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SIMPLE NONLINEAR DUAL CONTROL PROBLEMS
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Abstract

In this paper we consider a simple, nonlinear optimal control problem with sufficient
convexity to enable us to formulate its dual problem. Both primal and dual problems will
include constraints on both the states and controls. The constraints in one problem may
cause the "optimal" dual states to be discontinuous. However, we will look at conditions
under which the presence of constraints does not force discontinuities and the optimal
states and costates are absolutely continuous.

1. Introduction

In this paper, we investigate simple, constrained control problems, where the
constraints contain both state and control terms. The primal problem we consider
has sufficient convexity to ensure that a dual problem of similar form to the
primal problem can be formulated. The difficulties in computing solutions to the
primal problem stem from the constraints in the primal problem and also the
constraints in the dual problem. The constraints in the primal problem can cause
the optimal costates to jump so that they do not satisfy a differential equation
and can contain S-functions or worse. The constraints in the dual problem can
lead to a similar situation occurring for the optimal states. To eliminate these
possibilities we place conditions on both the primal and dual problems to ensure
that the usual growth conditions found in existence theory for optimal solutions
in control theory, apply. These eventually lead to easily verified assumptions
which guarantee optimal solutions exist for the primal and/or dual problems. The
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132 J. M. Murray [2 ]

main results are to be found in Theorem 3, Corollaries 3 and 4 and Proposition 4.
We also find that strong duality holds.

Other results in a similar vein are available elsewhere. Murray [6] looks at dual
linear problems with some mention of nonlinear, constrained control problems
and Grinold [3] and Hanson and Mond [4] consider a similar primal problem to
ours, but use the Wolfe dual. More general problems than [3] have also been
invp.stiaatfiH fnr p.vamnip. Ml T21 This n a n w i« in a Hiffsrp.nt vp.in t n thp. ahnvc

works in that it uses the results of existence theory from optimal control theory,
and the dual problem is not the Wolfe dual.

2. The primal and dual problems

The primal problem that we will consider is the following

(P) minimize %(x, u) = l(x(t0), x(tj)) + f [a(t)x(t) +f(t, u(t))] dt

subject to

x(t) = A(t)x(t) + B{t)u(t) + c(t),

where/(r, •) is convex for each t e T = [t0, ?J and is a normal integrand (this
implies f(t, •) is lower semicontinuous; see [11] for its other implications), / is
convex and lower semicontinuous, and the matrices A, B, C and E, and the
vectors a, c and d have components that are essentially bounded, Lebesgue
measurable functions. We allow both / and / to take the value + oo which means
there can be implicit constraints in the problem. For example if

° * *< ' ;> = *«•
+ oo otherwise

we have a fixed endpoint problem.
If x ejtf" then x is an n-vector of functions that are absolutely continuous and

if M e oSf" then u is an w-vector of functions that are Lebesgue measurable.
The dual problem we will associate with (P) has the form

minimize ^D(p,w, u*)
(D)

= m(p(t0), p(t1))+ J [p(t)c(t) + w(t)d(t) + /*( / , «•(/))] dt

subject to
/>(') = ~p{t)A{t) - w(t)C(t) + a(t),
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[3] Nonlinear dual control 133

where/*(/, •) is the conjugate function of f(t, •) that is,

/•(/,«•) = sup {«•«- / ( / ,« )}
U

and
- n v — i( v y I 1
r/lAl VA0» •*!/J *

Our dual is of the type expounded by Rockafellar [8]. This is not the only dual
problem one can connect with (P). The Wolfe dual is often investigated, for
instance in [3] and [4], where their primal problems have some similarities to ours.

If we take/(/, u) = b{t)u we see that (P) has the same form as problem (P) of
[6]. There we had to consider extended primal and dual problems where the
controls u and w become measures and x and p were allowed to be functions of
bounded variation. This was required to ensure that optimal solutions existed for
the problems however it is not necessary here because we will impose conditions
(assumptions 1 and 2) so that solutions will exist in these smaller spaces si" and
J£"". One of these conditions, assumption 1, could not be used in [6] because it
requires / not to behave linearly in u as u gets large.

3. Construction of the dual problem

Define the Lagrangian L by

L(t, x, v) = inf {a(t)x + f(t, u): v = A(t)x + B(t)u + c(t),
U

C{t)x + E(t)u + d{t) > 0, u > 0}.

