed in
the space around the loops. Faraday’s field concept was developed mathemati-
cally by William Thomson (later Lord Kelvin). This work culminated in a
synthesis of knowledge about electrical and magnetic phenomena by James
Clerk Maxwell in his famous treatise of 1873. Many clarifications of
Maxwell’s ideas and studies of their implications were carried out over the
next twenty years by a small group of followers. Of particular note was the
work of Oliver Heaviside who introduced the use of vector analysis and
reworked the set of equations in Maxwell’s treatise to the four equations we
use today.[3] The resulting Maxwell equations are now accepted as the theore-
tical description underlying electromagnetic phenomena.
Magnetostatics is the study of the fields, forces, and energy associated with

steady currents and magnetic materials. In this chapter, we will review some
basic concepts underlying magnetic effects due to conductor currents in free
space.
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1.1 Current

Experiments have shown that there exist two kinds of electrical charge q, which are
denoted as positive and negative. A current I exists when there is a net temporal
flow of charge across some arbitrary plane in space.

I ¼ dq
dt

: (1.1)

If the current is flowing through a conductor with length L and cross sectional area
A, we can write the current as

I ¼ ρLA
L=v

¼ ρv A;

where ρ is the charge density and v is the velocity of the charges. The current
density J along some direction n is a vector given by

J
! ¼ I

A
n̂ ¼ ρ v!; (1.2)

where n̂ is the unit vector perpendicular to A.
If we consider a volume of space V enclosed by a surface S, the conservation of

charge requires that any change in the charge density inside Vmust be compensated
by a flow of current through the surface or

�
ð
∂ρ
∂t

dV ¼
ð
J
!

·n̂ dS:

Using the Gauss divergence theorem,1 the right-hand side can be written asð
J
!
·n̂ dS ¼

ð
r· J

!
dV:

Then, since V is arbitrary, we can remove the integrands from the volume integrals
on both sides of the equation and obtain the continuity equation

∂ρ
∂t

þr· J
!¼ 0: (1.3)

In magnetostatics, we have by definition ∂ρ=∂t ¼ 0, which leads to the relation

r· J
!¼ 0: (1.4)

1 Readers unfamiliar with vector analysis should review Appendix B.
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Often we are interested in the current flow in a “central” region far from the ends
of a magnet. If the current and the geometry are uniform along z in this region, we
can simplify the analysis by examining problems in two dimensions. If we consider
a conductor whose thickness is small compared with the distance to the observation
point, we can approximate the conductor as a current sheet.
In addition, we frequently consider line currents or “filaments,” where we

ignore the transverse dimensions of the conductor altogether and use the equiva-
lent current

I ¼
ð
J
!

·n̂ dS:

1.2 Magnetic forces

Experiments have shown that test currents and charges in the vicinity of a current-
carrying conductor experience a force. We assume that this force takes place
through the actions of an intermediary magnetic field. The mathematical descrip-
tion of a field is a continuous function that is defined for all points in space and for
all times. However, the magnetic field also has physical properties associated
with it, such as stored energy. The force experiments can be explained by
assuming that a current produces a vector field B, and then this field produces a
force on other currents and charges. The vector field B is called the magnetic flux
density2 or magnetic field for short. The magnetic flux through some surface S is
defined as

ΦB ¼
ð
B
!

· dS
�!

: (1.5)

The direction of the magnetic field is often represented using Faraday’s concept
of lines of induction.3[4] The lines of induction are defined to be tangent to the
magnetic field at every point in space. It follows that corresponding components of
the lines of induction and the magnetic field are always proportional to each other.
If ds is a small displacement along the line of induction, we have

dx
Bx

¼ dy
By

¼ dz
Bz

¼ ds
B
:

In two Cartesian dimensions, the lines can be plotted, for example, by integrating
the equations

2 The vector B is also known as the magnetic induction.
3 Historically, these curves have been referred to as lines of force.
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dx ¼ Bxðx; yÞ
Bðx; yÞ ds

dy ¼ Byðx; yÞ
Bðx; yÞ ds:

The magnitude of the magnetic field can be represented by the density of lines in a
given region. The lines of induction do not have to form closed loops.[5, 6] In
particular, the lines become undefined at locations where B = 0.
Now consider two circuits carrying currents Ia and Ib. The force exerted by

circuit a on circuit b is found experimentally to be

F
!

ab ¼ μ0
4π

Ia Ib∯ dlb
�!� dla

�!� R
!

