
7
Lattice methods

Analytic calculations of observables in the non-Abelian lattice gauge the-
ories are available only in the strong-coupling regime g2 →∞, while one
needs g2 → 0 for the continuum limit. When g2 is decreased, the lat-
tice systems can undergo phase transitions as often happens in statistical
mechanics.
To look for phase transitions, the mean-field method was first applied

to lattice gauge theories [Wil74, BDI74]. It turned out to be useful for
studying the first-order phase transitions which very often happen in lat-
tice gauge systems but do not affect the continuum limit.
The second-order phase transitions are better described by the lat-

tice renormalization group method. The approximate Migdal–Kadanoff
recursion relations [Mig75, Kad76] were the first implementation of the
renormalization group transformation on a lattice, which indicated the ab-
sence of a second-order phase transition in the non-Abelian lattice gauge
theories and, therefore, quark confinement.
A very powerful method for practical nonperturbative calculations of

observables in lattice gauge theories is the numerical Monte Carlo method.
This method simulates statistical processes in a lattice gauge system and
for this reason is often called a numerical simulation. The idea of ap-
plying it to lattice gauge theories is due to Wilson [Wil77], while the
practical implementation was done by Creutz, Jacobs and Rebbi [CJR79]
for Abelian gauge groups and by Creutz [Cre79, Cre80] for the SU(2) and
SU(3) groups.
In this chapter we briefly describe the mean-field method, the lattice

renormalization group method and the Monte Carlo method. A few re-
sults from Monte Carlo simulations will also be discussed.
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✲

✻W (∂p)

1

0 β∗ β ∝ 1/g2

Fig. 7.1. Typical β-dependence of the plaquette average for a first-order phase
transition which occurs at β = β∗.

7.1 Phase transitions

As was pointed out in Sect. 6.7, analytic calculations of the string tension
are available only in the strong-coupling regime g2 →∞, while one needs
g2 → 0 for the continuum limit. A question arises as to what happens
with lattice systems when g2 is decreased. In particular, does an actual
picture of the dependence of the string tension on g2 look like that shown
in Fig. 6.10?
We know from statistical mechanics that lattice systems can undergo

phase transitions with a change of parameters, say the temperature, which
completely alters the macroscopic properties. The simplest example is
that of the first-order phase transition which occurs in a teapot.
First-order phase transitions very often happen in lattice gauge theories.

They are usually seen as a discontinuity in the β- (or 1/g2-) dependence
of the plaquette average (6.65) as is depicted in Fig. 7.1. The form of
W (∂p) at small β is given to the leading order of the strong-coupling
expansion by Eq. (6.72), while that at large β is prescribed by the lattice
perturbation theory∗ to be

W (∂p) = 1− dG
βd

+O
(
β−2) , (7.1)

where dG is the dimensionality of the gauge group G (dG = N2 − 1 for
SU(N), dG = N2 for U(N)) and d is the dimensionality of the lattice as
before.
This behavior of the plaquette average is quite analogous to the depen-

dence of the internal energy per unit volume (called the specific energy)
in statistical systems. In order to see the analogy between the specific en-

∗ It is often called, for obvious reasons, the weak-coupling expansion.
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ergy and (1−W (∂p)), let us remember that β is analogous to the inverse
temperature and rewrite Eq. (6.65) as

W (∂p) = 1 +
1
Np

∂

∂β
lnZ(β) , (7.2)

where the partition function is given by Eq. (6.31) and the number of
plaquettes Np is analogous to the volume of a statistical system.

Problem 7.1 Derive Eq. (7.1) for the SU(N) gauge group.

Solution The partition function (6.31) can be calculated at large β (weak
coupling) using the saddle-point method. The saddle-point configurations are
given by solutions of the classical equation (6.24). The appropriate solution
reads as

U sp
µ (x) = Zµ , (7.3)

where Zµ is an element of the Z(N) group, the center of SU(N),

Zµ = I · e2πinµ/N , nµ = 1, . . . , N . (7.4)

It is evident that this is a solution because elements of the center commute so
that Zµ and Z−µ cancel each other in Uµ,ν(x) ≡ U(∂p).
In order to take into account fluctuations around the saddle-point solu-

tion (7.3), let us expand

Uµ(x) = U sp
µ (x) e

i taεa
µ(x), (7.5)

where the order of multiplication is not essential since Zµ commute with the
generators ta. The expansion of trU(∂p) to the quadratic order in εa is given by

