ON THE ISOMORPHISMS BETWEEN CERTAIN CONGRUENCE GROUPS, II

ROBERT SOLAZZI

For integral domains of characteristic not 2 , we prove here that the symplectic and unitary congruence groups are not isomorphic if the Witt indices are at least 3. This is Theorem 2.1; Theorem 3.3 describes the isomorphisms of unitary congruence groups.

Preliminaries. Let V be an n-dimensional vector space over the commutative field F of characteristic not 2 . We shall assume $f(x, y)$ is a non-degenerate skew-hermitian form on V with respect to an involutory automorphism J of F. We allow the possibility that J is the identity on F; in that case the form $f(x, y)$ is skew-symmetric. We assume throughout $f(x, y)$ has index at least 3 .

The unitary group $U_{n}(V, f)$ of the skew-hermitian form $f(x, y)$ is defined as all the non-singular linear transformations σ of V onto V such that $f(\sigma x, \sigma y)=$ $f(x, y)$ for all x, y in V. Since we allow the possibility that J is the identity map of F, we see that $U_{n}(V, f)$ is the symplectic group of V when J is the identity. When J is not the identity we can multiply $f(x, y)$ by a suitable scalar factor λ in F so that the resulting form $\lambda f(x, y)$ is hermitian. The group $U_{n}(V, f)$ defined above is then the unitary group of the hermitian form $\lambda f(x, y)$.

Let U be a subspace of V. We define $U^{*}=\{x \in V \mid f(x, U)=0\}$. The radical of $U, \operatorname{rad} U$, is defined by $\operatorname{rad} U=U \cap U^{*} . U$ is called non-degenerate (or regular) if $\operatorname{rad} U=0$. If U is non-degenerate, 2 -dimensional, and contains a non-zero vector x such that $f(x, x)=0$ we call U a hyperbolic plane. Two subspaces U_{1} and U_{2} are called orthogonal if $f\left(U_{1}, U_{2}\right)=0$. A non-zero vector x is called isotropic if $f(x, x)=0$, and a subspace of V is called isotropic if it contains isotropic vectors; otherwise it is called anisotropic.

For any $\sigma \in U_{n}(V, f)$ we let R and P be the residual and fixed spaces of σ; i.e., $P=\operatorname{ker}(\sigma-1)$ and $R=P^{*}$. Note $R=(\sigma-1) V$. Similarly R_{i} and P_{i} denote the residual and fixed spaces of any $\sigma_{i} \in U_{n}(V, f)$. Note if $\sigma_{1}, \sigma_{2} \in U_{n}(V, f)$, then $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}$ if $R_{1} \subseteq R_{2}^{*}$. This follows from [4, 1.4].

For any $\sigma \in G L_{n}(V)$ we let $\bar{\sigma}$ denote the coset of σ in $P G L_{n}(V) ; P G L_{n}(V)$ is of course the quotient group of the general linear group $G L_{n}(V)$ by its center \dot{F}. If S is a subset of $G L_{n}(V)$ we define $\bar{S}=\left\{\bar{\sigma} \in P G L_{n}(V) \mid \sigma \in S\right\}$.

We now define the projective unitary group $P U_{n}(V, f)$ as the image of $U_{n}(V, f)$ in $P G L_{n}(V)$ under the natural map - of $G L_{n}(V)$ onto $P G L_{n}(V)$. We say two elements σ_{1} and σ_{2} anticommute if $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ do commute, but

[^0]σ_{1} and σ_{2} do not; i.e., $\sigma_{1} \sigma_{2}=\lambda \sigma_{2} \sigma_{1}$ for some scalar λ in F unequal to 0 or 1 . And if a, b, are any two elements of a group, $[a, b]$ denotes $a b a^{-1} b^{-1}$.

Next consider an element σ of $G L_{n}(V)$ which leaves a hyperplane pointwise invariant. Such a σ is called a shearing, and the corresponding element $\bar{\sigma}$ in $P G L(V)$ is called a projective shearing. A shearing of determinant 1 is called a transvection; and a non-trivial shearing in $U_{n}(V, f)$ which is not a transvection is called a quasi-symmetry. Projective quasi-symmetries and projective transvections are defined in the obvious way.