R3
; (1.6)

where the constant μ0 ¼ 4π 10�7 is known as the permeability of free space,4 dl is a
displacement along the circuit in the direction of the current, and R is the distance
vector from dla to dlb. Note that the force is proportional to the product of the
currents times a geometric factor that depends on the shape and orientations of the
two circuits. It is possible to rewrite this equation in a form that manifestly obeys
Newton’s Third Law of motion. Using the vector triple product identity from
Equation B.1 in Appendix B, we have

dlb
�!� ðdla�!� R

!Þ ¼ dla
�!ð dlb�!·R

!Þ � R
!ð dla�!· dlb

�!Þ:

The double integral of the first term on the right-hand side is then

∯
dl
!

aðdl!b ·R
!Þ

R3
¼
þ
dl
!

a

þ ðdl!b ·R
!Þ

R3
¼
þ
dl
!

a

þ
dR
R2

:

The last integral vanishes because the scalar integrand is taken over a closed path.
Thus we can express the force as

F
!

ab¼ � μ0
4π

IaIb∯
R
!ðdl!a·dl

!
bÞ

R3
: (1.7)

In this form, we see that Newton’s law Fab ¼ �Fba is obeyed since R changes
direction for the two cases.
Returning to Equation 1.6, we rewrite the force on circuit b in a form that

explicitly depends on the current in circuit b and on an integration of the elemental

4 We will use SI units exclusively in this book. For more details, see Appendix A.

4 Basic concepts

https://doi.org/10.1017/9781009291156.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.002


interactions taking place around that circuit. We collect the other factors in
Equation 1.6 into a new vector Ba, which we define as the magnetic field due to
circuit a. Then the force on the circuit can be written as

F
!

ab ¼ Ib

þ
dl
!

b � B
!

a : (1.8)

The force acts at right angles to the direction of Ba. Dropping the subscripts, we see
that the force on a charge q moving with velocity v can be written as

F
! ¼

ð
dq
dt

dl
!� B

! ¼ qv!� B
!

: (1.9)

Note that the force only acts on moving charges.
Now consider a rectangular current loop with length L and width w in a constant

magnetic field B, as shown in Figure 1.1. The forces on each pair of opposite sides
cancel, so there is no net force on the loop. However, there are moment arms
between sides 1 and 3 and the axis of the loop. This creates a torque given by

τ! ¼ r!� F
!

:

Figure 1.1 Rectangular current loop in an external field.
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For the example here,

τ ¼ 2
w
2
NILB sin θ;

where N is the number of turns in the loop. We define the magnetic moment m of a
planar loop to lie along the normal n to the loop, so that

m! ¼ NIA n̂; (1.10)

whereA is the area of the loop. Then the torque acting on the loop can be expressed as

τ! ¼ m!� B:
!

(1.11)

1.3 The Biot-Savart law

Comparing Equations 1.6 and 1.8, we see that the force experiments require that the
magnetic field can be expressed in the form

B
! ¼ μ0

4π
I
þ
dl
!� R

!
R3

; (1.12)

where we have dropped the subscripts referring to circuit a. The vector R points
from the current element source to the observation (or field) point where the
magnetic field is determined. This relation, known as the Biot-Savart Law, is an
important tool for finding analytic and numerical solutions for the magnetic field
produced by known current distributions. For a surface distribution of current, the
total current in the Biot-Savart law can be generalized to give

B
! ¼ μ0

4π

ð
K
!� R

!
R3

dS; (1.13)

where K is the surface current density. Likewise, for a volume distribution of
current, we have

B
! ¼ μ0

4π

ð
J
!� R

!
R3

dV: (1.14)

It is important to keep in mind that the Biot-Savart law and many of the other
mathematical laws that we will subsequently develop ultimately depend on the
validity of the experimental results on magnetic forces.
We consider next several elementary applications of the Biot-Savart law that we

will need to refer to later in this book.
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Example 1.1: field from an infinitely long straight wire
Consider an infinitely long straight wire lying along the z axis, as shown in Figure 1.2.
Because of the symmetry, we use cylindrical coordinates. Since the wire is infinitely
long, we can chose an observation point P in the plane with z = 0 without loss of
generality. Since

dl
!¼ dz ẑ

R
! ¼ ρ ρ̂ þ z ẑ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
;

the field at point P due to the current in the wire is

B
! ¼ μ0

4π
ρ ϕ̂ 2 I;

where5

I ¼
ð∞
0

dz

fρ2 þ z2g3=2
¼ 1

ρ2
:

Thus the magnetic field due to the current in the wire is

B
! ¼ μ0I

2π ρ
ϕ̂: (1.15)

The field is directed azimuthally around the wire and falls off with distance like 1/ρ.