1
N
trUµ,ν(x) = 1− 1

2N
E2µ,ν(x) , (7.6)

where

Eaµ,ν(x) = εaµ(x) + εaν(x+ aµ̂)− εaµ(x+ aν̂)− εaν(x) . (7.7)

Owing to the local gauge invariance, we can always choose, say, εd(x) = 0 so
that there are only Nl−Ns independent εs.
Substituting into Eq. (6.31) and expanding the Haar measure, we obtain

Z(β) ∝
d∏

ν=1

N∑
nν=1

∏
a,x,µ<d

+∞∫
−∞

dεaµ(x) e
−βE2

µ,ν(x)/2N . (7.8)

The sum over nν , which arises from the degenerate saddle points, is just an
irrelevant constant.
We see from Eq. (7.8) that only

εaµ(x) ∼ 1√
β

(7.9)
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are essential which justifies the expansion in ε. Rescaling the integration variables
in Eq. (7.8), we therefore find

Z(β) ∝ β−(Nl−Ns) dG/2 . (7.10)

Substituting into Eq. (7.2) and remembering that (Nl − Ns)/Np = 2/d (see
Eq. (6.5)), we obtain Eq. (7.1).

Problem 7.2 Repeat the derivation of the previous Problem for the adjoint
action (6.29).

Solution The only difference with respect to the Wilson action (6.16) is that
the saddle-point solution (7.3) is now modified as

U sp
µ (x) = Zµ(x) , (7.11)

i.e. may take on different values at different links. It is evident that this is a
minimum of the action (6.29).
The only modification of Eq. (7.8) is

d∏
ν=1

N∑
nν=1

=⇒
∏
x

d∏
ν=1

N∑
nν(x)=1

, (7.12)

which only changes an irrelevant overall constant. Therefore, Eq. (7.1) remains
unchanged providing the plaquette average is also taken in the adjoint represen-
tation. This supports the expectation that the continuum limits for both actions
coincide.

The first-order phase transitions of the type given in Fig. 7.1 are usu-
ally harmless and are not associated with deconfinement. They are re-
lated with dynamics of some lattice degrees of freedom (say, with large
fluctuations of the link variable Uµ(x) which occur independently at adja-
cent links) which do not affect the continuum limit and are called lattice
artifacts. Moreover, these lattice degrees of freedom become frozen for
β > β∗, which is necessary for the continuum limit to exist.
Another possibility for a lattice system is to undergo a second-order

phase transition in analogy with spin systems. In this case W (∂p) is
continuous but the derivative ∂W (∂p)/∂β becomes infinite at the critical
point β = β∗ as depicted in Fig. 7.2. Given Eq. (7.2), this derivative is
to be considered as an analog of the specific heat of statistical systems.
Its behavior at small and large β is governed by Eqs. (6.72) and (7.1),
respectively.
Differentiating Eq. (6.65) with respect to β, the derivative ∂W (∂p)/∂β

can be expressed via the sum of the connected correlators:

∂W (∂p)
∂β

=
1
2

∑
orient p′

〈
1
N
trU(∂p)

1
N
trU(∂p′)

〉
conn

. (7.13)

This formula also shows that ∂W (∂p)/∂β is positive definite, since the
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✲

✻∂W (∂p)
∂β

0 β∗ β ∝ 1/g2

∞

Fig. 7.2. Typical β-dependence of ∂W (∂p)/∂β for a second-order phase transi-
tion which occurs at β = β∗.

RHS can be rewritten using translational invariance as

1
2

∑
orient p′

〈
1
N
trU(∂p)

1
N
trU(∂p′)

〉
conn

=
1
4Np

〈[ ∑
orient p

1
N
trU(∂p)

]2〉
− 1
4Np

[〈 ∑
orient p

1
N
trU(∂p)

〉]2
≥ 0 ,

(7.14)

where the equality is possible only for a Gaussian averaging, i.e. for a free
theory. This repeats the standard proof of the positivity of specific heat
in statistical mechanics.
Since each term of the sum in Eq. (7.13) is finite (remember that the

trace of a unitary matrix takes on values between −N and N), the only
possibility for the RHS to diverge is for the sum over plaquettes p′ to
diverge. This is possible only when long-range (in the units of the lat-
tice spacing) correlations are essential or, in other words, the correlation
length is infinite. Thus, once again we have reproduced the argument
that the continuum limit of lattice theories is reached at the points of
second-order phase transitions.
Such a second-order phase transition seems to occur in compact

QED (i.e. the U(1) lattice gauge theory with fermions) at e2∗ ∼ 1. It is
associated there with deconfinement of electrons. Electrons are confined
for e2 > e2∗, similarly to quarks in lattice QCD, and are liberated for
e2 < e2∗. The interaction potential looks like that of Fig. 6.9b for e

2 < e2∗
and like that of Fig. 6.9a in the confinement region e2 > e2∗.