It is well-known [1, p. 25] that every transvection τ in $U_{n}(V, f)$ has the form $\tau=\tau_{a, \lambda}$ where $\tau_{a, \lambda}(x)=x+\lambda f(a, x) \cdot x$, for $x \in V, \lambda$ being an element in F with $\lambda=J(\lambda)$ and a being an isotropic vector of V. If $\tau \neq 1$, the isotropic line $F a$ is called the proper line of the transvection τ.

1. Centralizer results. In all that follows G shall denote a subgroup of $P U_{n}(V, f)$ which has enough projective transvections. This means for each isotropic line L of V there is a nontrivial projective transvection $\bar{\tau}$ in G with proper line L. If λ is any scalar, then τ and $\lambda \tau$ cannot be distinct transvections and so the proper line of a projective transvection is unique.

We put

$$
\Delta=\left\{\sigma \in U_{n}(V, f) \mid \bar{\sigma} \in G\right\} .
$$

For any subspace U of V, we define $E(U)=\{\sigma \in \Delta \mid R \subseteq U\}$, where R is the residual space of σ; i.e. $R=[\operatorname{ker}(\sigma-1)]^{*}$.

If S is any subset of $\Delta, C(S)$ will denote the centralizer of S in Δ. And if X is any subset of $G, C(X)$ will denote the centralizer of X in G.
1.1 Let $\sigma \in U_{n}(V, f)$ and let σ have residual space R. Then $\sigma^{2}=1$ if and only if $\sigma \mid R=-1_{R}$.

Proof. Apply [4, 1.7].
1.2 Let $\sigma \in \Delta$ be such that $\operatorname{dim} R=2$ and $\sigma \mid R$ is not a scalar. Then $E(R) \subseteq$ $C D C(\sigma)$.

Proof. Proceed as in [9, 3.1], the only difference being that we are here dealing with a skew-hermitian form $f(x, y)$ instead of with an alternating form.
1.3 Let $\sigma \in \Delta$ and suppose $\operatorname{dim} R \leqq 2$. Then $C D C(\bar{\sigma}) \subseteq \overline{E(R)}$.

Proof. We proceed along the lines of [9, 3.2]. Consider any element $\bar{\Sigma}$ in $C D C(\bar{\sigma})$. The argument used in the first paragraph of the proof of $[9,3.2]$, when applied here, will show that Σ acts on all isotropic lines of P. (Here P is the fixed space of σ.)

Since Σ acts on all isotropic lines of P, we can conclude that Σ acts on all hyperbolic planes in P since a hyperbolic plane is always spanned by two isotropic lines. Now every anisotropic line in P is the intersection of two hyperbolic planes in P (cf. [1, Lemma 3, p. 43]). Thus Σ acts on all anisotropic lines in P, and therefore Σ acts on all lines in P. Therefore, $\Sigma \mid P$ is a scalar, say
$\Sigma \mid P=\alpha$. So the fixed space of $\alpha^{-1} \cdot \Sigma$ contains P. Since $R=P^{*}$, the residual space of $\alpha^{-1} \cdot \Sigma$ is contained in R. Thus $\bar{\Sigma}=\overline{\alpha^{-1} \cdot \Sigma} \in \overline{E(R)}$.
1.4 Let $\sigma \in \Delta$ be such that R is a hyperbolic plane, and $\sigma \mid R$ is not a scalar. Then $C D C(\bar{\sigma})=\overline{E(R)}$.

Proof. Apply 1.2 and 1.3.
1.5 Let $\sigma \in \Delta$ be such that $\operatorname{dim} R \leqq 2$.
(a) If R is totally isotropic, $C D C(\bar{\sigma})$ is abelian.
(b) If R is a non-isotropic line, $C D C(\bar{\sigma})$ is abelian.
(c) If R is a hyperbolic plane and $\sigma \mid R$ is not a scalar, then $C D C(\bar{\sigma})$ is nonabelian.

