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Realizable Galois module classes for

tetrahedral extensions

Nigel P. Byott and Bouchäıb Sodäıgui

Abstract

Let k be a number field with ring of integers Ok, and let Γ = A4 be the tetrahedral group.
For each tame Galois extension N/k with group isomorphic to Γ, the ring of integers ON

of N determines a class in the locally free class group Cl(Ok[Γ]). We show that the set of
classes in Cl(Ok[Γ]) realized in this way is the kernel of the augmentation homomorphism
from Cl(Ok[Γ]) to the ideal class group Cl(Ok). This refines a result of Godin and Sodäıgui
(J. Number Theory 98 (2003), 320–328) on Galois module structure over a maximal order
in k[Γ]. To the best of our knowledge, our result gives the first case where the set of
realizable classes in Cl(Ok[Γ]) has been determined for a nonabelian group Γ and an
arbitrary number field k.

1. Introduction

Let k be a number field and Γ a finite group. For any Galois extension N of k with group isomorphic
to Γ, the ring of integers ON of N may be viewed as a module over the group ring Ok[Γ]. If N/k is
at most tamely ramified (we abbreviate this to ‘tame’) then ON is locally free over Ok[Γ] and deter-
mines a class (ON ) in the class group Cl(Ok[Γ]) of locally free Ok[Γ]-modules. The subset R(Ok[Γ])
of realizable classes in Ok[Γ] is defined as the set of all classes (ON ) as N runs through the tame
Galois extensions of k with group isomorphic to Γ. We expect that R(Ok[Γ]) is always a subgroup
of Cl(Ok[Γ]), but this is far from obvious. Indeed a general proof that R(Ok[Γ]) is even nonempty
would solve the inverse Galois problem for k.

In this paper, we take Γ to be the tetrahedral group A4 (i.e. the alternating group of degree 4).
We determine the set R(Ok[Γ]) of realizable classes in this case, showing that it is indeed a subgroup
of Cl(Ok[Γ]). To the best of our knowledge, this is the first case where R(Ok[Γ]) has been completely
determined for a nonabelian group Γ and for an arbitrary number field k. Elsewhere we give a similar
result for the dihedral group of order 8 [BS05], but only under a technical restriction on k. (To be
precise, the ray class group of Ok with modulus 4Ok was required to have odd order.)

We briefly review the background to this work. The investigation of realizable classes was initi-
ated by McCulloh. In [McC83] he gave a concrete description of R(Ok[Γ]) for elementary abelian
groups Γ, and subsequently he determined R(Ok[Γ]) in a less explicit form for arbitrary
abelian groups [McC87]. Thus in the abelian case, R(Ok[Γ]) is known, at least in principle, and in
fact R(Ok[Γ]) is always a subgroup of Cl(Ok[Γ]). For nonabelian groups, however, there are as yet
only partial results in a few special cases. Some progress can be made by extending scalars from
Ok[Γ] to a maximal order M in k[Γ] containing Ok[Γ]. The resulting subset R(M) of realizable
classes in the class group Cl(M) is easier to determine than R(Ok[Γ]), since the class in Cl(M)
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of M ⊗Ok[Γ] ON can be calculated from the Steinitz classes of the rings of integers in the various
intermediate fields of N/k. This approach has been developed by the second-named author in a
series of papers [Sod97, Sod99, Sod00, GS03]. The case of metacyclic groups has also been inves-
tigated in unpublished work of Soverchia [Sov99], but her results again fall short of a complete
determination of the realizable classes over the group ring Ok[Γ] itself.

Our treatment here of R(Ok[Γ]) for Γ = A4 refines the analysis of R(M) for Γ = A4 given by
Godin and Sodäıgui in [GS03]. Thus the present paper bears the same relationship to [GS03] as
[BS05] does to [Sod00]. In [GS03] it was assumed that k has odd class number and does not contain
a primitive cube root of unity. These hypotheses are not required in the present paper.