∗ In order
to reach the continuum limit with deconfined electrons, the bare charge

∗ The latter statement is not quite correct for reasons which are discussed in Sect. 9.5.
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128 7 Lattice methods

e2 should be chosen to be slightly below the critical value. Then the
renormalized physical charge can be made as small as the experimental
value (α ≈ 1/137) according to the renormalization group arguments
which are presented in the Remarks in Sect. 6.7.
The nature of the phase transition in a four-dimensional compact U(1)

lattice gauge theory without fermions was investigated using numerical
methods. While the very first paper [LN80] indicated that the phase
transition is of second order, some more advanced later investigations
noted [EJN85] that it may be weakly first order. Anyway, we need
fermions which usually weaken a phase transition that happens in a pure
lattice gauge theory.
There are no indications that a second-order phase transition occurs in

non-Abelian pure lattice gauge theories at intermediate values of β. This
supports very strongly the behavior of the string tension being of the type
depicted in Fig. 6.10. The second-order phase transition occurs in four
dimensions at β = ∞ (or g2 = 0) according to the general arguments of
Sect. 6.7, which is necessary for the continuum limit to exist.

Remark on confinement in 4 + ε dimensions

In 4+ε dimensions (ε > 0), a second-order deconfining phase transition al-
ways occurs in non-Abelian pure lattice gauge theories at some finite value
of β <∞ (or g2 > 0). The case of ε! 1 can be considered to be analogous
to the ε-expansion in statistical mechanics [WK74]. An ultraviolet-stable
fixed point exists at g2∗ ∼ ε since the theory is asymptotically free in d = 4.
This phase transition is associated with deconfinement quite analogously
to compact QED in d = 4. The deconfining phase is realized when the
bare coupling g < g∗, while the confining phase is realized when g > g∗.

7.2 Mean-field method

The idea of applying the mean-field method, which is widely used in sta-
tistical systems, to study phase transitions in the lattice gauge theories
was proposed by Wilson [Wil74] and first implemented for Abelian theo-
ries by Balian, Drouffe and Itzykson [BDI74]. A mean field usually works
well when there are many neighboring degrees of freedom, interacting
with a given one.
In the simplest version of the mean-field method, the link variable Uµ(x)

is replaced by the mean-field value m · I everywhere but at a given link
(see Fig. 7.3) at which the self-consistency condition〈

[Uµ(x)]
ij
〉
0
= mδij (7.15)

is imposed.
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Fig. 7.3. Graphical representation of the self-consistency condition (7.17). The
link variables are replaced by m · I at all links except for a given one denoted by
the bold line.

The average on the LHS of Eq. (7.15) is calculated with the action which
is obtained from (6.16) by the substitution ofm ·I for all the link variables
(or their Hermitian conjugates) except at the given link. Since the given
link enters 2(d− 1) plaquettes, the average on the LHS of Eq. (7.15) is to
be calculated with the action

S0[U ] = 2 (d− 1)m3Re trUµ(x) + const . (7.16)

Therefore, the self-consistency condition (7.15) can be written using
the substitution of the mean-field ansatz into the lattice partition func-
tion (6.31) as ∫

dU eβ̄N Re trU 1
N
trU∫

dU eβ̄N Re trU
= m (7.17)

with

β̄ = 2 (d− 1)m3 β

N2
. (7.18)

The meaning of Eq. (7.17) is very simple: the average of the normalized
trace of the link variable at the given link should coincide with m, which
is substituted for all other links of the lattice.
In order to verify whether the self-consistency condition (7.17) admits

nontrivial solutions, one should first calculate the group integral on the
LHS and then solve the self-consistency equation for m versus β. Typical
behavior of the solution is depicted in Fig. 7.4. For all values of β, there
exists a trivial solution m = 0 that is associated with no mean field. At
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✲