This corresponds to the primal integrand. From [8] we see that the dual integrand
is

M(t, p, s) = sup {sx + pv - L(t, x, v)}
X, V

= sup{sx + p(A(t)x + B(t)u + c(t)) - a{t)x - f(t, u):
X, U

C(t)x + E(t)u + d{t) > 0, u > 0}

= sup inf {sx + p(A(t)x + B(t)u + c(t)) - a{t)x - f(t, u)
x,u w

+ w(C(t)x + E(t)u + d{t)): w > 0, u > 0}.

In order to gain an explicit form for M we would like to swap around the
supremum and infimum operations. Ordinarily if we do this we will obtain
something different but we will show in Proposition 1 that in this case the order
of the operations essentially does not matter. So in anticipation of Proposition 1
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we will write

M(t, p, s) = inf sup { pc(t) + wd(t) + (s + pA(t) + wC(t) - a{t))x
w x,u

+ (pB(t) +wE(t))u - f(t,u): w 3s 0, u > 0},

inf sup{pc(t) + wd(t) +(pB(t) + wE(t))u - f(t, u):
w u

wit 0, « > 0}
if s + pA(t) + wC(t) - a(t) = 0,

+ oo otherwise.

inf [pc{t) + wd(t) +f*(t,u*): w > 0}

ifs + pA(t) + wC{t) - a{t) = 0,
pB{t) + wE(t) - u* < 0,

+ oo otherwise.

which amounts to the integrand and constraints for (D). What remains, is to
verify that we can indeed swap around the supremum and infimum. Let j> = (x, u)
and with p and s fixed, define

K(y,w)={

sx + p(A(t)x + B(t)u + c(t)) - a(t)x - f(t,u)
+ w{C(t)x + E(t)u + d{t)) ifw>0, M > 0,

oo if w jfc 0,
-oo i fu^O.

The order in the definition of K is important. It implies K(y, w) = +oo if
w jfc 0, u £ 0.

PROPOSITION 1. Either

sup infK(y, w) = inf supK(y, w)
y HI W y

or the left hand side is -oo and the right hand side is + oo.

PROOF. We always have

sup
y

, w) = inf , w).

If the left hand side is + oo then equality trivially holds. Suppose the left hand
side is finite then if inf wK(y, w) is finite we must have

iniK(y,w) =
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since K is linear in w on R^.. Hence

sup inf K(y, w) = supK(y,0) > inf supK(y, w)
y w w y

which is the reverse inequality to the one above and so equality must hold.
Suppose sup infwi£(.y, w) = -oo then there does not exist a y = (x, u) that

satisfies

C(t)x + E(t)u + d(t) 2* 0, u > 0.

By Gale's Theorem of the Alternative [5, page 33] there exists a w0 such that

w0C(t) = 0, w0E(t) = 0,

wod(t) = - 1 , w0 > 0.

If infwsupyK(y, w) ¥= + oo there must be a w and a M* such that

i + pA(t) + wC(t) - a(t) = 0,
pB(t) + wE(t) - u* ^ 0,

u* G dom f*(t,-),

where dom/*(f, •) = {u*: f*(t, «*) < +oo}, the effective domain of f*(t, •).
Then for any number \ > 0, w + Xw0 also satisfies those constraints for the same
M*. Hence

inf supK(y, w) < pc(t) +(w +Xwo)d(t) +f*{t,u*).
w y

Letting X -» + oo we see that

inf supiC(>', w) = -oo

and once again equality holds. Q. E. D.
If the primal problem (P) or the dual problem (D) or both have feasible

solutions then we can effectively ignore the anomaly in Proposition 1 and equality
will essentially hold, since if (P) is feasible supyinfwK(y, w) > -oo or if (D) is
feasible, then for some (s, p), (in fact all feasible pairs (s, p)) we will have
infM,sup>,AX.y, w) < + oo. The case when neither (P) nor (D) is feasible is not of
considerable interest.

From the construction of the dual problem, even when we ignore Proposition 1,
we will always have,

THEOREM 1 (Weak Duality).

inf ^fp > -inf ^D.
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PROOF. See Proposition 2 of [8]. Q. E. D.
The obvious corollaries to this are

COROLLARY 1. If there exists a feasible (x, u) such that
*P(x,u) = -inf *f l

then (x, u) is optimal for (P).

COROLLARY 2. If there exists a feasible (p, w, «*) such that
int*P = -*D(p,w, u*)

then (p, w, u*) is optimal for (D).

These are sufficient conditions for optimality, perhaps not very useful, but
nevertheless they suffice. Combining the corollaries and using the derivation of
the dual problem one can obtain another set of sufficient conditions analogous to
the complementary slackness principle of linear programming.