To state our main result, we introduce some more notation. The augmentation map ε :
Ok[Γ] −→ Ok induces a group homomorphism Cl(Ok[Γ]) −→ Cl(Ok), where Cl(Ok) is the ideal
class group of Ok. We write Cl0(Ok[Γ]) for the kernel of this homomorphism. It is easily seen that

R(Ok[Γ]) ⊆ Cl0(Ok[Γ]) (1.1)

(cf. [McC83, (4.4)]): this is simply a restatement of the fact that TrN/k(ON ) is a principal Ok-ideal
(actually Ok itself) for any tame extension N/k. Here TrN/k denotes the trace map. Our main result
is that the inclusion (1.1) is an equality, expressed in the following theorem.

Theorem. Let k be any number field and let Γ = A4. Then R(Ok[Γ]) is the subgroup Cl0(Ok[Γ])
of Cl(Ok[Γ]).

At the suggestion of one of the referees, we briefly mention some unpublished work of McCulloh
on realizable classes for nonabelian groups. One formulation of McCulloh’s main result in the abelian
case is that the set of realizable classes is precisely the kernel of a certain homomorphism Rag ′ on
Cl(Ok[Γ]) (see [McC87, p. 291]). Using the Hom-description of the class group, the definition of Rag ′

carries over to the nonabelian case once one extends the Stickelberger pairing [McC87, (4.1)(b)]
from abelian characters to arbitrary characters by setting 〈χ, s〉 = 〈resG

〈s〉χ, s〉 for any irreducible
character χ of G and any s ∈ G. McCulloh has shown that for an arbitrary finite group Γ we have
R(Ok[Γ]) ⊆ ker(Rag ′). One can verify that ker(Rag ′) = Cl0(Ok[Γ]) in the case Γ = A4. The main
point in the present paper is to prove the opposite inclusion R(Ok[Γ]) ⊇ Cl0(Ok[Γ]) in this case.

2. The Hom-description

For the rest of this paper, we fix Γ = A4, the tetrahedral group of order 12. We work with the
presentation

Γ = 〈σ, τ, ν | σ3 = τ2 = ν2 = 1, τν = ντ, στσ−1 = ν, σνσ−1 = τν〉.
Let ∆ denote the normal subgroup 〈τ, ν〉 of Γ isomorphic to C2 × C2.

The absolutely irreducible characters of Γ are the trivial character χ0, two nontrivial characters
χ1 and χ2

1 of degree 1, and a character χ2 = IndΓ
∆φ of degree 3 induced from any nontrivial irreducible

character φ of ∆. The character χ1 factors through Γ/∆, and is determined by χ1(σ) = ζ for a fixed
primitive cube root ζ of unity. Without loss of generality, we take φ to have kernel 〈ν〉. The characters
χ0 and χ2 are always defined over k, whereas χ1 is defined over k only if ζ ∈ k. To treat the two
cases ζ ∈ k and ζ �∈ k in a uniform manner, we set

K =

{
k × k if ζ ∈ k;
k(ζ) if ζ �∈ k.

Then k[Γ] has Wedderburn decomposition k × K × M3(k).
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We recall Fröhlich’s so-called Hom-description of Cl(Ok[Γ]) in terms of Galois-equivariant func-
tions on the group RΓ of virtual characters of Γ. From [Frö83, p. 20] we have

Cl(Ok[Γ]) ∼= HomΩ(RΓ, J(kc))
HomΩ(RΓ, kc×)Det(U(Ok[Γ]))

, (2.1)

where kc is an algebraic closure of k, Ω = Gal(kc/k) the absolute Galois group of k, J(kc) the idèle
group of kc (that is, the limit of the idèle groups J(L) as L runs over all finite extensions of k
inside kc), U(Ok[Γ]) the group of unit idèles of Ok[Γ], and Det : U(Ok[Γ]) −→ HomΩ(RΓ, J(kc))
the determinant map given by Det(α)(χ) = det(Tχ(α)) for any representation Tχ affording the
character χ. For a tame Galois extension N/k with group Γ, the class (ON ) ∈ Cl(Ok[Γ]) is obtained
in terms of the Hom-description as follows (see [Frö83, p. 30]). Let η ∈ N be a normal basis for
N/k, so N = k[Γ]η. For an irreducible character χ of Γ, form the Fröhlich–Lagrange resolvent

〈η, χ〉N/k = det
( ∑

γ∈Γ

γ(η)Tχ(γ−1)
)

.