✻m

1

0 β∗ β ∝ 1/g2

Fig. 7.4. Typical behavior of the mean-field solutions of the self-consistency
equation (7.17). The only solution with m = 0 exists for β < β∗. Two more
solutions appear for β > β∗. The solution depicted by the dashed line is unstable.
The actual value of m versus β is depicted by the bold lines. A first-order phase
transition is associated with β = β∗.

some value β∗, two more solutions of the self-consistency equation appear.
The upper one is associated with positive specific heat, while the lower
one corresponds to negative specific heat. This can be seen by noting that

W (∂p) = m4 (7.19)

in the mean-field approximation which follows from the substitution of
the link variables in the definition (6.65) by the mean-field values. This
nontrivial solution is preferred for β > β∗, since the partition function for
it is larger (or the free energy is smaller) than for the m = 0 solution.
The value of β∗ is often associated with the point of a first-order phase
transition.
The mean-field method in such a simple form was first applied to non-

Abelian lattice gauge theories in [GL81, CGL81]. For the cases when a
first-order phase transition occurs (say, for the SU(N) groups with N > 3
or for the SO(3) group), agreement with numerically calculated positions
of the phase transitions is remarkable.

Problem 7.3 Calculate β∗ for the SU(∞) lattice gauge theory, when the group
integral on the LHS of Eq. (7.17) equals β̄/2 for β̄ ≤ 1 (a strong-coupling phase)
and 1− 1/2β̄ for β̄ ≥ 1 (a weak-coupling phase).
Solution For the strong-coupling phase, the self-consistency equation

(d− 1)m3 β

N2
= m (7.20)

has the only solution m = 0. The other solutions are unacceptable owing to the
stability criterion.
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The nontrivial solutions of the self-consistency equation appear in the weak-
coupling phase when dm/dβ = ∞ or dβ/dm = 0. Differentiating, we obtain
then in d = 4

∂β−1N2

∂m
= 12

(
3m2 − 4m3

)
, (7.21)

which yields

m∗ =
3
4
,

β∗
N2

=
43

34
≈ 0.79 . (7.22)

It is still left to verify that the proper β̄ is indeed associated with the weak-
coupling phase. From Eq. (7.18), we find β̄∗ = 2 and this is the case.
How one can calculate the one-matrix integral on the LHS of Eq. (7.17) at

large N is explained in Sect. 12.9.

7.3 Mean-field method (variational)

There are some puzzles with the simplest mean-field ansatz described
above. First of all, the average value of the link variable Uµ(x) in a lattice
gauge theory must vanish owing to the gauge invariance (remember that
Uµ(x) changes under the gauge transformation according to Eq. (6.13),
while the action and the measure are gauge invariant). This is in ac-
cordance with Elitzur’s theorem [Eli75], which says that a local gauge
symmetry cannot be broken spontaneously, so that any order parameter
for phase transitions in lattice gauge theories must be gauge invariant.
A way out of this is to reformulate the mean-field method in lattice

gauge theories as a variational method [BDI74] which is similar to that
proposed by R. Peierls in the 1930s. It is based on Jensen’s inequality∗〈

eF
〉
0
≥ e〈F 〉0 (7.23)

which arises from the convexity of the exponential function, where 〈· · ·〉0
denotes averaging with respect to a trial action.
Let us choose the trial partition function

Z0 =
∫ ∏

x,µ

dUµ(x) eβ̄N
∑

x,µ Re trUµ(x) (7.24)

as a product of one-link integrals. Adding and subtracting the trial action,
we write down the following bound on the partition function (6.31):

Z ≥ Z0 exp
〈
β

N

∑
p

Re trU(∂p)− β̄N
∑
x,µ

Re trUµ(x)
〉
0

, (7.25)

∗ More detail can be found, for example, in the books [Fey72, Sak85].
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where 〈· · ·〉0 denotes averaging with respect to the same action as in
Eq. (7.24).
Since the expression that is averaged in the exponent in Eq. (7.25) is

linear in each of the link variables, it can be calculated via the one-matrix
integral given by the LHS of Eq. (7.17). Therefore, we find〈

β

N

∑
p

Re trU(∂p)− β̄N
∑
x,µ

Re trUµ(x)
〉
0

= βNpm
4 − β̄N2Nlm,

(7.26)
where Eq. (7.19) has been used.
The idea of the variational mean-field method is to fix β̄ from the

condition for the trial ansatz (7.24) to give the best approximation to Z
in the given class. Calculating the derivative of the RHS of Eq. (7.25)
with respect to β̄ and taking into account the fact that m depends on β̄
according to Eq. (7.17), we find the maximum at β̄ given by Eq. (7.18),
which reproduces the simplest version of the mean-field method described
above.
To restore Elitzur’s theorem, a more sophisticated trial ansatz [Dro81]

can be considered:

Z0 =
∫ ∏

x,µ

dUµ(x) eN
∑

x,µ Re trB
†
µ(x)Uµ(x), (7.27)

where we choose Bµ(x) to be an arbitrary complex N ×N matrix. Now
the best approximation is reached for

Bµ(x) = β̄Ω(x)Ω†(x+ aµ̂) , (7.28)

where β̄ is given by exactly the same equation as before, while Ω(x) ∈
SU(N) but is arbitrary otherwise. Now 〈U ij

µ (x)〉0 vanishes after summing
over equivalent maxima which results in integrations over dΩ(x).

Problem 7.4 Perform the variational mean-field calculation with the ansatz
(7.27).

Solution Let us denote

M ij
µ (x) =

∫ ∏
x,µ
dUµ(x) eN x,µ Re trB†

µ(x)Uµ(x) U ij
µ (x)∫ ∏

x,µ
dUµ(x) eN x,µ Re trB†

µ(x)Uµ(x)
. (7.29)

Then the analog of Eq. (7.26) is〈
β

N

∑
p

Re trU(∂p)−N
∑
x,µ

Re trB†
µ(x)Uµ(x)

〉
0

=
β

N

∑
p

Re trM(∂p)−N
∑
x,µ

Re trB†
µ(x)Mµ(x) (7.30)
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so that the inequality (7.25) takes the form

Z ≥ Z0 exp

[
β

N

∑
p

Re trM(∂p)−N
∑
x,µ

Re trB†
µ(x)Mµ(x)

]
. (7.31)

Bµ(x) can now be determined by maximizing with respect to Bµ(x) and taking
into account Eq. (7.29).
It is easy to see that if Bµ(x) = β̄ · I is a solution as before, then (7.28) is also

a solution. Therefore, we find〈
U ij
µ (x)
〉
0
= m

∫
dΩ(x + aµ̂) dΩ(x)Ω(x+ aµ̂)Ω†(x) = 0 , (7.32)

where the integration over Ω takes into account different equivalent maxima.
Thus, all gauge-invariant quantities for the ansatz (7.27) are the same as for the
ansatz (7.24), while gauge-noninvariant quantities now vanish in agreement with
Elitzur’s theorem.

Remark on the criterion for phase transition

Another puzzle with the simplest mean-field method is why the point
of the first-order phase transition is chosen as explained in Fig. 7.4 but
not when the free energy of both phases coincide (the standard Maxwell
rule in statistical physics). Perhaps, the criterion of Fig. 7.4 should be
chosen if a barrier between two phases is impenetrable, which happens
at large N or if quantum fluctuations are not taken into account such
as for the simplest mean field. The mean-field calculations of [FLZ82],
which take into account fluctuations around the mean-field solution (7.28),
agree for the Maxwell-rule criterion with numerical data. These results
are reviewed in [DZ83].

7.4 Lattice renormalization group

While the mean-field method is useful for studying the first-order phase
transitions, the second-order phase transitions in lattice statistical sys-
tems are better described by the renormalization group method (see, for
example, the review by Wilson and Kogut [WK74]). The idea of applying
a similar method to lattice gauge theories is due to Migdal [Mig75].
A simple renormalization group transformation in lattice gauge theories

is associated with doubling of the lattice spacing a. Originally one has a
lattice as depicted in Fig. 7.5a. The lattice renormalization group (r.g.)
transformation consists in integrating over the link variables Uµ(x) on the
links shown by the thin lines which results in a lattice with spacing 2a,

a
r.g.
=⇒ 2a , (7.33)
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(a)

r.g.
=⇒

(b)

Fig. 7.5. Lattice renormalization group transformation (7.33). The thin lines
of the old lattice (a) represent links on which integration is performed. The new
lattice (b) has a lattice spacing of 2a but the same spatial extent La.

which is depicted in Fig. 7.5b. The space size of the lattice is L before
the transformation and becomes L/2 after the transformation,

L
r.g.
=⇒ L

2
, (7.34)

so that the lattice extent is L ·a in both cases, which is expected to reduce
the influence of finite-size effects on the transformation.
The Wilson action on the lattice of Fig. 7.5a becomes a more general

one under the renormalization group transformation:

S[U ] =
∑
p

β
1
N
trU(∂p)

r.g.
=⇒ S′ [U ] =

∑
p

β′
1

1
N
trU(∂p) +

∑
p2

β′
2

1
N
trU(∂p2)

+
∑
p3

β′
3

1
N
trU(∂p3) + · · · . (7.35)

The new action S′[U ] is not necessarily a single-plaquette action and can
involve traces of the Wilson loops for boundaries of double plaquettes,
triple plaquettes and so on.
The new action would be the same as the old one only at a fixed point.

