The $n^{\text {th }}$ root of a prime number cannot be the root of an equation of degree less than n with rational coefficients.
By David Mair.

Suppose possible the relation

$$
a_{0}+a_{1} p^{\frac{1}{n}}+a_{2} p^{\frac{2}{n}}+\ldots \ldots a_{n-1} p^{\frac{n-1}{n}}=0
$$

where n is an integer and $a_{0}, a_{1}, \ldots \ldots a_{n-1}, p$ are rational.
If p is fractional $=\frac{\alpha}{\beta}$ put $p=\frac{q}{\beta^{n}}$; then by multiplying throughout by a suitable integer we get a relation of the above form in which all symbols represent integers.

If a_{0} contained a factor p the equation could be reduced to the form

$$
a_{1}+a_{2} p^{\frac{1}{n}}+\ldots \ldots a_{n-1} p^{\frac{n}{n}}+a_{0} p^{\frac{n-1}{n}}=0
$$

suppose such reduction to have been carried out so that the first term does not contain p.

The relation may be put in the various forms

$$
\begin{aligned}
& a_{0} \quad+a_{1} p^{\frac{1}{n}}+\ldots \ldots \ldots+a_{n-1} p^{\frac{n-1}{n}}=0 \\
& a_{n-1} p+a_{0} p^{\frac{1}{n}}+\ldots \ldots \ldots+a_{n-n} p^{\frac{n-1}{n}}=0 \\
& \ldots \ldots \ldots \ldots \ldots \ldots \quad \ldots \ldots \ldots \ldots \ldots \ldots \\
& a_{1} p+a_{2} p \cdot p^{\prime \prime}+\ldots \ldots+a_{0} p^{\frac{n-1}{n}}=0 ;
\end{aligned}
$$

whence by eliminating $p^{\frac{1}{n}}, p^{\frac{2}{n}}, \ldots \ldots$

$$
\left|\begin{array}{lll}
a_{0} & a_{1} & a_{2} \ldots \ldots \ldots a_{n-1} \\
a_{n-1} p & a_{0} & a_{1} \ldots \ldots \ldots a_{n-2} \\
a_{n-2} p & a_{n-1} p & a_{0} \ldots \ldots \ldots a_{n-3} \\
\cdot \cdot \cdot & \cdot \cdot & \cdot \cdot \cdot \cdot \cdot \cdot \\
a_{1} p & a_{2} p & a_{3} p \ldots \ldots \ldots a_{0}
\end{array}\right|=0 .
$$

The only term of the determinant not containing p is $a_{0}{ }^{n}$;

$$
\therefore \quad a_{0}{ }^{n}+p \mathbf{M}=0 .
$$

From which it follows that if p is a product of prime factors, all different, a_{0} is a multiple of p.

Hence the assumed relation can not be true if p is a prime number or a product of different primes.