For each place p of Ok, the semilocal completion ON,p of ON at p is a free Ok,p[Γ]-module since
N/k is tame. Let ηp ∈ ON,p be such that ON,p = Ok,p[Γ]ηp. We will refer to such an element as a
local normal integral basis for N/k. Forming the local resolvents 〈ηp, χ〉N/k for all p, we obtain an
idèlic resolvent

(〈ηp, χ〉N/k)p ∈ J(kc).

The assignment χ 
→ (〈ηp, χ〉N/k)p〈η, χ〉−1
N/k extends by linearity to an element of HomΩ(RΓ, J(kc)).

The class of this element on the right in (2.1) is independent of the choices of η and the ηp, and
coincides with (ON ).

As explained in [BS05], there is a similar Hom-description of the augmentation kernel:

Cl0(Ok[Γ]) ∼= Hom0
Ω(RΓ, J(kc))

Hom0
Ω(RΓ, kc×)Det0(U(Ok[Γ]))

, (2.2)

where, for each of the three groups on the right, the superscript 0 indicates that only the homo-
morphisms f with f(χ0) = 1 are included. The class (ON ) in Cl0(Ok[Γ]) is obtained as described
above, but with the normal basis η and local normal integral bases ηp chosen to satisfy TrN/k(η) = 1
and TrNp/kp(ηp) = 1 for all p.

In our case Γ = A4, either the irreducible characters are all fixed by Ω (if ζ ∈ k), or χ1 and χ2
1

are interchanged by Ω (if ζ �∈ k). In the first case we may identify any f ∈ Hom0
Ω(RΓ, kc) with its

triple of values on nontrivial characters,

(f(χ1), f(χ2
1), f(χ2)) ∈ (k×)3.

In the second case, f(χ1) ∈ k(ζ)× and f(χ2
1) = f(χ1)ω for any ω ∈ Ω with ζω = ζ2, so we may

identify f with the pair of values

(f(χ1), f(χ2)) ∈ k(ζ)× × k×.

Thus

Hom0
Ω(RΓ, kc×) = K× × k×

in both cases. Similarly, we identify Hom0
Ω(RΓ, J(kc)) with J(K) × J(k), and Det0(U(Ok[Γ])) with

a subgroup of J(K) × J(k). The Hom-description (2.2) then becomes

Cl0(Ok[Γ]) ∼= J(K) × J(k)
(K× × k×)Det0(U(Ok[Γ]))

. (2.3)
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For a nonzero ideal f of Ok, we define the ray class group Clf(Ok) by

Clf(Ok) =
J(k)

k×Uf (Ok)
,

where
Uf(Ok) = {u ∈ U(Ok) | u ≡ 1 (mod∗ f)}.

We extend this notation to ray class groups of the integral closure OK of Ok in K. An invertible
OK-ideal f is either a nonzero ideal in the integral domain OK (if ζ �∈ k) or of the form f1 × f2 for
nonzero ideals f1, f2 of Ok (if ζ ∈ k). We define Clf(OK) to be the ray class group in the above
sense in the first case, and set

Clf(OK) = Clf1(Ok) × Clf2(Ok)

in the second.

Proposition 2.1. The natural map J(K) × J(k) � Cl0(Ok[Γ]) given by (2.3) induces a surjection
Clf(OK) × Cl8(Ok) � Cl0(Ok[Γ]), for some ideal f of OK divisible only by primes of Ok above 2
and 3.

Proof. For all finite places p of Ok not above 2 or 3, we have Det0(Ok,p[Γ]×) = O×
K,p × O×

k,p since
Ok,p[Γ] is a maximal order in kp[G]. For the infinite places p we have Det(kp[Γ]×) = K×

p × k×
p

since none of the irreducible characters of Γ are symplectic. It follows that there are ideals f, g of
OK , Ok, respectively, divisible only by primes above 2 and 3, such that

Uf(OK) × Ug(Ok) ⊆ Det0(U(Ok[Γ])).

