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Abstract

The present paper is related to some recent studies in Abdollahi and Russo [‘On a problem of P. Hall
for Engel words’, Arch. Math. (Basel) 97 (2011), 407–412] and Fernández-Alcober et al. [‘A note on
conciseness of Engel words’, Comm. Algebra 40 (2012), 2570–2576] on the position of the n-Engel
marginal subgroup E∗n(G) of a group G, when n = 3, 4. Describing the size of E∗n(G) for n = 3, 4, we show
some generalisations of classical results on the partial margins of E∗3(G) and E∗4(G).
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1. Statement of the main results

Given a group G, two elements x, y ∈ G and an integer n ≥ 1, the left n-Engel
commutator word of G is en(x, y) = [x,n y], the verbal subgroup, determined by en(x, y),
is En(G) = 〈en(x, y) | x, y ∈ G〉 and the marginal subgroup, determined by en(x, y), is
E∗n(G) = {a ∈ G | en(x, y) = en(ax, y) = en(x, ay) ∀ x, y ∈ G}. Terminology and notation
are standard and follow [1–4, 8, 10, 11, 14–17, 21]. Since we concentrate mostly on
n = 3, 4, it may be useful to introduce

E3(G) = 〈[x, y, y, y] | ∀x, y ∈ G〉, E4(G) = 〈[x, y, y, y, y] | ∀x, y ∈ G〉,

E∗3(G) = {a ∈ G | [x, y, y, y] = [ax, y, y, y] = [x, ay, ay, ay] ∀x, y ∈ G},

E∗4(G) = {a ∈ G | [x, y, y, y, y] = [ax, y, y, y, y] = [x, ay, ay, ay, ay] ∀x, y ∈ G}.

These are always characteristic subgroups of G (see [12–14, 21]) and dual in the sense
of [19, Theorems 1.1 and 1.2]. We also use the sets

R3(G) = {x ∈ G | [x, y, y, y] = 1 ∀y ∈ G}, R4(G) = {x ∈ G | [x, y, y, y, y] = 1 ∀y ∈ G},

L3(G) = {x ∈ G | [y, x, x, x] = 1 ∀y ∈ G}, L4(G) = {x ∈ G | [y, x, x, x, x] = 1 ∀y ∈ G},
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called the set of right 3-Engel (respectively, 4-Engel) elements of G and the set of left
3-Engel (respectively, 4-Engel) elements of G. Note that R3(G),R4(G), L3(G), L4(G)
have been largely studied in [1–4, 7, 8, 10, 11, 14–16, 21] and are not necessarily
subgroups. These references show interesting connections with respect to the usual
terms of the upper central series Zi(G) of G and of the lower central series γi(G) of G.

A form of duality between E2(G), E∗2(G), E3(G), E∗3(G), E4(G), E∗4(G) appears in
our first main theorem. This reflects some well-known conditions between Zi(G) and
γi(G). (Here d(G) is the minimal number of generators of G.)

Theorem 1.1. Let G be a group and h, k, r, s positive integers.

(i) γ4(G) ≤ E2(G) ≤ γ3(G).
(ii) Z2(G) ≤ E∗2(G) ≤ Z3(G).
(iii) If r = d(G/E3(G)) ≥ 2, then γ2r(G) ≤ E3(G) ≤ γ4(G).
(iv) If s = d(E∗3(G)) ≥ 2, then Z3(G) ≤ E∗3(G) ≤ Z2s−1(G).
(v) If h = d(G/E4(G)) ≥ 2, then γ4h+1(G) ≤ E4(G) ≤ γ5(G).
(vi) If k = d(E∗4(G)) ≥ 2, then Z4(G) ≤ E∗4(G) ≤ Z4k(G).

Theorem 1.1 improves [12, Theorem 3], showing that it is possible to avoid the
assumption of being metabelian. We note that the conclusions of Theorem 1.1 allow
us to extend the converse of Schur’s theorem that a finitely generated group G with
finite G/Z(G) has finite G′. Generalisations can be found in [5] and [19, Theorems
4.2, 4.3, 4.5 and 4.6].

The second main theorem describes the exact position of the set T3(G) = R3(G) ∩
L3(G) = {a ∈G | [a, x, x, x] = [x, a, a, a] = 1, ∀x ∈G} with respect to E∗n(G) for n = 2, 3
and the Fitting subgroup Fit(G). Note that T3(G) is not necessarily a subgroup of G,
but is so in the following situation.