Proof. (a) follows from 1.3 and the fact that if σ_{1} and σ_{2} are in $U_{n}(V, f)$ and $R_{1} \subseteq R_{2}{ }^{*}$ then σ_{1} and σ_{2} commute. (b) follows from 1.3. To prove (c) observe that 1.2 implies $\overline{E(R)} \subseteq C D C(\bar{\sigma})$. Since R is a hyperbolic plane there are two non-orthogonal isotropic lines L_{1} and L_{2} in R. If we choose two projective transvections in G whose proper lines are L_{1} and L_{2}, then these two projective transvections will be in $E(R)$, hence in $C D C(\bar{\sigma})$, but will not commute.
1.6 Suppose that $\Sigma \in U_{n}(V)$ is such that $\Sigma(F a) \neq F a$ for some isotropic line Fa of V. Let $\tau_{a, \lambda}$ be a non-trivial transvection in $U_{n}(V)$. Then $\bar{\Sigma}$ and $\bar{\tau}_{a, \lambda} \bar{\Sigma}^{-1} \bar{\tau}_{a,-\lambda}$ do not commute.

Proof. This follows as in [9, 2.1].
Now let V and W be two finite-dimensional vector spaces over fields F_{1} and F_{2} respectively, each field of characteristic not two. Let V and W each have defined on them non-degenerate skew-hermitian forms f_{1} and f_{2} respectively, each form having index at least three.
1.7 Under the assumptions above, if H is a subgroup of $P U\left(W, f_{2}\right)$ and G is a subgroup of $P U\left(V, f_{1}\right)$ such that G and H both have enough projective transvections, then any isomorphism Λ of G onto H maps projective shearings to projective shearings.

Proof. Let $\bar{\sigma} \in G$ be a projective shearing with proper line L. We can assume $\bar{\sigma} \neq \overline{1}$. Put $\bar{\Sigma}=\Lambda \bar{\sigma} ;$ since $\bar{\sigma} \neq \overline{1}$ there is an isotropic line L_{1} in V such that $\Sigma L_{1} \neq L_{1}$. Let $\bar{\tau}_{a, \lambda}$ be a nontrivial transvection in H with line L_{1}. Put $T=\tau_{a, \lambda}$; by $1.6 \bar{\Sigma}$ and $\bar{T} \bar{\Sigma}^{-1} \bar{T}^{-1}$ do not commute. Put $\Lambda \bar{\tau}=\bar{T}, h=[\Sigma, T]$, and $g=$ $[\sigma, \tau]$. Since $\bar{\Sigma}$ and $\bar{T} \bar{\Sigma}^{-1} \bar{T}^{-1}$ cannot commute, σ and $\tau \sigma^{-1} \tau^{-1}$ cannot commute; hence $L \neq \tau L$ and $f_{1}(L, \tau L) \neq 0$. So $L+\tau L$ is the residual space of g by [4, 1.2].

A simple computation shows the composition of two non-commuting shearings cannot be a scalar when restricted to its residual space. Hence $g=\sigma\left(\tau \sigma^{-1} \tau^{-1}\right)$ satisfies the hypotheses of 1.2 and so $E(L+\tau L) \subseteq C D C(g)$. Thus

$$
\overline{E(L+\tau L)} \subseteq \overline{C D C(g)} \subseteq C D \overline{C(g)}=C D C(\bar{g})
$$

since $\overline{C(g)}=C(\bar{g})$. Thus $C D C(\bar{g})$ is non-abelian since both $\bar{\sigma}$ and $\bar{\tau} \bar{\sigma}^{-1} \bar{\tau}^{-1}$ are in $\overline{E(L+\tau L)}$, and they do not commute.

Let us denote the residual space of h by $R ; h$ is the product of the two transvections $\Sigma T \Sigma^{-1}$ and T^{-1}. But the proper line of $\Sigma T \Sigma^{-1}$ is ΣL_{1} and the proper line of T^{-1} is L_{1}. Since $\Sigma L_{1} \neq L_{1},[4,1.2]$ implies the residual space of $h=\Sigma T \Sigma^{-1} T^{-1}$ is $\Sigma L_{1}+L_{1}$. Thus $R=\Sigma L_{1}+L_{1}$.

Since L_{1} is isotropic, R is either a hyperbolic plane or totally degenerate plane. But $C D C(\bar{g})$ is non-abelian, hence $C D C(\bar{h})$ is non-abelian. So if R were totally degenerate, 1.5 would imply $C D C(\bar{h})$ is abelian, a contradiction. Thus R is a hyperbolic plane.