The Hom-description then induces a surjection Clf(OK) × Clg(Ok) � Cl0(Ok[Γ]). It remains to
show that we may take g = 8Ok. Thus we have to verify that

(1, 1 + 8Ok,p) ⊆ Det0(Ok,p[Γ]×) for each place p above 2, (2.4)

and that
(1,O×

k,p) ⊆ Det0(Ok,p[Γ]×) for each place p above 3. (2.5)

Now the character χ2 is afforded by the representation

σ 
→

0 0 1

1 0 0
0 1 0


 , τ 
→


−1 0 0

0 −1 0
0 0 1


 , ν 
→


1 0 0

0 −1 0
0 0 −1


 .

For any place p and any a ∈ Ok,p such that 1 + a(τ − 1) ∈ Ok,p[Γ]×, we therefore have

(1, (1 − 2a)2) = Det(1 + a(τ − 1)) ∈ Det0(Ok,p[Γ]×). (2.6)

For p above 2, we may take any a ∈ Ok,p. Thus (1, (1 + 2Ok,p)2) ⊂ Det0(Ok,p[Γ]×) by (2.6),
and (2.4) follows since 1 + 8Ok,p ⊆ (1 + 2Ok,p)2.

For p above 3, we first observe that

(1 + pOk,p)(O×
k,p)

3 = O×
k,p, (2.7)

since the function x 
→ x3 is surjective on the units of the residue field Ok/p. Now α = 1 + a(τ − 1)
lies in Ok,p[Γ]× for any a ∈ pOk,p. Thus, since

{(1 − 2a)2 | a ∈ pOk,p} = 1 + pOk,p,

it follows from (2.6) that (1, 1 + pOk,p) ⊆ Det0(Ok,p[Γ]×). On the other hand, the idempotent

e0 = 1
4 (1 + τ + ν + τν) ∈ k[Γ]

576

https://doi.org/10.1112/S0010437X04001137 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001137


Realizable Galois module classes

lies in Ok,p[Γ], and for each b ∈ O×
k,p we have β = e0 + b(1 − e0) ∈ Ok,p[Γ]×. Thus

(1, b3) = Det(β) ∈ Det0(Ok,p[Γ]×).

Now (2.5) follows from (2.7).

3. Construction of the tetrahedral extension N/k

To prove the Theorem, it suffices by (1.1) to show that any given class in Cl0(Ok[Γ]) can be
obtained as the class (ON ) for some tame Galois extension N/k with group Γ = A4. Any class in
Cl0(Ok[Γ]) is represented under the Hom-description (2.3) by a pair of idèles (x, y) ∈ J(K) × J(k).
By Proposition 2.1, we may multiply x by an element of K×Uf(OK), and y by an element of
k×U8(Ok), without changing the corresponding class in Cl0(Ok[Γ]).

In this section we start with such a pair (x, y) and construct a tame extension N/k. In the sub-
sequent two sections, we will show that the class (ON ) in Cl0(Ok[Γ]) is indeed the class represented
by (x, y).

First consider the quotient group C3 = A4/∆, generated by the image σ of σ. For each character χ
of A4 which factors through C3, we write χ for the corresponding character of C3. As in (2.3), we have
a Hom-description

Cl0(Ok[C3]) ∼= J(K)
K× Det0(U(Ok[C3]))

. (3.1)

By McCulloh’s result [McC83], together with the fact that the Stickelberger ideal in Z[C], where
C = Aut(C3) = C2, is in fact the whole of Z[C] (see e.g. [GS03, p. 326]), we have R(Ok[C3]) =
Cl0(Ok[C3]). Indeed, by [McC83, Theorem 5.1], there exists a tame cubic Galois extension E of k,
ramified in at least one place, for which the class (OE) ∈ Cl0(Ok[C3]) is represented by x ∈ J(K).