Theorem 1.2. Let G be a group with d(E∗3(G)) = 2. If T3(G) contains only elements of
finite odd order, then there exists a series of G

1 C Z(G) C Z2(G) C E∗2(G) C Z3(G) C T3(G) C Fit(G) CG

whose terms are characteristic subgroups such that:

(i) Z(G), Z2(G)/Z(G), E∗2(G)/Z2(G), Z3(G)/E∗2(G) are Abelian;
(ii) E∗3(G)/Z3(G) is trivial, that is, E∗3(G) = Z3(G);
(iii) 〈tE∗3(G)〉G/E

∗
3(G) is nilpotent of class at most three for all tE∗3(G) ∈ T3(G)/E∗3(G);

(iv) Fit(G)/T3(G) is a Fitting group without 3-Engel elements;
(v) G/Fit(G) has no normal nilpotent subgroups.

We recall some notions from [12, 13, 19, 21] to formulate our last main
theorem. The first partial margin of E3(G) is the set A(G) = {a ∈ G | [x, y, y, y] =

[ax, y, y, y] ∀x, y ∈ G} and the first partial margin of E4(G) is the set B(G) = {a ∈ G |
[x, y, y, y, y] = [ax, y, y, y, y] ∀x, y ∈G}. Both are characteristic subgroups of G and their
properties are described in [1, 3, 12, 13, 19, 21].
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Theorem 1.3. Let G be a group.

(i) E∗3(G) ≤ A(G) = {a ∈ G | [a, x]y−1
[a, x]yx

∈ Z(G) ∀x, y ∈ G}. Moreover, bG is
nilpotent of class at most three for all b ∈ E∗3(G).

(ii) E∗4(G) ≤ B(G) = {a ∈ G | [[a, x], xy−1
]yx
∈ Z(G) ∀x, y ∈ G}. Moreover, if G has no

element of order divisible by 2, 3, 5 and all the 3-generated subgroups 〈u, v, x〉
with u, v ∈ R4(G) and x ∈ G are nilpotent, then cG is nilpotent of class at most
seven for all c ∈ E∗4(G).

2. Proofs of the main theorems

We begin by proving our first main theorem.

Proof of Theorem 1.1. (i) The upper inclusion follows easily from the definitions of
E2(G) and γ3(G) = [[G,G],G]. If xE2(G), yE2(G) ∈ G/E2(G), then

[xE2(G), yE2(G), yE2(G)] = [x, y, y]E2(G) = E2(G),

because E2(G) contains all elements [x, y, y] of G. Then G/E2(G) is a 2-Engel group
and there are some classical results which show that G/E2(G) is nilpotent of class at
most three. Thus, γ4(G) ≤ E2(G).

(ii) The lower inclusion follows from [19, Theorem 2.3(a)] and the upper inclusion
from [19, Corollary 2.8].

(iii) The upper inclusion follows clearly from the definitions. Then we proceed
to prove the lower inclusion. An argument as in (i) above can be applied. If
xE3(G), yE3(G) ∈ G/E3(G), then

[xE3(G), yE3(G), yE3(G), yE3(G)] = [x, y, y, y]E3(G) = E3(G).

Now [8] shows that an r-generated 4-Engel group is nilpotent of class at most 2r − 1.
Therefore, γ2r(G) ≤ E3(G).

(iv) Since Z3(G) = {g ∈ G | [g, x, y, z] = 1 ∀x, y, z ∈ G}, the lower inclusion follows
from the definitions. On the other hand, again [8] allows us to conclude that E∗3(G) ≤
Z2s−1(G).

(v) The upper bound follows from the definitions. For the lower bound, the
arguments of (i) and (iii) imply that G/E4(G) is a 4-Engel group. From [10, 22],
we know that G/E4(G) is nilpotent of class at most 4h. Then γ4h+1(G) ≤ E4(G).