This usually happens after the renormalization group transformation is
applied several times when the lattice theory does have a fixed point. The
resulting action is then associated with an action of the continuum theory.
The great success of non-Abelian lattice gauge theories with the Wilson

action in describing the continuum limit even at a relatively small spatial
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extent or, which is the same, at relatively large g2 and a, is because it
is not far away from the fixed-point action of the renormalization group.
The proper numerical results will be presented in a moment (Fig. 7.6).
If both actions S[U ] and S′[U ] are the single-plaquette Wilson actions,

then

β
r.g.
=⇒ β′ = β −∆β (7.36)

under the renormalization group transformation on the lattice.
Since the Gell-Mann–Low function B(g2) in the continuum is known,

∆β versus β is determined by the equation

β∫
β−∆β

dx
x2B(3/x) = − ln 2

3
. (7.37)

Here ln 2 on the RHS arises from Eq. (7.33) and the relation (6.32) be-
tween β and g2 is used with N = 3.
For the pure SU(3) gauge theory, we obtain from Eq. (7.37)

∆β = 0.579 +
0.204
β

+O
(
β−2) (7.38)

at asymptotically large β.
One can integrate over the thin links in Fig. 7.5a either approximately

or numerically. The following procedure for an approximate integration
is known as the Migdal–Kadanoff recursion relations.
Let us expand the exponential of the old action in the characters

e−S[U ] =
∑
r

frdrχr(U) , (7.39)

where

dr = χr(I) (7.40)

is the dimension of a given representation r and fr are the coefficients
which depend on the form of S[U ].
Migdal [Mig75] proposed to approximate the new action, which appears

after

a =⇒ ρ a , (7.41)

by the formula

e−S′[U ′] =

[∑
r

(fr)
ρ2

drχr(U ′)

]ρd−2

, (7.42)
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Fig. 7.6. Monte Carlo data from Akemi et al. [Ake93] for ∆β. The error bars
represent statistical errors. The solid line represents the asymptote (7.38).

which is exact in d = 2 dimensions. Kadanoff [Kad76] modified slightly
the recursion relation (7.42).
The study of the Migdal–Kadanoff recursion relations was historically

the first argument that second-order phase transitions do not occur in the
non-Abelian lattice gauge theory when g2 is decreased. Moreover, these
relations in d = 4 are the same as for spin systems (with the same sym-
metry group) in d = 2 where this phenomenon is known. A disadvantage
of the method is that it is difficult to estimate its accuracy.
A final answer to the question of whether or not a second-order phase

transition occurs in the non-Abelian lattice gauge theory was given by the
numerical integration. This is known as the Wilson Monte Carlo renor-
malization group. Some typical results [Ake93] for ∆β, which is defined
by Eq. (7.36), versus β are depicted in Fig. 7.6. The solid line represents
the asymptote (7.38). The agreement confirms that the continuum limit
is reached already at these values of β, while the deviation of the Monte
Carlo data from the asymptotic behavior for smaller values of β is owing
to lattice nonperturbative effects.

7.5 Monte Carlo method

The idea of the Monte Carlo method is to calculate the partition func-
tion (6.31) and the averages (6.39) for arbitrary values of β numeri-
cally, using the fact that the multiplicity of the integral is large. For
an L × L × L × L lattice in 4 dimensions, a typical multiplicity of the
integral is as large as 4 · (N2− 1) ·L4 (∼ 107 for L = 24). It is hopeless to
calculate such an integral exactly. In contrast, the larger the multiplicity
the better the Monte Carlo method works.
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As usual, the Monte Carlo method is applied not to sequential integrals
over Uµ(x) at each link but rather to the multiple integral as a whole,
which can be viewed as the sum over states of a statistical system.
A state is identified with a gauge field configuration which is described

by the values of the link variables at all the links of the lattice:

C =
{
U ij
µ (x), . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

}
. (7.43)