Since E/k is tame, we know that OE is a locally free Ok[C3]-module and TrE/k(OE) = Ok.
For each place p we choose a local normal integral basis c′p ∈ OE,p. For p not above 2, we replace c′p
by cp = c′p(TrE/k(c′p))−1, so that

OE,p = Ok,p[C3]cp and TrEp/kp(cp) = 1. (3.2)

We next choose c′ ∈ E sufficiently close to c′p, for each of the finitely many places p above 2, to ensure
that c′ is a local normal integral basis at these places. Set c = c′(TrE/k(c′))−1 and cp = c′ for all p

above 2. Then
E = k[C3]c and TrE/k(c) = 1, (3.3)

and (3.2) now holds for all p.
The class (OE) is represented in the Hom-description (3.1) for Cl0(Ok[C3]) by the idèle x′ ∈ J(K)

defined by

x′ =

{
((〈cp, χ1

〉E/k)p〈c, χ1
〉−1
E/k, (〈cp, χ2

1
〉E/k)p〈c, χ2

1
〉−1
E/k) if ζ ∈ k,

(〈cp, χ1
〉E/k)p〈c, χ1

〉−1
E/k if ζ �∈ k.

(3.4)

Proposition 3.1. With the above notation, there exists y′ ∈ J(k) such that (x′, y′) represents the
same class in Cl0(Ok[Γ]) as (x, y).

Proof. By the choice of E, (OE) is also represented by x. Thus from (3.1) we have

x−1x′ = α(Det(κp))p

for some α ∈ K× and some elements κp ∈ Ok,p[C3]× with Det(κp)(χ0) = 1. Lift each

κp = a0,p + a1,pσ + a2,pσ
2 ∈ Ok,p[C3]×
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to

κ̃p = a0,p + a1,pσ + a2,pσ
2 ∈ Ok,p[Γ]×. (3.5)

Then Det(κ̃p)(χ) = Det(κp)(χ) for χ = χ0, χ1, χ
2
1. Thus for some w ∈ J(k) we have

(x−1x′, w) = (α, 1)Det((κ̃p)p) ∈ (K× × k×)Det0(U(Ok[Γ])) ⊂ J(K) × J(k).

By (2.3), it follows that (x, y)(x−1x′, w) represents the same class in Cl0(Ok[Γ]) as (x, y), so we may
take y′ = yw.

Replacing (x, y) by (x′, y′), we assume from now on that x is given by (3.4). In particular we
have xp = 1 for all p above 2.

Let ∆(E/k) denote the discriminant ideal of E/k. Then ∆(E/k) is the square of an ideal
∆(E/k)1/2 of Ok, since E/k has odd order. As E/k is (totally) ramified at some place of k, a slight
generalization of [Was96, Theorem 10.1] shows that the norm from Cl8(OE) to Cl8(Ok) is surjective.
Let a be a ray class in Cl8(OE) whose norm in Cl8(Ok) is the class (∆(E/k)1/2)(y)−1, where (y)
denotes the class determined by y. Choose prime ideals q1, q2 of OE, totally split over k, and above
different ideals in Ok, such that q1 is in the class a of Cl8(OE), and q2 is in the same class as q−1−σ

1

in Cl64(OE). This is possible by the Tchebotarev density theorem for ray class groups. We then
have

(NE/k(q1)) = (∆(E/k)1/2)(y)−1 in Cl8(Ok) (3.6)

and

q1+σ
1 q2 = mOE,

where m ≡ 1 (mod∗ 64OE).

Next put n = mσ(m). Then

n ≡ 1 (mod∗ 64OE), (3.7)

and

nOE = (q1+σ
1 q2)1+σ = (qσ

1 )2q1+σ2

1 q1+σ
2 . (3.8)

Since q1, qσ2

1 , q2, qσ
2 are distinct prime ideals in OE , (3.8) shows that n cannot be a square in E.