(vi) The lower bound follows from the definitions. Applying again the results in
[10, 22], we may argue as in (iv) and find the required upper bound. �

To understand the importance of Theorem 1.1, we need to recall some results on
the topic. A classical problem, which does not occur for right 2-Engel words, appears
in fact for left 2-Engel words and for left or right Engel words of length at least
three. While R2(G) is a characteristic subgroup of G (see [19, Lemma 2.2(a)] or
[13, Theorem 2.1 and (2.2.1)]), R3(G),R4(G), L2(G), L3(G), L4(G) are not subgroups
in general, as Nickel noted in [16] and [2, Proposition 3.2.5]. The situation is clearer
in the metabelian case, thanks to the following result.
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Theorem 2.1 (See [12, Corollary at page 1968]). The sets R3(G) and R4(G) are
subgroups, provided G is a metabelian group.

Another remarkable case is illustrated by the following result.

Theorem 2.2 (See [4, Theorems 2.2 and 3.1]). Let G be a group.

(i) If γ5(G) has no element of order two, then R3(G) is a subgroup of G.
(ii) If no element of G is of order divisible by 2, 3, 5 and 〈a, b, x〉 is nilpotent for all

a, b ∈ R4(G) and x ∈ G, then R4(G) is a subgroup of G.

Unfortunately, the situation is more complicated for L3(G) and L4(G) (see
[1–3, 12]), where several open questions remain. Even with the best hypothesis that
R3(G),R4(G), L2(G), L3(G), L4(G) are subgroups of G, not enough is known on their
position in the subgroup lattice of G. Among the main results of [19] there are in
fact a series of connections among γi(G), Zi(G), R2(G), L2(G), E2(G), E∗2(G) and one
might expect that generalisations would be true for Engel words of length at least three.
Again the metabelian case gives evidence.

Theorem 2.3 (See [12, Theorem 3]). Let G be a metabelian group, p a prime and n ≥ 2
an integer.

(i) If n + 1 is not a prime and G contains no elements of order p ≤ n − 1, or if n + 1
is prime and G contains no elements of order p ≤ n + 1, then Zn(G) = E∗n(G).

(ii) If q = n + 1 is prime and G contains no elements of order p ≤ n − 1, then
Zq−1(G) ≤ E∗q−1(G) ≤ Zq(G), and there exists a metabelian q-group K with
Zq−1(K) being a proper subgroup of E∗q−1(K).

(iii) If G contains elements of order p ≤ n − 1, then no integer k ≥ 1 can be found
such that E∗n(G) ≤ Zk(G).

If we specialise Theorem 2.3 in our context, we have the following statement.

Corollary 2.4. Let G be a metabelian group.

(i) If G contains no elements of order two, then Z3(G) = E∗3(G).
(ii) If G contains no elements of order two, three or five, then Z4(G) = E∗4(G).
(iii) Z2(G) ≤ E∗2(G) ≤ Z3(G).
(iv) If G contains no elements of order two or three, then Z4(G) ≤ E∗4(G) ≤ Z5(G).
(v) If G contains elements of order two, then no integer k ≥ 1 can be found such that

E∗3(G) ≤ Zk(G).
(vi) If G contains elements of order two or three, then no integer k ≥ 1 can be found

such that E∗4(G) ≤ Zk(G).

Then it is clear that Theorem 1.1 improves Corollary 2.4 and [19, Theorem 2.3 and
Corollary 2.8], showing that the assumption of being metabelian is not necessary for
n = 2, 3, 4.
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Remark 2.5. Given a group G and an arbitrary word θ in n variables on G, it is
possible to introduce the verbal subgroup θ(G) of G and the marginal subgroup θ∗(G)
of G, determined by θ (see [17, 18]). Therefore, En(G) and E∗n(G) turn out to be
specialisations for en(x, y) (see [9, 17, 18]). The following question:

‘If |G : θ∗(G)| is finite, then is θ(G) also finite?’

is problematic and may have a positive or a negative answer. Originally, it is attributed
to P. Hall and known as The First Hall’s Problem for Words (see [3, 7, 17]). Schur’s
theorem is a particular case for the commutator word e1(x, y) = [x, y]. See [5, 6] for a
positive answer to this question for the word en(x, y) (with 1 ≤ n ≤ 4).

Before proving Theorem 1.2, some observations are useful. For instance, we may
use the definitions and check that A(G) ≤ 〈R3(G)〉 is always true, but the following
example shows that 〈R3(G)〉 6≤ A(G).