There are as many positions in this row as the multiplicity of the integral.
Then the sequential integral can be represented as∫ ∏

x,µ

dUµ(x) · · · =
∑
C

· · · . (7.44)

The averages (6.39) can be rewritten as

〈F (C) 〉 =

∑
C
e−βS(C)F (C)∑
C
e−βS(C)

, (7.45)

where S(C) and F (C) are the values of S and F for the given configuration
C.
The task of Monte Carlo calculations is not to sum over all possible

configurations, the number of which is infinite, but rather to construct an
ensemble, say, of n configurations

E = {C1, . . . , Cn} (7.46)

such that a given configuration Ck is encountered with the Boltzmann
probability

PBol(Ck) = Z−1(β) e−βS(Ck). (7.47)

Such a sample of configurations is called the equilibrium ensemble.
Given an equilibrium ensemble, the averages (7.45) take the form of

the arithmetic mean

〈F [U ] 〉 =
1
n

n∑
k=1

F (Ck) (7.48)

because each configuration “weights” already as much as is required. In
particular, the Wilson loop average for a rectangular contour is given by

W (R× T ) =
1
n

n∑
k=1

1
N
trU(R× T ; Ck ) . (7.49)
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If all configurations in the equilibrium ensemble are independent, then the
RHS of Eq. (7.49) will approximate the exact value of W (R× T ) with an
accuracy of ∼

√
n.

The analogy between this method of calculating averages and statistical
physics is obvious. The equilibrium ensemble simulates actual states of a
statistical system, while the index k describes the time evolution.
A crucial point in the Monte Carlo method is to construct the equi-

librium ensemble. It is not simple to do that because the Boltzmann
probability is not known at the outset. A way around this problem is
to establish a random process for which each new configuration in the
sequence (7.46) is obtained from the previous one by a definite algorithm
but stochastically. In other words, the random process is completely de-
termined by the probability P (Ck−1 → Ck) for a transition from a state
Ck−1 to a state Ck and does not depend on the history of the system, i.e.

P (Ck−1 → Ck) = P (Ck−1, Ck) . (7.50)

Such a random process is known as the Markov process.
The transition probability P (C,C ′) should be chosen in such a way as

to provide the Boltzmann distribution (7.47). This is ensured if P (C,C ′)
satisfies the detailed balance condition

e−βS(C)P
(
C,C ′) = e−βS(C′)P

(
C ′, C
)
. (7.51)

Then

(1) an equilibrium sequence of states will transform into another equi-
librium sequence,

(2) a nonequilibrium sequence will approach an equilibrium one when
moving through the Markov chain.

Problem 7.5 Prove statements (1) and (2) listed in the previous paragraph
using the detailed balance condition (7.51).

Solution Let a state C be encountered in ensembles E and E′ with probability
densities P (C) and P ′(C), respectively. Then the distance between the two
ensembles can be defined as∥∥E − E′∥∥ =

∑
C

∣∣P (C)− P ′(C)
∣∣. (7.52)

For a Markov process when Eq. (7.50) holds, we have

P ′(C) =
∑
C′

P (C,C′)P (C′) (7.53)

if E′ is obtained from E by a Monte Carlo algorithm. The transition probability
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P (C,C′) is nonnegative and obeys∑
C

P (C,C′) =
∑
C′

P (C,C′) = 1 (7.54)

since each new state is obtained from an old one and vice versa.
It is now easy to prove statement (1). Summing the detailed balance condi-

tion (7.51) over C′, we obtain

PBol(C) =
∑
C′

P (C,C′)PBol(C′) , (7.55)

i.e. the Boltzmann distribution is an eigenvector of P (C,C′). Comparing with
Eq. (7.53), we see that the new distribution is again the Boltzmann one, which
proves statement (1).
To prove statement (2), let us compare the distances from E and E′ to some

equilibrium ensemble EBol associated with the Boltzmann distribution (7.47).
We have the inequality∥∥E′ − EBol

∥∥ =
∑
C

∣∣P ′(C) − PBol(C)
∣∣

=
∑
C

∣∣∣∣∑
C′

P (C,C′)
[
P (C′)− PBol(C′)

]∣∣∣∣
≤
∑
CC′

P (C,C′)
∣∣P (C′)− PBol(C′)

∣∣
=
∑
C′

∣∣P (C′)− PBol(C′)
∣∣

=
∥∥E − EBol

∥∥ , (7.56)

where Eqs. (7.53), (7.55) and (7.54) are used. Thus, statement (2) is proven.