On the other hand, NE/k(n) = NE/k(m)2 is a square in k. It follows from [GS02, Lemme 3.1] that
N = E(

√
n,

√
σ(n) ) is Galois over k with group A4. We identify Gal(N/k) with Γ = 〈σ, τ, ν〉, where

σ is an extension of σ to N and τ, ν ∈ Gal(N/E) fix
√

σ(n) and
√

n, respectively. By (3.7), the
biquadratic extension N/E is tamely ramified and all places of E above 2 split completely in N .
(Indeed, the corresponding congruence with modulus 8OE would be sufficient to guarantee this.)

4. Resolvents for the biquadratic extension N/E

The group algebra k[∆] contains the four primitive idempotents

e0 = 1
4(1 + ν + τ + ντ),

e1 = 1
4(1 + ν − τ − ντ),

e2 = 1
4(1 − ν + τ − ντ),

e3 = 1
4(1 − ν − τ + ντ).

Let

η = 1
4 (1 +

√
n )(1 +

√
σ(n) ).
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Then

e0η = 1
4 , e1η = 1

4

√
n, e2η = 1

4

√
σ(n), e3η = 1

4

√
nσ(n).

Furthermore, η is a normal basis for N/E, and, since n ≡ σ(n) ≡ 1 (mod∗ 4OE) by (3.7), η is
also a local normal integral basis at each place above 2. We will specify corresponding local normal
integral bases ηp at each place p of E.

From (3.8) we have

nOE = (qσ
1 )2q1+σ2

1 q1+σ
2 ,

σ(n)OE = (qσ2

1 )2qσ+1
1 qσ+σ2

2 ,

nσ(n)OE = (q1+σ+σ2

1 qσ
2 )2qσ+σ2

1 q1+σ2

2 .

For each place p, fix a uniformizer π(p) of OE,p. Define

ηq1 = (e0 + e1 + e2 + π(q1)−1e3)η,

ηqσ1 = (e0 + π(qσ
1 )−1e1 + e2 + π(qσ

1 )−1e3)η,

η
qσ

2
1

= (e0 + e1 + π(qσ2

1 )−1e2 + π(qσ2

1 )−1e3)η,

ηqσ2 = (e0 + e1 + e2 + π(qσ
2 )−1e3)η,

ηp = η for p �= q1, q
σ
1 , qσ2

1 , qσ
2 .

Then ON,p = OE,p[∆]ηp for all p.

Recall that φ is the irreducible character of ∆ with kernel 〈ν〉. The Fröhlich–Lagrange resolvent
〈η, φ〉N/E coincides with the usual Lagrange resolvent, and we calculate

〈η, φ〉N/E = 4e1η =
√

n.

Similarly, 〈ηp, φ〉N/E =
√

n for all p �= qσ
1 , and 〈ηqσ1 , φ〉N/E = π(qσ

1 )−1√n. We have therefore estab-
lished the following lemma.

Lemma 4.1. With the above notation, the idèle of E given by

(〈ηp, φ〉N/E)p〈η, φ〉−1
N/E

has content (qσ
1 )−1.

5. Resolvents for N/k and proof of the Theorem

To complete the proof of the Theorem, we will use Fröhlich’s formula for the behaviour of resolvents
under induction of characters (see [Frö76, Theorem 7] or [Frö77, Theorem 12]). Recall that χ2 =
IndΓ

∆φ and that we have chosen normal bases η and c for N/E and E/k, respectively. Let α be any
normal basis for N/k. In our setting, Fröhlich’s formula states that

〈α,χ2〉N/kφ(λ) = NE/k(〈η, φ〉N/E)e(E/k), (5.1)

for some λ ∈ k[∆]×, where we may take e(E/k)2 ∈ k× to be the discriminant of the k-basis
{σi(c)}0�i�2 of E. In fact e(E/k) ∈ k× since the cubic extension E/k is normal. An examination of
the proof of Fröhlich’s formula shows that λ is then the determinant of the matrix (λij) over k[∆]
given by

σi(c)η =
2∑

j=0

λijσ
j(α) for 0 � i � 2. (5.2)
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For the local normal integral bases αp and ηp, there is the corresponding formula

〈αp, χ2〉N/kφ(λp) = NE/k(〈ηp, φ〉N/E)ep(E/k), (5.3)

with λp ∈ Ok,2[∆]× and ep(E/k) ∈ O×
k,p obtained analogously. In particular

ep(E/k)2Ok,p = ∆(E/k)Ok,p. (5.4)

Following the pattern already adopted for c and η, we will choose α and the αp so that αp = α for
places p above 2. We will further ensure that, at these places, αp gives rise to the p-component in
x ∈ J(K), and λp is p-adically close to 1.