Although weak duality holds for these problems, in general strong duality does
not, namely, we cannot say that inf typ = -inf ^rD unless we add some assump-
tions to the problems. An example of two problems that exhibit a duality gap are

(P) min*P(ii)= fl u2{t)dt
Jo

subject tox(t) = u{t), x(0) = 0,

u(t) > 0,

2 d t(D) min*D(u*)= P (u*)2/4
Jo

subject top(t) = -w(t), p{\) = 0,

Pit) <«*(/),

w(t) > 0.
In this case inf typ = 2 whereas -inf ^ D = 0.

4. Existence and strong duality

We will now turn to the study of whether the primal and/or dual problems
have optimal solutions. The difficulty here lies in the fact that if the controls are
bounded in the primal problem by means of the linear constraints then the
constraints in the dual problem will not bound the dual controls and vice versa.
This follows from Tucker's theorem of the alternative [5, page 29]. In order to
show that optimal solutions exist for both problems then, as well as bounding the
controls for one of the problems by our choice of E(t) we must also place
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conditions on the other problem to ensure that, although the controls can become
as large as they like, if they start to become too large the objective functional will
penalise them so that they will not be optimal. Remember, to be a feasible control
it must be Lebesgue measurable, and must not contain anything like a delta
function for example. We will achieve this by placing a growth condition of the
type usually found in existence theory, on the objective functional for the primal
problem.

The main result of this section is Theorem 3 which gives details about when the
primal and dual problems have equal values and when optimal solutions exist.
Following this we give some simple but widely applicable examples of when the
conditions required in Theorem 3 are satisfied.

The results in this section follow mainly from [9].

DEFINITIONS. The state constraint multifunction X: T =£ R" is given by X(t) =
{x: 3u > 0 with/(/, u) < oo and C(t)x + E(t)u + d{t) > 0}.

The dual state constraint multifunction P: T =£ R" is given by P(t) = { p: 3 w*,
and a w > 0 with/*(f, «*) < oo andpB(t) + wE(t) - u* < 0}.

ASSUMPTION 1. Let/be finite onTXR™ (where R™={u:w>0}), and satisfy
the growth condition

lim ^ ' U' = +oo, V / G r , V « e R " + \ { 0 } .

An example of a function that satisfies this assumption is

whereas the function f{t, u) = \u\ does not.

ASSUMPTION 2. Let the components of E(t) be e,j(t). Assume the e,,(/) are
nonnegative for all t e T and there exists a number 8 > 0 such that for each t and
/ there exists aj such that etj{t) > 8.

PROPOSITION 1. Under Assumption (1), P(t) = R" for all t e T.

PROOF. The growth condition in assumption 1 implies that /*(/, u*) < oo for
all u* G R" [7, Theorem 13.3]. Hence for any p and any w > 0 we can find a
M* e dom/*(/, «*) that majorises^B(0 + wE(t). Q.E.D.

PROPOSITION 2. Under Assumptions (1) and (2), X(t) = R" for all t e T.
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PROOF. Fix an x e R". We can choose a « > 0 such that 

w, > max l-\[d(t) + C(t)x] , ) , 1 < /' < m. 
1 A { o ) 

Then E(t)u > -d(t) - C(t)x and since/is finite on R"+, this u will be feasible. 
Q.E.D. 

To use the results in [9], we must firstly convert ( P ) and (D) into calculus of 
variations problems. These will be 

( P ' ) minimize$ P (JC) = l(x(t0), x ^ ) ) + f L(t, x(t), x(t)) dt 
x<=A" JT 

and 

( D ' ) rmTswuze®D{p) = m{p{t0),p{t1))+ ( M(t, p(t), p(t)) dt, 

where L and M were defined in §3. 

THEOREM 2. Under Assumptions (1) and (2), both L and M are normal integrands 
with L(t, •, •) and M(t, •, •) convex for each t e T. Also, for every x e jtf", and 
p e stf" one has 

&p(x) = ^p(x, ")'• « e Lm feasible for x}, 
0 o ( / > ) = m i n { * 0 ( / ? , H > , u*):w e Lk, u* e Lm feasible for p), 

where the minima are attained. In this sense ( P ) is equivalent to (P ' ) and ( D ) is 
equivalent to ( D ' ) -