Example 2.6. Let G be the largest group generated by three elements a, b, c such that
a, b, c ∈ A(G) and H is the largest group generated by three elements which are right
3-Engel elements in H; if A(G) = 〈R3(G)〉 were true, then we should have the torsion
subgroups T (G) and T (H) of equal orders (actually G must be isomorphic to H). Note
that both G and H are 3-generated nilpotent groups of class five of derived length three.
The computation by GAP [20] shows that |T (G)| = 128000 but |T (H)| = 8192000,
where T (G) and T (H) are torsion subgroups of G and H, respectively. Below there
are details concerning the program we wrote.

LoadPackage("nq");

f:=FreeGroup(3);

x:=f.1;y:=f.2;a:=f.3;b:=f.4;c:=f.5;

g:=f/[LeftNormedComm([x,y,y,y]) * LeftNormedComm([a*x,y,y,y])−1,
LeftNormedComm([x,y,y,y]) * LeftNormedComm([b*x,y,y,y])−1],
LeftNormedComm([x,y,y,y]) * LeftNormedComm([c*x,y,y,y])−1]);
G:=NilpotentQuotient(g,[x,y]); h:=f/[LeftNormedComm([a,y,y,y]),

LeftNormedComm([b,y,y,y]),LeftNormedComm([c,y,y,y]));

H:=NilpotentQuotient(h,[x,y]);

TG:=TorsionSubgroup(G);

TH:=TorsionSubgroup(H);

Size(TG);

Size(TH)

The following observation helps us to understand when T3(G) is a group.

Lemma 2.7 (See [11, Hauptsatz 3]). Let G be a group. Suppose that one of the
following conditions is satisfied.

(i) G has no elements of order two.
(ii) T3(G) contains only elements of finite odd order.

Then T3(G) is a subgroup of G.
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Some remarks of a historical nature may be appropriate here.

Remark 2.8. Historically, Heineken [11, page 682] introduced A = {a ∈ G | g(3) ◦ a =

g(3) ◦ a−1 = 1,∀g ∈ G} in the context of 3-Engel groups, where g ◦ a = [g, a], g(2) ◦ a =

g ◦ (g ◦ a) = [g, [g, a]], g(3) ◦ a = g ◦ (g ◦ (g ◦ a)) = [g, [g, [g, a]]] and so on. It was
noted in [11, page 682] that g(3) ◦ a = 1 for all g ∈ G if and only if a ∈ R3(G) and that
g(3) ◦ a−1 = 1 if and only if a ∈ L3(G). This means that A = T3(G).

The following two applications of Theorem 1.1 are recalled here because they will
be used in the proof of our third main theorem.

Corollary 2.9. Let G be a group.

(i) If d(G/E3(G)) = 2, then E3(G)/γ5(G) is Abelian.
(ii) If d(E∗3(G)) = 2, then E∗3(G) = Z3(G).

There is another way to get to the conclusions of Corollary 2.9 because Heineken
[11, Hauptsatz 1] proved that all 3-Engel groups are in fact nilpotent of class at most
four, when no elements of orders two and five are present.

Corollary 2.10. A group G without elements of orders 2 and 5 has γ5(G) ≤ E3(G) ≤
γ4(G) and Z3(G) ≤ E∗3(G) ≤ Z4(G). In particular, E3(G)/γ5(G) and E∗3(G)/Z3(G) are
Abelian.

Now we can prove the second main theorem.

Proof of Theorem 1.2. From [2, 11–13], we know that E∗2(G) and E∗3(G) are
characteristic subgroups of G. Of course, this is true also for Z(G), Z2(G), Z3(G)
and Fit(G). From Lemma 2.7, T3(G) is a subgroup of G and it is fixed under the action
of inner automorphisms of G by results in [11–13].

Since E∗3(G) ≤ L3(G) and E∗3(G) ≤ R3(G), we have E∗3(G) ≤ L3(G) ∩ R3(G) = T3(G).
Note that the result of Newell [15] implies R3(G) ≤ Fit(G); therefore, T3(G) ≤ R3(G) ≤
Fit(G). Theorem 1.1(ii) shows that Z2(G) ≤ E∗2(G) ≤ Z3(G) and Theorem 1.1(iv) that
Z3(G) ≤ E∗3(G). We conclude that Z2(G) C E∗2(G) C Z3(G) C E∗3(G) is always true.
Therefore, 1 C Z(G) C Z2(G) C E∗2(G) C Z3(G) C E∗3(G) C T3(G) C Fit(G) CG is a well-
defined series with characteristic terms in G.