Now we show $\Lambda \bar{\sigma}$ is a projective shearing. We saw above that

$$
\bar{\sigma} \in \overline{E(L+\tau L)} \subseteq \overline{C D C(g)} \subseteq C D \overline{C(g)}=C D C(\bar{g}) .
$$

So we have $\Lambda \bar{\sigma} \in C D C(\Lambda \bar{g})=C D C(\bar{h})$. By 1.3,

$$
\bar{\Sigma}=\Lambda \bar{\sigma} \in C D C(\bar{h}) \subseteq \overline{E(R)} ;
$$

thus we may assume the residual space of Σ is contained in R. If R is the residual space of Σ and $\Sigma \mid R$ is a scalar, then since $C D C(\bar{h}) \subseteq \overline{E(R)}$ we see that $\bar{\Sigma}$ centralizes $C D C(\bar{h})$ which contradicts the fact that $\bar{\sigma} \notin C C D C(\bar{g})$; if R is the residual space of Σ and $\Sigma \mid R$ is not a scalar, then 1.2 shows $E(R) \subseteq C D C(\Sigma)$ contradicting the fact $C D C(\bar{\sigma})$ is abelian. So Σ has residual space a line.

For the rest of this paper let us assume the hypotheses of 1.7 are in force. Thus, in particular, Λ is an isomorphism between the subgroups G and H of $P U\left(V, f_{1}\right)$ and $P U\left(W, f_{2}\right)$ respectively, and further, G and H both have enough projective transvections.

We will show that in fact Λ maps projective transvections to projective transvections. Note that if σ_{1} and σ_{2} are shearing $\neq 1$ with residual spaces L_{1} and L_{2}, then by [4, 1.4 and 1.5], $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}$ if and only if $L_{1}=L_{2}$ or $f_{1}\left(L_{1}, L_{2}\right)=0$. We also see that if $\sigma \in \Delta$ is a nontrivial shearing with residual space the line L, then $C C(\bar{\sigma})=\overline{E(L)}$. For to prove $C C(\bar{\sigma})=\overline{E(L)}$, note that $C C(\bar{\sigma}) \subseteq C D C(\bar{\sigma}) \subseteq \overline{E(L)}$ by 1.3. The inclusion $C C(\bar{\sigma}) \supseteq \overline{E(L)}$ is easily checked, and so $C C(\bar{\sigma})=\overline{E(L)}$.

Definition. For a subspace U of V let $S(U)$ be all projective shearings in G whose residual lines are contained in U. For a subset X of G, let $C^{\prime}(X)$ be all projective shearings in G which commute with each element of X.
1.8. Let $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ be non-trivial commuting shearings in G with distinct residual lines L_{1} and L_{2}. Then $C^{\prime} C^{\prime}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right) \subseteq S\left(L_{1}+L_{2}\right)$, and $C^{\prime} C^{\prime}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right)=S\left(L_{1}+L_{2}\right)$ if $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ are both transvections.

Proof. Clearly

$$
C^{\prime}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right) \supseteq S\left(\left(L_{1}+L_{2}\right)^{*}\right) \cup S\left(L_{1}\right) \cup S\left(L_{2}\right)
$$

Thus $C^{\prime} C^{\prime}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right) \subseteq S\left(L_{1}+L_{2}\right)$. However if σ_{1} and σ_{2} are both transvections then $C^{\prime}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right)=S\left(\left(L_{1}+L_{2}\right)^{*}\right)$ and this implies $S\left(L_{1}+L_{2}\right)=C^{\prime} C^{\prime}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right)$.
1.9 Under the hypotheses of 1.7 , if $\bar{\sigma}$ is a projective transvection in G then $\Lambda \bar{\sigma}$ is also a projective transvection.