Figure 1.2 Current in a long straight wire.

5 GR 2.271.5.
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Example 1.2: force between two parallel wires

Consider two infinitely long parallel wires, as shown in Figure 1.3. From Equation
1.8, the incremental force between the two wires is

dF
�!

b ¼ Ib dl
!

b � B
!

a

and from the previous example, the field at P due to the current in wire a is

B
!

a ¼ � μ0Ia
2π ρ

ẑ:

If the current direction in wire b can be either parallel or antiparallel to the current in
wire a, we find that the force per unit length of the wire is

dF
�!

b

dy
¼ � μ0

2π ρ
IaIb x̂: (1.16)

The force between the wires is attractive when the currents are in the same direction
and repulsive when they are antiparallel.

Example 1.3: field above an infinite current sheet
Consider an infinite current sheet with current flowing uniformly in the y direction.
We calculate the magnetic field at point P, shown in Figure 1.4. We have

K
! ¼ Ky ŷ

R
! ¼ x x̂ þ y ŷ þ zo ẑ:

Figure 1.3 Force between two parallel wires.
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The field is given by

B
! ¼ μ0Ky

4π

ð∞
�∞

ð∞
�∞

zo x̂ � x ẑ

fx2 þ y2 þ z2og3=2
dx dy

¼ μ0Ky

4π
ðzo x̂I1 � ẑI2Þ;

where

I1 ¼
ð∞
�∞

ð∞
�∞

1

fx2 þ y2 þ z2og3=2
dx dy ¼ 2π

zo

and

I2 ¼
ð∞
�∞

ð∞
�∞

x

fx2 þ y2 þ z2og3=2
dx dy ¼ 0:

The integral I2 vanishes because the integrand is an odd function and the integration
extends over an even interval. The magnetic field above the sheet is

B
! ¼ μ0

2
Ky x̂:

The direction of the field is parallel to the sheet and perpendicular to the current
density. The magnitude of the field is constant and independent of the distance from
the sheet. In the general case, the field above the sheet can be written as

B
! ¼ μ0

2
K
!� n̂; (1.17)

Figure 1.4 Field above an infinite current sheet.
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where n is the normal to the sheet pointing to the side where B is computed. Note that
the direction of B follows the right-hand rule with respect to the current filaments in
the sheet.

Example 1.4: on-axis field due to a circular current loop
We look for the field at a point P that is along the axis of the loop and a distance zo
above the plane of the current loop, as shown in Figure 1.5. In cylindrical coordinates,
we have

dl
!¼ a dϕ ϕ̂

R
! ¼ �a r̂ þ zo ẑ:

The contributions of the current elements to the field at P lie in a cone surrounding P.
By symmetry, the net field must be in the z direction and

ðdl!� R
!Þz ¼ a2 dϕ:

Thus we have

Bz ¼ μ0I
4π

ð2π
0

a2

fa2 þ z2og3=2
dϕ

¼ μ0I a
2

2fa2 þ z2og3=2
:

(1.18)

Note that Bz is proportional to the area of the current loop and falls off at large
distances like z�3

o : The field is largest at the center of the loop where the value is

Bz0 ¼ μ0I
2a

:

Figure 1.5 Field along the axis of a current loop.
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1.4 Divergence of the magnetic field

Starting from the Biot-Savart law,

B
! ¼ μ0

4π

ð
J
!� R

!
R3

dV

and taking the divergence of both sides, we have

r·B
! ¼ μ0

4π

ðr·ðJ 0!� R
!Þ

R3
dV 0;

where we use primes to indicate the use of source coordinates. The operator r is
defined in terms of field coordinates, while the distance R is a function of both
source and field coordinates. Using the vector identity B.4, we can write

r·ðJ 0!� R
!Þ ¼ R

!
·ðr � J 0

!Þ � J 0
!
·ðr � R

!Þ:
The first term on the right-hand side vanishes because r� J 0

! ¼ 0. When the
second term is written in terms of a determinant, we obtain

r� R
! ¼

����� x̂ ŷ ẑ
∂x ∂y ∂z

x� x0 y� y0 z� z0

����� ¼ 0:

Thus we find that the divergence of the magnetic field vanishes.

r·B
! ¼ 0: (1.19)

This vector relation is one of the fundamental properties of magnetic fields. Its
validity depends on the fact that isolated magnetic charges (monopoles) do not
appear to exist.
If we integrate Equation 1.19 over some volume of space V that is enclosed by a

surface S, we get ð
r·B

!
dV ¼ 0:

Then using the divergence theorem, we find Gauss’s Law for magnetismð
B
!

·n̂ dS ¼ 0: (1.20)

1.4 Divergence of the magnetic field 11
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1.5 Circulation of the magnetic field

Returning again to the Biot-Savart law, consider the integral

I ¼ Ð J 0!� R
!

R3
dV 0

¼ Ð r 1

R

� �
� J 0
!� �

dV 0:

Using the vector identity B.6, we can write this as

I ¼
ð
r� J 0

!
R
dV 0 �

ð
1

R
r� J 0

!
dV 0:

The quantityr� J 0
! ¼ 0 in the second integral. We can bring ther operator in the

first term outside the integral sign because it operates on the observation point
coordinates, while the integral is over the source point coordinates. Thus

I ¼ r�
ð
J 0
!
R
dV 0

and an alternate expression for the magnetic field is

B
! ¼ μ0

4π

ð
r� J 0

!
R
dV 0: (1.21)

Taking the curl of both sides of this equation, we find

r� B
! ¼ μ0

4π
r�r�

ð
J 0
!
R
dV 0:

Using the vector relation B.7, we can write this in the form

r� B
! ¼ μ0

4π
r
ð
r·

J 0
!
R

 !
dV 0 �

ð
r2 J 0

!
R

 !
dV 0

" #
:

Then since r does not operate on J 0, we have

r� B
! ¼ μ0

4π
r
ð
J 0
!
·r 1

R

� �
dV 0 �

ð
J 0
!r2 1

R

� �
dV 0

� �
: (1.22)

Consider for the moment the relation

r 1

R

� �
¼ �r0 1

R

� �
:
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In the second integral in Equation 1.22 when R ≠ 0, we have

r2 1

R

� �
¼ 1

r2
∂r r2∂r

1

R

� �� �

in spherical coordinates. Then since R ¼ j r!� r0
!j, we find that r2 1

R

	 
 ¼ 0:

Although r2 1
R

	 

is undetermined when R = 0, the integral of this expression is

still defined. Performing the integral on a small sphere surrounding R = 0, we findð
r2 1

R

� �
dV ¼

ð
r·r 1

R

� �
dV ¼

ð
r 1

R

� �
· dS
�!

using the divergence theorem. Evaluating the last integral on the surface of the
small sphere, we find thatð

r 1

R

� �
· dS
�! ¼ � 1

R2
4πR2 ¼ �4π:

We can summarize these results by writing the expression in terms of the Dirac
delta function δ.

r2 1

R

� �
¼ �4πδðRÞ: (1.23)

Now we can do the first integral in Equation 1.22 using Equation B.3 to give

ð
J 0
!
·r0 1

R

� �
dV 0 ¼

ð
r0·

J 0
!
R
dV 0 �

ð
1

R
r·J 0

!
dV 0:

The first term on the right-hand side can be converted to a surface integral using the
divergence theorem. It vanishes if the surface enclosing the volume in the integrals
is sufficiently large. The second integral also vanishes because r0·J 0

! ¼ 0 for
magnetostatics. Thus we are only left with the second integral in Equation 1.22,
which because of the delta function from Equation 1.23, gives

r� B
! ¼ μ0 J

!
: (1.24)

Thus we have shown that a steady current creates a magnetic field that circulates
around the current. This is a second fundamental vector relation for magnetic
fields.6

6 We will find in Chapter 10 that this relation requires an additional term if the current varies with time.
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1.6 The Ampère law

If we integrate both sides of Equation 1.24 over an arbitrary surface S, we findð
ðr � B

!Þ· dS�! ¼ μ0

ð
J
!

· dS
�!