(i) Of course, Z(G) and Z2(G)/Z(G) are Abelian, but Z3(G)/E∗2(G) follows from
Theorem 1.1(ii).

(ii) See Corollary 2.9.
(iii) The fact that T3(G) ≤ R3(G) and a result of Newell [15] show that gG is nilpotent

of class at most three for all g ∈ T3(G). This property is invariant under quotients.
(iv) Clearly, Fit(G)/T3(G) has no 3-Engel elements and Fit(Fit(G)/T3(G)) =

Fit(G)T3(G)/T3(G) = Fit(G)/T3(G).
(v) This is straightforward from the maximality of Fit(G). �

Our last theorem is proved below. We note that it shows a condition of embedding
of E∗3(G) and E∗4(G) in their own first margins.
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Proof of Theorem 1.3. (i) The inclusion E∗3(G) ≤ A(G) is straightforward. Then we
proceed to prove equality between A(G) and the set

S = {a ∈ G | [a, x]y−1
[a, x]yx

∈ Z(G) ∀x, y ∈ G}.

Replacing the role of x with that of y, the elements of A(G) may be characterised:

[y, x, x, x] = [ay, x, x, x]⇔ [[ay, x, x], x] = [[y, x, x], x]⇔ [ay, x, x] [y, x, x]−1 ∈ CG(x)
⇔ [ay, x, x] [x, [y, x]] ∈ CG(x)⇔ [[a, x]y [y, x], x] [x, [y, x]] ∈ CG(x)

⇔
(
([a, x]y [y, x])−1x−1[a, x]y[y, x]x

)(
x−1[y, x]−1x[y, x]

)
∈ CG(x)

⇔ [y, x]−1
(
[a, x]y−1

x−1[a, x]y x
)
[y, x] ∈ CG(x)

⇔
(
[a, x]y−1

x−1[a, x]y x
)[y,x]

∈ CG(x)⇔
(
[a, x]y−1

[a, x]yx)[y,x]
∈ CG(x)

⇔ [y, x]−1
(
[a, x]y−1

[a, x]yx)
[y, x]x = x[y, x]−1

(
[a, x]y−1

[a, x]yx)
[y, x]

⇔
(
[a, x]y−1

[a, x]yx)
[y, x]x[y, x]−1 = [y, x]x[y, x]−1

(
[a, x]y−1

[a, x]yx)
⇔

(
[a, x]y−1

[a, x]yx)
∈ CG([y, x]x[y, x]−1) = CG(x[y,x]−1

) = CG(x[x,y]) ≤ CG(x).

We deduce that

A(G) = {a ∈ G | [a, x]y−1
[a, x]yx

∈ CG(x) ∀x, y ∈ G},

but, for all x, y ∈ G,

[a, x]y−1
[a, x]yx

∈ CG(x)⇔ [a, x]y−1
[a, x]yx

∈
⋂
x∈G

CG(x) = Z(G),

so that the result follows.
Finally, a result of Newell [15] allows us to conclude that bG is nilpotent of class at

most three for each b ∈ E∗3(G) ≤ A(G) ≤ R3(G).
(ii) Arguing as in step (i), E∗4(G) ≤ B(G) and we begin by proving equality between

B(G) and the set T = {a ∈ G | [[a, x], xy−1
]yx
∈ Z(G) ∀x, y ∈ G}. We have

[y, x, x, x, x] = [ay, x, x, x, x]⇔ [[y, x, x, x], x] = [[ay, x, x, x], x]

⇔ [ay, x, x, x] [y, x, x, x]−1 ∈ CG(x)⇔ [ay, x, x, x] [x, [y, x, x]] ∈ CG(x)
⇔ [[[a, x]y [y, x], x], x] [x, [y, x, x]] ∈ CG(x)

⇔ [[a, x]y, x][y,x] [y, x, x, x] [y, x, x, x]−1 ∈ CG(x)⇔ [[a, x]y, x][y,x] ∈ CG(x)

⇔ [[a, x]y, x]y−1yx
= [[a, x], xy−1

]yx
∈ CG(x).