First, let p be a place of k not above 2. Let α′
p be any local normal integral basis for N/k.

Then TrNp/Ep(α
′
p) is a local normal integral basis for E/k. Since the same is true of cp, we have

cp = κp TrNp/Ep(α
′
p) for some κp ∈ Ok,p[C3]×. Let κ̃p ∈ Ok,p[Γ]× be the lift of κp, obtained as

in (3.5), and set κ′
p = κ̃pe0 + (1 − e0) ∈ Ok,p[Γ]× and αp = κ′

pα
′
p. Then αp is another local normal

integral basis for N/k, and

TrNp/Ep(αp) = (4e0)(κ̃pe0 + (1 − e0))α′
p

= 4e0κ̃pα
′
p

= κpTrNp/Ep(α
′
p)

= cp. (5.5)

Thus, by (3.2),

TrNp/kp(αp) = TrEp/kp(cp) = 1. (5.6)

Fröhlich’s formula (5.3) holds for this αp and some λp ∈ Ok,p[Γ]×.
Next we construct a normal basis α for N/k, and a new normal basis β for N/E, with good

behaviour above 2. Let OE,2 and ON,2 be the semilocal completions at 2 of OE and ON , respectively.
Since each place above 2 splits completely in N/E, we have N2

∼= E4
2 as Galois algebras over k2.

Explicitly, we may take this isomorphism to be z 
→ (z, τ(z), ν(z), τν(z)). We identify ON,2 with
O4

E,2 via this isomorphism. Then the action of Γ on ON,2 = O4
E,2 is given by

τ(z1, z2, z3, z4) = (z2, z1, z4, z3), ν(z1, z2, z3, z4) = (z3, z4, z1, z2),
σ(z1, z2, z3, z4) = (σ(z1), σ(z4), σ(z2), σ(z3)).

Let β′, α′ ∈ N2 be the elements

β′ = (1, 0, 0, 0), α′ = cβ′ = (c, 0, 0, 0).

Then α′ and β′ are local normal integral bases for N/k and N/E respectively at all places above 2,
and TrN/E(β′) = 1.

Now choose β ∈ N with

β ≡ β′ (mod 8ON,2), TrN/E(β) = 1, (5.7)

and set α = cβ. Then

Ok,2[Γ]α + 8ON,2 = Ok,2[Γ]α′ + 8ON,2 = ON,2.

Thus ON,2 = Ok,2[Γ]α by Nakayama’s Lemma, so α is a local normal integral basis for N/k at all
places above 2. Similarly, β is a local normal integral basis for N/E at these places. Moreover,

TrN/E(α) = cTrN/E(β) = c (5.8)

and hence, by (3.3),

TrN/k(α) = TrE/k(c) = 1. (5.9)
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Since σ(β) ≡ σ(β′) = β′ ≡ β (mod 8ON,2), we also have

σj(c)β ≡ σj(c)σj(β) = σj(α) (mod 8ON,2) for 0 � j � 2. (5.10)

We take α as our normal basis for N/k in (5.1). For places p above 2, we set

αp = α, λp = λ, ep(E/k) = e(E/K), (5.11)

where λ and e(E/k) are as in (5.1). For these places, αp is a local normal integral basis and cp = c.
Thus (5.3) now holds for all places p.

Proposition 5.1. With the above notation, λ ≡ 1 (mod 8Ok,2[∆]).