:

On the right side, the current density integrated over the surface gives the total
current I. On the left side, we can use Stokes’s theorem from Appendix B to giveð

ðr � B
!Þ· dS

�! ¼
þ

B
!

·dl
!
;

where the contour on the right-hand side extends along the perimeter of the surface
S. Thus we have the result þ

B
!

·dl
!¼ μ0I: (1.25)

This equation is known as the Ampère law.7 It can be most usefully applied in
highly symmetric cases where, for example, the magnitude of the field is constant
along the integration path.
Again let us consider several elementary examples of using the Ampère law to

derive results that we use later in the book.

Example 1.5: a long cylindrical conductor
Consider a long cylindrical conductor with constant current density J inside the radius
a, as shown in Figure 1.6. Since by symmetry the magnitude of the field must be
independent of ϕ, we choose a circular path of integration. When the path is outside
the conductor, all of the current is enclosed by the path and the Ampère law gives
Bϕ 2πρ ¼ μ0I. Thus the field outside the conductor is

Bϕ ¼ μ0I
2πρ

; (1.26)

which falls off like 1/ρ. Since this result is independent of the radius of the conductor,
it also applies to the field from a current filament, which we previously derived using
the Biot-Savart equation.

When the path of integration is inside the conductor, only part of current is
enclosed by the path and the Ampère law gives

Bϕ2πρ ¼ μ0
πρ2

πa2
I:

7 According to O. Darrigol,[2] this equation was first given by Maxwell. In that case, we agree with him that it’s
really not appropriate to call it Ampère’s law.
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Thus the field inside the conductor is

Bϕ ¼ μ0I ρ
2πa2

¼ μ0J
2

ρ; (1.27)

which increases linearly with ρ.

Example 1.6: ideal solenoid
We define an ideal solenoid as an infinitely long system of parallel circular current
loops with radius a, as shown in Figure 1.7. This is an approximation to a real
solenoid when the observation points are far from the ends of the solenoid and the
conductor is tightly wound, such that we can ignore any gaps or the helical nature of
the windings. First consider a cylinder containing the points achj. From Gauss’s law,
Equation 1.20, we know that the flux passing through the surface must be 0. From
symmetry, the flux through the top and through the bottom faces of the cylinder have
to cancel. The contribution through the side of the cylinder then gives

2π ρ L Bρ ¼ 0:

Since the same argument applies for a cylinder of any radius, we must have Bρ ¼ 0
everywhere for the ideal solenoid.
Now consider the Ampère law applied to the path bdgi. The contributions to the

integral vanish along bd and gi since Bρ ¼ 0. Then we have

Bz ð0ÞL� Bz ðr1ÞL ¼ μ0 n I L;

where n is the number of conductor turns per unit length, or that

Bz ðr1Þ ¼ Bz ð0Þ � μ0 n I:

Figure 1.6 Cylindrical conductor of radius a. The two integration paths are shown
with dotted lines.
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If we apply the same argument over the path befi, we find that

Bz ðr2Þ ¼ Bz ð0Þ � μ0 n I:

Both of these equations for Bz outside the solenoid have the same right-hand side.
Thus the value of Bz outside the solenoid is constant, independent of radius. However,
if we consider the total flux outside the solenoid, we find

ΦB ¼
ð2π
0

ð∞
a
Bout
z r dr d ϕ:

The total flux would be infinite if Bz outside the solenoid is any constant other than 0.
This is clearly non-physical, so we must have Bz ¼ 0 everywhere outside the
solenoid.

Since the field vanishes outside the solenoid, applying the Ampère law to the path
bdgi gives

Bz ð0Þ ¼ μ0nI:

Similarly, on the path cdgh we find

Bz ðrÞ ¼ μ0nI; (1.28)

where we write r for the length bc. Thus the field of the ideal solenoid is constant and
along the axis of the solenoid on the inside and it vanishes outside.

Figure 1.7 Cross-section of an ideal solenoid. The dashed line is the axis of the
solenoid. The dots and crosses refer to the direction of the current.
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1.7 Boundary conditions at a current sheet

We now consider how the magnetic field is influenced by the presence of a current
sheet. Assume we have a current sheet, as shown in Figure 1.8. We construct a
cylindrical pillbox across the sheet with an infinitesimal height along the normal to
the surface. Then applying Equation 1.20, we find that

B1n S � B2n S ¼ 0:

Since the surface S is arbitrary, it follows that B1n ¼ B2n or that

ð B2
�!� B1

�!Þ·n̂ ¼ 0: (1.29)

Thus the normal component of B must be continuous across a current sheet.
Next construct a closed path across the current sheet, as shown in Figure 1.9.