Taking this over all x ∈ G, T = B(G).
From [4, Corollary 3.2], which gives more details about the situation described

in Theorem 2.2(ii), we know that an element w ∈ R4(H) has wH which is nilpotent
of class at most seven, provided H is a {2, 3, 5}′-group such that all the 3-generated
subgroups of the form 〈u, v, h〉 are nilpotent, where u, v ∈ R4(H) and h ∈ H. Using this,
[4, Corollary 3.2] shows that R4(H) is a subgroup of H. Since E∗4(G) ≤ B(G) ≤ R4(G),
the result follows. �
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3. Applications and consequences

We may compare Theorems 1.1 and 2.1 and Corollary 2.4 and look for examples
for which the inclusions of Theorem 1.1 are satisfied properly. This may be hard to do.

Corollary 3.1. Let G be a group.

(i) If G contains involutions and E∗3(G) ≤ Z2s(G) for some s = d(E∗3(G)) ≥ 2, then G
should have derived length at least three.

(ii) If G contains elements of order two or three and E∗4(G) ≤ Z4k(G) for some
k = d(E∗4(G)) ≥ 2, then G should have derived length at least three.

Proof. (i) follows from Theorem 1.1(iv) and Corollary 2.4(v). (ii) follows from
Theorem 1.1(v) and Corollary 2.4(vi). �

Another interesting consideration is the following corollary.

Corollary 3.2. Let G be a finitely generated nilpotent group of class at most four with
d(E∗3(G)) = 2. If G/E∗3(G) is finite, then E3(G) ' Z2α × Z5β for α = 0, 1, 2 and β = 0, 1.

Proof. From results in [5, 6], we may conclude that E∗3(G) is finitely generated and it is
meaningful to consider d(E∗3(G)); furthermore, E3(G) is finite. We have γ5(G) = 1 and
E3(G)/γ5(G) = E3(G) is Abelian by Corollary 2.9(i). A celebrated result of Gupta and
Newman [8] shows that the fifth term of the lower central series of a finitely generated
3-Engel group has exponent dividing 20. In our case G/E3(G) is a finitely generated
3-Engel group, so

exp
(
γ5

(
G

E3(G)

))
= exp

(
γ5(G)E3(G)
γ5(G)

)
= exp

(
E3(G)
γ5(G)

)
= exp(E3(G))

divides 20 and the result follows. �

The following example is instructive.

Example 3.3. (i) Let D = 〈a,b | a2 = 1,a−1ba = b−1〉 = 〈a〉 n 〈b〉 = Z2 n Z be the infinite
dihedral group. It is easy to see that 1 = Z1(D) = Z2(D) = Z3(D) = · · · , that D =

γ1(D) ≥ γ2(D) = D′ = 〈b〉 = γ3(D) = γ4(D) = · · · , that E3(D) = D′ and that E∗3(D) = 1.
(ii) Consider the group G = Z × A5, where A5 is the alternating group over five

elements. Here Z(G) = Z(Z) × Z(A5) ' Z and we have a nontrivial centre. Now
E∗3(G) = E∗3(Z) × E∗3(A5) = Z × 1 ' Z is infinite, G/E∗3(G) ' A5 is finite and E3(G) =

E3(Z) × E3(A5) = 1 × A5 ' A5 is finite. A similar conclusion holds if we replace E∗3(G)
with E∗4(G) and E3(G) with E4(G), respectively.

Finally, we note two consequences of Theorem 1.3.

Corollary 3.4. Let G be a metabelian group. Then

E∗3(G) ≤ A(G) = 〈R3(G)〉 = {a ∈ G | [a, x]y−1
[a, x]yx

∈ Z(G) ∀x, y ∈ G}

and bG is nilpotent of class at most three for all b ∈ E∗3(G).
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Proof. A metabelian group G has A(G) = 〈R3(G)〉 by [12, Theorem 1]. Then the result
follows from Theorem 1.3(i). �

Corollary 3.5. Let G be a metabelian group. Then

E∗4(G) ≤ B(G) = 〈R4(G)〉 = {a ∈ G | [[a, x], xy−1
]yx
∈ Z(G) ∀x, y ∈ G}.

Proof. A metabelian group G has B(G) = 〈R4(G)〉 by [12, Theorem 1]. Then the result
follows from Theorem 1.3(ii). �

We end with two observations.