Proof. As both η and β′ are local normal integral bases for N/E above 2, there is some µ′ ∈ OE,2[∆]×

such that
β′ = µ′η. (5.12)

We calculate µ′ explicitly. By (3.7) there is an element f ∈ OE,2 with f ≡ 1 (mod 32OE,2) and
n = f2. Under the identification ON,2

∼= O4
E,2 we then have

√
n = (f,−f, f,−f) and

√
σ(n) =

(σ(f), σ(f),−σ(f),−σ(f)). Thus

e0η = 1
4(1, 1, 1, 1),

e1η = 1
4(f,−f, f,−f),

e2η = 1
4(σ(f), σ(f),−σ(f),−σ(f)),

e3η = 1
4(fσ(f),−fσ(f),−fσ(f), fσ(f)).

Hence β′ = e0η + f−1e1η + σ(f)−1e2η + f−1σ(f)−1e3η, so that

µ′ = e0 + f−1e1 + σ(f)−1e2 + f−1σ(f)−1e3 ≡ 1 (mod 8OE,2[∆]),

since f ≡ σ(f) ≡ 1 (mod 32OE,2).
From (5.7) and (5.12) we now have β ≡ η (mod 8ON,2), and hence by (5.10),

σj(c)η ≡ σj(α) (mod 8ON,2) for 0 � j � 2.

It follows that the matrix (λij) defined by (5.2) is congruent modulo 8Ok,2[∆] to the identity.
Hence λ = det(λij) ≡ 1 (mod 8Ok,2[∆]).

Combining the local integral identities (5.3) with the identity (5.1) at the level of fields, we obtain
the idèlic equation

(〈αp, χ2〉N/k)p
〈α,χ2〉N/k

(
(φ(λp))p

φ(λ)

)
= NE/k

(
(〈ηp, φ〉N/E)p
〈η, φ〉N/E

)(
(ep(E/k))p

e(E/k)

)
(5.13)

in J(k).

Lemma 5.2. The idèle y′ = (〈αp, χ2〉N/k)p〈α,χ2〉−1
N/k ∈ J(k) determines the same class in Cl8(Ok)

as y.

Proof. By Proposition 5.1 and (5.11), we have (φ(λp))pφ(λ)−1 ∈ k×U8(Ok). The content of the
idèle (ep(E/k)2)p is the discriminant ∆(E/k) by (5.4). So, using (5.13) and Lemma 4.1, we see
that y′ determines the same class in Cl8(Ok) as NE/k((q

−1
1 )σ)∆(E/k)1/2 = NE/k(q1)−1∆(E/k)1/2.

By (3.6), this is precisely the class determined by y.
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Proof of the Theorem. It suffices to show that (ON ) ∈ Cl0(Ok[Γ]) is the class determined by
the given pair of idèles (x, y) ∈ J(K) × J(k). Now 〈α,χ0〉N/k = TrN/k(α) = 1 and 〈αp, χ0〉N/k =
TrNp/kp(αp) = 1 for all p by (5.6) and (5.9). Thus, under the isomorphism (2.3), we can calculate
(ON ) by taking resolvents of α and the αp. More precisely, (ON ) is represented by (x′, y′), where
y′ is as in Lemma 5.2 and x′ ∈ J(K) is obtained by taking resolvents for the character χ1 (if ζ �∈ k)
or the characters χ1 and χ2

1 (if ζ ∈ k). Using (5.5) and (5.8), we have

〈α,χi
1〉N/k = 〈TrN/E(α), χi

1
〉E/k = 〈c, χi

1
〉E/k

for i = 1, 2, and similarly for the 〈αp, χi
1〉N/k. Hence x′ is as given in (3.4), and we have x = x′ by

the assumption after Proposition 3.1. Thus (ON ) is represented by (x, y′). But by Lemma 5.2 and
Proposition 2.1, (x, y′) and (x, y) determine the same class in Cl0(Ok[Γ]).
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ed. A. Fröhlich (Academic Press, London, 1977), 133–191.
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Sod97 B. Sodäıgui, Classes réalisables par des extensions métacycliques non abéliennes et éléments de
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