Assume the path length perpendicular to the surface is infinitesimally small. The
path encloses any current present in the sheet. Applying the Ampère law, we find

�B1t Lþ B2t L ¼ μ0 K L:

Thus the change in the field across the sheet is

B2t � B1t ¼ μ0 K (1.30)

or in general

ð B2
�!� B1

�!Þ � n̂ ¼ μ0 K
!
: (1.31)

Figure 1.8 Gaussian pillbox across a current sheet.
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The tangential component of B changes by an amount proportional to the current
density when crossing the sheet.
Finally, let us consider the angles between the magnetic field vectors and

the normal to the current sheet, as shown in Figure 1.10. In region (2), the
magnetic field vector makes an angle with the normal to the current sheet
given by

tan θ2 ¼ B2t

Bn
:

Figure 1.10 Refraction of the magnetic field crossing a current sheet.

Figure 1.9 Fields near a current sheet.
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The corresponding angle with the normal in region (1) is given by

tan θ1 ¼ B1t

Bn

¼ B2t � μ0 K
Bn

¼ tan θ2 � μ0 K
Bn

:

We see that in crossing the current sheet, the vector B is refracted in the direction of
the field from the current sheet, i.e., toward the normal for the positive current
density K shown here.

1.8 Inductance

Consider a coil with N turns. We define the flux linkage to be the product of the
magnetic flux going through the coil multiplied by the number of turns. The flux
linkage is proportional to the current flowing through the coils. We define the
coefficient of proportionality to be the self-inductance L of the coil. Thus we have

L ¼ NΦB

I
: (1.32)

Example 1.7: self-inductance of an ideal solenoid
For an ideal solenoid with N turns in a length d and radius R, the field from Equation
1.28 is

Bz ≃
μ0 N I
d

:

The flux in the solenoid is

ΦB ¼ μ0 N I
d

πR2;

so the self-inductance is

L ¼ μ0N
2

d
πR2: (1.33)

This result ignores any end effects present in a real solenoid.

If we now consider two coils, the mutual inductance M is defined as the flux
linkage in the second coil due to the current in the first coil. Thus we have
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M ¼ N2Φ2;1

I1
; (1.34)

where Φ2;1 is the flux in coil 2 due to the current in coil 1. In general, M can be
defined using the Neumann equation [7]

M ¼ μ0
4π

ðð
dl1
�!

·dl2
�!

r12
; (1.35)

where r12 is the distance from the current element in the first coil to the current
element in the second coil. Note that this shows thatM is a constant times a geometric
factor. The symmetry of this equation between the two coils shows thatM of coil 2
due to current in coil 1 is the same as M for coil 1 due to current in coil 2.

Example 1.8: mutual inductance of two coaxial solenoids
Assume we have two coaxial solenoids. The first solenoid has length d1 and both
solenoids have approximately the same radius R. Then

Φ2;1 ¼ μ0 N1 I1
d1

πR2

and the mutual inductance is

M ¼ μ0N1N2

d1
πR2: (1.36)

The force between two coaxial coils can be expressed in terms of the derivative
of their mutual inductance.[8]

Fz ¼ I1 I2
∂M
∂z

: (1.37)

1.9 Energy stored in the magnetic field

We can obtain a rough estimate for the energy stored in a magnetic field8 by
considering a simple LR circuit, as shown in Figure 1.11. From Kirchhoff’s circuit
laws,[9] we have

IV ¼ I2 Rþ LI
dI
dt

:

8 We will reexamine this question more rigorously in Chapter 10.
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The power P = IV generated by the battery is distributed between the power lost to
resistive heating in R and the power in the magnetic field associated with the
inductor L. The energy in the magnetic field is then

WB ¼ Ð P dt ¼ Ð LI dI
dt

dt ¼
ð
LI dI

¼ 1

2
LI2:

(1.38)

If we consider the inductor to be a long solenoid, then using Equations 1.28 and 1.33,

WB ¼ 1

2

μ0N
2

d
πR2 B2d2

μ20N
2
¼ 1

2

B2

μ0
πR2d

and the energy density in the magnetic field is

wB ¼ B2

2 μ0
: (1.39)
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