Specific Monte Carlo algorithms differ in the choice of the transition
probability P (C,C ′), while the detailed balance condition (7.51) is always
satisfied. The two most popular algorithms, which act at one link, are as
follows.

Heat bath algorithm

A new link variable U ′
µ(x) is selected randomly from the group manifold

with a probability given by the Boltzmann factor

P
(
U ′
µ(x)
)
∝ e−βS(C′). (7.57)

Then this procedure is repeated for the next link and so on until the whole
lattice is passed. This can be imagined as if a reservoir at temperature
1/β touches each link of the lattice in succession. It is clear from physical
intuition that the system will be brought to thermodynamic equilibrium
sooner or later.
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Metropolis algorithm

This algorithm is used in statistical physics since the 1950s and consists
of several steps.

(1) A trial new link variable U ′
µ(x) is selected (suppose randomly on

the group manifold).
(2) The difference between the action for this trial configuration and

that for the old one is calculated:

∆S = S
(
C ′)− S(C) . (7.58)

(3) A random number r ∈ [0, 1] is generated.
(4) If

e−β∆S > r , (7.59)

then U ′
µ(x) is accepted. Otherwise, U ′

µ(x) is rejected and the old
value Uµ(x) is kept.

(5) All of this is repeated for the next links.

An advantage of the Metropolis algorithm is that it is usually more
easy implemented in practical calculations.
A new configuration C ′, which is obtained by applying once either

Monte Carlo algorithm to each link of the lattice (this procedure is often
called the Monte Carlo sweep), will be strongly correlated with the old
one, C. This is because the lattice action depends not only on the variable
at the given link but also on those at the neighboring links which form
plaquettes with the given one. In order for C ′ to become independent of
C, this procedure should be repeated many times or special tricks should
be used to reduce the correlations. Then this new configuration can be
added to the equilibrium ensemble (7.46) as Ck.
More details concerning the Monte Carlo algorithms as well as their

practical implementation in lattice gauge theories can be found in the
review [CJR83] and the books [Cre83, MM94].

7.6 Some Monte Carlo results

The first Monte Carlo calculation in non-Abelian lattice gauge the-
ories, which is relevant for the continuum limit, was performed by
Creutz [Cre79] who evaluated the string tension for the SU(2) gauge
group. His result is reproduced in Fig. 7.7 and looks very much like what
is expected in Fig. 6.10 on p. 120. This calculation was the first demon-
stration that the continuum limit sets in for relatively large g2 ≈ 0.91
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Fig. 7.7. Monte Carlo data from Creutz [Cre79] for the string tension in the
SU(2) pure lattice gauge theory.

(β ≈ 2.2) and that results for the continuum can therefore be extracted
from relatively small lattices.
The restoration of rotational symmetry for these values of g2 was

demonstrated explicitly by Land and Rebbi [LR82]. They calculated
equipotential surfaces for the interaction between static quarks. In the
strong-coupling region g2 → ∞, they appear as in Fig. 7.8a since the
interaction potential is given by

E(x, y, z) = K ( |x|+ |y|+ |z| ) (7.60)

because the distance between the quarks is measured along the lattice.
This is associated with the cubic symmetry on the lattice (i.e. rotations
through an angle which is a multiple of π/2 around each axis and trans-
lations by a multiple of the lattice spacing along each axis) rather than
with the Poincaré group. The rotational symmetry must be restored in
the continuum limit.
The Monte Carlo data of Land and Rebbi [LR82] are shown in Figs. 7.8b

and c. They demonstrate the restoration of rotational symmetry when
passing from β = 2 (Fig. 7.8b) to β = 2.25 (Fig. 7.8c).
The early Monte Carlo calculations played a very important role in the

development of the method. Their main result is that the Monte Carlo
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Fig. 7.8. Behavior of equipotential lines at different values of β: (a) the strong-
coupling limit β = 0; (b) β = 2; (c) β = 2.25. (b) and (c), taken from the paper
by Lang and Rebbi [LR82], show how the rotational symmetry is restored as β
is increased.

calculation of physical quantities in QCD is possible on relatively small
lattices.
A dramatic improvement of the Monte Carlo technology in lattice gauge

theories has taken place over the last 20 years. New calculations are
performed on larger lattices and with better statistics. The best way to
follow current developments of the subject is via plenary talks published
in the proceedings of the annual Lattice Conference (currently [Lat00]).
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