Remark 3.6. Let G be a group without elements of order two. Looking at Corollary
2.10, we get to the same conclusions in Theorem 1.2 if the assumption d(E∗3(G)) = 2
is replaced by the absence of elements of order five in G. On the other hand, if G is a
group in which all the elements of T3(G) have finite odd order different from five, then
Corollary 2.10 continues to be true and we can again omit d(E∗3(G)) = 2.

We do not know a corresponding result for margins of 4-Engel groups.

Remark 3.7. Even if it is natural to expect a result of the type of Theorem 1.2 for
E∗4(G), there are some difficulties for the commutator calculus and [3, Question 1.2]
which prevent us from a variation on the themes which we have used.

Acknowledgements

It is my pleasure to thank Professor A. Abdollahi (Department of Mathematics,
University of Isfahan, Isfahan, Iran) for Example 2.6. I would also like to thank DEIM
(University of Palermo, Palermo, Italy), where this work was started.

References
[1] A. Abdollahi, ‘Left 3-Engel elements in groups’, J. Pure Appl. Algebra 188 (2004), 1–6.
[2] A. Abdollahi, ‘Engel elements in groups’, in: Groups St Andrews 2009 in Bath, LMS Lecture

Notes 387 (Cambridge University Press, Cambridge, 2011), 94–117.
[3] A. Abdollahi and H. Khosravi, ‘On the right and left 4-Engel elements’, Comm. Algebra 38 (2010),

933–943.
[4] A. Abdollahi and H. Khosravi, ‘Right 4-Engel elements of a group’, J. Algebra Appl. 9 (2010),

763–769.
[5] A. Abdollahi and F. G. Russo, ‘On a problem of P. Hall for Engel words’, Arch. Math. (Basel) 97

(2011), 407–412.
[6] G. A. Fernández-Alcober, M. Morigi and G. Traustason, ‘A note on conciseness of Engel words’,

Comm. Algebra 40 (2012), 2570–2576.
[7] G. A. Fernández-Alcober and P. Shumyatsky, ‘On groups in which commutators are covered by

finitely many cyclic subgroups’, J. Algebra 319 (2008), 4844–4851.
[8] N. D. Gupta and M. F. Newman, ‘Third Engel groups’, Bull. Aust. Math. Soc. 40 (1989), 215–230.
[9] P. Hall, ‘Verbal and marginal subgroups’, J. reine angew. Math. 182 (1940), 156–157.

[10] G. Havas and M. R. Vaughan-Lee, ‘4-Engel groups are locally nilpotent’, Int. J. Algebra Comput.
15 (2005), 649–682.

[11] H. Heineken, ‘Engelsche Elemente der Länge drei’, Illinois J. Math. 5 (1961), 681–707.
[12] L.-C. Kappe, ‘Engel margins in metabelian groups’, Comm. Algebra 11 (1983), 165–187.

https://doi.org/10.1017/S0004972714000094 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000094


246 F. G. Russo [10]

[13] W. P. Kappe, ‘Some subgroups defined by identities’, Illinois J. Math. 47 (2003), 317–326.
[14] L.-C. Kappe and W. P. Kappe, ‘On three-Engel groups’, Bull. Aust. Math. Soc. 7 (1972), 391–405.
[15] M. Newell, ‘On right Engel elements of length three’, Proc. Roy. Irish Acad. Sect. A 96 (1996),

17–24.
[16] W. Nickel, ‘Some groups with right Engel elements’, in: Groups St. Andrews 1997 in Bath, LMS

Lecture Notes 261 (Cambridge University Press, Cambridge, 1999), 571–578.
[17] D. Segal, ‘Words: notes on verbal width in groups’, LMS Lecture Notes 361 (Cambridge

University Press, Cambridge, 2009).
[18] P. Stroud, ‘On a property of verbal and marginal subgroups’, Proc. Camb. Philos. Soc. 61 (1965),

41–48.
[19] T. K. Teague, ‘On the Engel margin’, Pacific J. Math. 50 (1974), 205–214.
[20] The GAP Group, GAP—Groups, Algorithms and Programming (version 4.4, available at

http://ww.gap-system.org, 2005).
[21] G. Traustason, ‘On 4-Engel groups’, J. Algebra 178 (1995), 414–429.
[22] G. Traustason, ‘Locally nilpotent 4-Engel groups are Fitting groups’, J. Algebra 279 (2003), 7–27.

FRANCESCO G. RUSSO,
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