Proof. We may suppose $\bar{\sigma} \neq \overline{1}$. Let $\bar{\sigma}$ have residual line L_{1} and choose an isotropic line L_{2} in V such that $f_{1}\left(L_{2}, L_{1}\right)=0$ and $L_{2} \neq L_{1}$. Choose a nontrivial projective transvection $\bar{\sigma}_{2}$ in G with line L_{2}. Let the projective shearings $\Lambda \bar{\sigma}$ and $\Lambda \bar{\sigma}_{2}$ have lines $L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime}$.
Next note that the totally degenerate plane $L_{1}+L_{2}$ contains at least three distinct pairwise orthogonal isotropic lines. Thus $S\left(L_{1}+L_{2}\right)=C^{\prime} C^{\prime}\left(\bar{\sigma}, \bar{\sigma}_{2}\right)$ contains at least three distinct pairwise commuting projective transvections with pairwise distinct double centralizers. So $C^{\prime} C^{\prime}\left(\Lambda \bar{\sigma}, \Lambda \bar{\sigma}_{2}\right)$ contains at least three distinct pairwise commuting projective shearings with pairwise distinct double centralizers. We know that $C^{\prime} C^{\prime}\left(\Lambda \bar{\sigma}, \Lambda \bar{\sigma}_{2}\right) \subseteq S\left(L_{1}{ }^{\prime}+L_{2}{ }^{\prime}\right)$ so the plane $L_{1}{ }^{\prime}+L_{2}{ }^{\prime}$ contains at least three pairwise distinct lines K_{1}, K_{2}, K_{3} such that $f_{2}\left(K_{i}, K_{j}\right)=0$ if $i \neq j$. This implies the plane $L_{1}{ }^{\prime}+L_{2}{ }^{\prime}$ is totally degenerate which implies $\Lambda \bar{\sigma}$ is a projective transvection as desired.

Thus Λ in fact maps transvections in G to transvections in H.
Now for any hyperbolic plane R of V we define a second hyperbolic plane $\Psi(R)$ of W as follows. Choose a transformation $\bar{\sigma}$ in G such that σ has residual space R and such that σ is the product of two non-commuting transvections, $\sigma=\tau_{1} \tau_{2}$. By 1.4, $C D C(\bar{\sigma})=\overline{E(R)}$. But then $\Lambda \bar{\sigma}$ is the product of two noncommuting transvections so $C D C(\Lambda \bar{\sigma})=\overline{E(\Psi(R))}$ for some hyperbolic plane $\Psi(R)$ in W, again by 1.4. Clearly $\Psi(R)$ depends only on R and is independent of the particular non-commuting transvections τ_{1} and τ_{2} chosen in $E(R)$. If L is an isotropic line such that $L \subset R$ then $L^{\prime} \subset \Psi(R)$, where $L \rightarrow L^{\prime}$ is the bijection of the isotropic lines of V onto the isotropic lines of W obtained from the fact that Λ maps transvections in G to transvections in H. It is also easy to see that the map $R \rightarrow \Psi(R)$ of hyperbolic planes just defined is a bijection of the hyperbolic planes of V onto the hyperbolic planes of W such that $f_{1}\left(R_{1}, R_{2}\right)=0$ if and only if $f_{2}\left(\Psi\left(R_{1}\right), \Psi\left(R_{2}\right)\right)=0$, for any two hyperbolic planes R_{1} and R_{2} of V.
1.10 If R_{1} and R_{2} are any two hyperbolic planes of V, then:

$$
R_{1} \cap R_{2} \neq 0 \Leftrightarrow \Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right) \neq 0
$$

where $R \rightarrow \Psi(R)$ is the bijection of hyperbolic planes previously defined.
Before proving 1.10, we will first show how 1.10 can be used to prove the non-isomorphism of the symplectic and unitary congruence groups.
2. The symplectic and unitary congruence groups. Now we demonstrate our main theorem on the non-isomorphism of the symplectic and unitary congruence groups; the definitions of these congruence groups will be taken as in [10]. Under those definitions each symplectic or unitary congruence group has enough transvections.

Theorem 2.1. Let S_{1} be a symplectic congruence group whose associated vector space has dimension at least 6 and whose associated field is of characteristic not 2. Let S_{2} be a unitary congruence group whose associated hermitian form f_{2} has index at least 3 and whose associated field is of characteristic not 2 . Then S_{1} and S_{2} are not isomorphic.