PROOF. This will follow from the Equivalence Theorem of [10] once we have 
shown that the inf-boundedness condition of that paper holds for ( P ) and for (D). 
For the primal problem, this amounts to showing that for every / e T, a e R and 
bounded set S c R" x R" the set 

r = {« <= R m : 3(x, v) e S wi th / ( / , u) < a where v = A(t)x + B(t)u + c(t), 

C(t)x + E(t)u + d(t) >0,u>0} 

is bounded. But this follows from Assumption 1 and Corollary 14.2.2 of [7]. 
For the dual problem we must show that for every t e T, a e R and bounded 

set S c R ' x R", the set 

V = {(u*,w) e R m x R*: 3(p,s) eSwithpc(t) + wd(t) + f*(t, u*) < a 
wheres = -pA(t) - wC(t) + a(t),pB(t) + wE(t) - u* < 0, w > 0} 

is bounded. 
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Since f(t, u) is finite for all u > 0 then

lim — i r = + oo

for any uj G dom/*(f, •) and u* G R"+\{0}. Without loss of generality, we can
assume S, and therefore I", is convex. If V is unbounded, then for any
(w*, w0) G F' there exists a («*, w*) such that for all A > 0, (w* + Au*, w0 + Xw)
G F'. Assumption 2 and the constraints pB(t) + wE(t) < «*, w > 0 imply that
u* G R+\{0}. We also have

Xwd(t) +f*(t, M* + AM*) < a - pc(t) - worf(O

which implies

lim — i r < -wd(t)
\-> +00 X

a contradiction. Therefore T' is bounded. Q.E.D.
Using Theorem 2, in order to determine whether optimal solutions exist for (P)

and (D), it suffices to show that optimal solutions exist for (P') and (D') and for
this we can use Theorem 1 of [9]. Two of the conditions that must hold for that
theorem to be applicable are:

(Co) for each p e R" there exist functions S G L J and a G L\ such that
L(t, x, v) > xs(t) + vp - a(t).

(Do) for each x e R " there exist functions ueLJ and /J G L\ such that
L(t, x, o(O) < fi(t).

We will use the following assumptions to ensure that this is the case.

ASSUMPTION 3. For each y G Rm, 3 u > y and a summable function /} such that
f(t, u) ^ fi(t) a.e.

This generaUzes the finiteness assumption off. If g is a summable function then

/(/,«) = g(0l«l2
satisfies assumption 3. The conjugate of this function is

and if g"1 is a summable function then the next asumption will also hold.

ASSUMPTION 4. For each p G Rm, 3w* > p and a summable function a such
that/*(f, M*) < o(0 a.e.

These assumptions hold, as well, when / is independent of t and satisfies
Assumption 1.

PROPOSITION 3. Let Assumptions 1 through 4 hold. Then conditions (Co) and
(Do) also hold.
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PROOF. By the corollary to Proposition 4 in [9] it is enough to show that the
Hamiltonian

H(t, x, p) = sup { pv - L(t, x, v)}
V

is a finite, summable function of / e T for every (x, p) e R" x R". From the
definition of the Lagrangian,

H(t,x,p) = sup { p[A{t)x + B(t)u + c(t)\ -a{t)x-f{t,u):
U

C{t)x + E{t)u + d(t) >0,u>0)

> pA(t)x + pc(t) + pB(t)u -f{t,u)-a(t)x

where

u, > ess sup max <--z[d(t) + C(t)x]j\, 1 < / < m and u > 0.

The supremum is finite because the components of d and C are essentially
bounded. Then assumption 3 implies H{-, x, p) is bounded below by a finite,
summable function.

The Hamiltonian can also be expressed as

H(t, x, p) = inf (M(/ , p, s) — sx}
s

= inf {pc(t) + wd(t)+f*(t,u*)

+ [pA(t) + wC(t) -a(t)]x:B(t) + wE(t)-u* < 0 , w > 0 }

<pc(t) +/*(/,«*) +pA(t)x- a(t)x

where

u* > esssuppB(t).

Assumption 4 implies that H(-,x, p) is bounded above by a finite summable
function. Q. E. D.

In order to state our theorem on the existence of optimal solutions, when strong
duality also holds, we need some definitions dealing with attainability.

DEFINITIONS.

Q = { ( x 0 ) x 1 ) e R n x R " : / ( x 0 , x 1 ) < +oo),
DL(0= {(x,v)^R"X Rn:L(t,x,v) < +oo}.

The set CL of weakly attainable pairs for (P) is the set CL= {(x0, JCX):
O( / ) , x(t)) e DL(t) a.e.}. We can similarly define the sets Cm, DM(t) and CM.

We denote by aff C the affine hull of a set C (the smallest affine set containing
C). If C is convex we denote by ri C the relative interior of C (the interior of C
relative to aff C).
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Our main theorem is

THEOREM 3. (a) If Assumptions 1 through 4 hold and ri Cm n ri CM ¥= 0 then
inf typ = -inf ¥D > -oo.

/n addition, if (?) is feasible then an optimal solution
exists for (P).

(b) If Assumptions 1 through 4 /20W and ri C, n ri CL =£ 0 f/ien
+ oo > inf ~typ = -inf ^D.

In addition, if(D) is feasible then an optimal solution
exists for (D).

PROOF. By Proposition 3 conditions (Co) and (Do) hold. Combining Theorem 2
with Theorem 1 of [9] yields the result. Q. E. D.

We will now consider cases in which the above conditions dealing with the
relative interiors will be valid.

COROLLARY 3. Let Assumptions 1 through 4 hold. If

l(xn + Xxn, x, + X3c.) . \ , ,
lim - ^ - 5 Y~-^ ^=+00 , (x^xj) G doml,

unless x0 = 0 or xl = 0 or both, then ri Cm n ri CM # 0 anrf the results of
Theorem 3(a) hold.

PROOF. AS (CO) holds by Proposition 3, we can apply Corollary 1 of Theorem
3 from [9]. Referring to that paper we see, due to Assumption 1, that

Ut,x,v)>[a<<t)x «» = A<)x,C(t
I + oo otherwise.

Because of the growth condition on / above, we must have z(tQ) = 0 or z(tY) = 0
or both in the Corollary of [9]. But as z(t) = A(t)z(t) as well, the only such arc is
the zero arc. Q. E. D.

The growth condition on / in the above corollary usually applies, for example if
the primal problem is a fixed endpoint problem

+ oo otherwise,
or if one of the endpoints, or both, is contained in a bounded set

oo otherwise.
Another simple example where the growth conditions holds is if l(x0, xx) = XQ +
g(x!>. Here x0 must be zero. For any of these cases, Corollary 3 tells us that if the
problem (P) is feasible, then it has an optimal solution and strong duality holds.
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DEFINITION. The recession function m for m is

™{Po>P\)= u m m(Po + ^P>Pi + xPi)
\-> + 00

where (p0, px) e dom m.

COROLLARY 4. Let Assumptions 1 through 4 hold. If

m(p(t0), />('i)) + / [p(t)c(t) + w(t)d(t)} dt < 0,
JT
/JT

p(t) = -p(t)A(t) - w(t)C(t),
p{t)B(t)+w(t)E(t)^O, w(t)>0,

has no solutions p e s#",w e Lk other than the zero solution, then r i Q n r i Q ^ 0
and the results of Theorem 3(b) hold.

PROOF. AS (D O ) holds, we can apply Theorem 3 of [9]. The definition of M and
the growth condition on/* implied by the finiteness of f(t, •) on R+ allows us to
replace

, p(tr)) + f^M(t, p(t), p(t)) dt

with the above. The result then follows from the equivalence of (b') and (c') in
that theorem. Q.E.D.

PROPOSITION 4. Let Assumptions 1 through 4 hold and

+ 00 otherwise,
where St is a compact set in R". Then both the primal and dual problems have
optimal solutions and

PROOF. The dual endpoint function is

m(Po> Pi) = SUP { Poxo ~

+ 00 otherwise,
whereS^ip^ = sapip^: x1 e 5X}.

From Corollary 4, if the zero solution is the only solution to

P(t) = -pit)Ait) - wit)Cit), pit,) = 0,
pit)Bit)+wit)Eit)*O,

wit) »0
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then an optimal solution exists (if a feasible one does) to the dual problem (D).
For any matrix or vector H let \\H\\ denote (X-ijHfj)x/2. By Assumption 2, the
constraint in Corollary 4 implies

Let B = esssup(G7-||fi(OH- Similarly defined, C. Then

Now the only solution to the differential equation

with p(t0) = 0 is the zero solution. Hence

I I P ( ' ) N P ( ' ) = 0 and p(t) = O Vt e T.

Assumption 2 then implies w(t) = 0 V7 e T. Therefore (D) has an optimal
solution, if a feasible one exists. But the same situation applies to (P) (see the
comments after Corollary 3 regarding an / of this type). Combining parts (a) and
(b) of Theorem 3 we see

+ oo > inf typ = -inf ¥D > -oo

and since neither problem is infinite, feasible solutions must indeed exist. So both
problems have optimal solutions. Q. E. D.

The same result will hold if

<(*«„>,*«,)) = {° • " < ' • > s ^
I + oo otherwise,

where So is a compact set in R", or for many other types of endpoint functions /.
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