Proof. Let f_{1} be the alternating form associated to the symplectic congruence group S_{1}. Define $G=\bar{S}_{1}$ and $H=\bar{S}_{2}$. Then if S_{1} and S_{2} were isomorphic, G and H would be isomorphic. Now we can assume that $G \subseteq P \operatorname{Sp}\left(V, f_{1}\right)$ and $H \subseteq P U\left(W, f_{2}\right)$ where f_{2} is a skew-hermitian form which is not skew symmetric, and where f_{1} is skew-symmetric. Now if Λ were an isomorphism from G onto H, then we could choose hyperbolic planes $\Psi\left(R_{1}\right)$ and $\Psi\left(R_{2}\right)$ in W which intersect in an anisotropic line of W. Then by 1.10, we see that $R_{1} \cap R_{2}$ is a line in V, which is necessarily an isotropic line of V. Let $L=R_{1} \cap R_{2}$. Then $L^{\prime} \subseteq \Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right)$ and L^{\prime} is an isotropic line of W by 1.9 , since L is isotropic. But this contradicts the fact $\Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right)$ is anistropic. Thus no isomorphism Λ exists.

Now to complete the proof of 2.1 , it only remains to establish Theorem 1.10. Theorem 1.10 can be proved using the argument of [$\mathbf{2}$, p. 87]. For convenience we repeat that argument here, as a sequence of short lemmas. The following proposition is easily proved.
2.2. Let R_{1} and R_{2} be hyperbolic planes in V with $\operatorname{dim}\left(R_{1}+R_{2}\right)=3$. Then $\left(R_{1}+R_{2}\right)^{*}$ is the linear sum of its hyperbolic planes.

For any subspace U of V let U_{h} denote the set of all hyperbolic planes contained in U. And if S is any set of hyperbolic planes in V, let S^{*} denote all hyperbolic planes in V orthogonal to each hyperbolic plane in the set S. We denote $\left(S^{*}\right)^{*}$ by $S^{* *}$.
2.3 Let R_{1} and R_{2} be hyperbolic planes in V with $\operatorname{dim}\left(R_{1}+R_{2}\right)=3$. Then $\left\{R_{1}, R_{2}\right\}^{* *}=\left(R_{1}+R_{2}\right)_{h}$.

Proof. We always have $\left(R_{1}+R_{2}\right)_{h} \subseteq\left\{R_{1}, R_{2}\right\}^{* *}$. Now $\left\{R_{1}, R_{2}\right\}^{*}$ is the same as the set of all hyperbolic planes in the orthogonal complement of $R_{1}+R_{2}$. Let $R \in\left\{R_{1}, R_{2}\right\}^{* *}$. Then R is orthogonal to every hyperbolic plane in the orthogonal complement of $R_{1}+R_{2}$, and hence R is orthogonal to the orthogonal complement of $R_{1}+R_{2}$. Hence $R \subseteq R_{1}+R_{2}$ and so $R \in\left(R_{1}+R_{2}\right)_{h}$. Thus

$$
\left\{R_{1}, R_{2}\right\}^{* *} \subseteq\left(R_{1}+R_{2}\right)_{h}
$$

Corollary 2.3(a) If $\operatorname{dim}\left(R_{1}+R_{2}\right)=3$, then $\left\{R_{3}, R_{4}\right\}^{* *}=\left\{R_{1}, R_{2}\right\}^{* *}$ for any two distinct hyperbolic planes R_{3}, R_{4}, in $\left\{R_{1}, R_{2}\right\}^{* *}$.
2.4. Let R_{1} and R_{2} be hyperbolic planes in V. If $\operatorname{dim}\left(R_{1}+R_{2}\right)=4$, there is a hyperbolic plane R_{3} in $\left\{R_{1}, R_{2}\right\}^{* *}$ such that $\left\{R_{1}, R_{3}\right\}^{* *} \neq\left\{R_{1}, R_{2}\right\}^{* *}$.

Proof. Choose a hyperbolic plane R_{3} lying in $R_{1}+R_{2}$ with $\operatorname{dim}\left(R_{1}+R_{3}\right)=$ 3. Since $R_{2} \not \subset R_{1}+R_{3}, 2.2$ implies $R_{2} \notin\left\{R_{1}, R_{3}\right\}^{* *}$. But it always is true that $R_{2} \in\left(R_{1}+R_{2}\right)_{h} \subseteq\left\{R_{1}, R_{2}\right\}^{* *}$. So $\left\{R_{1}, R_{3}\right\}^{* *} \neq\left\{R_{1}, R_{2}\right\}^{* *}$.

Proof of 1.10. Assume R_{1} and R_{2} are distinct hyperbolic planes in V with $R_{1} \cap R_{2} \neq 0$. Then $\operatorname{dim}\left(R_{1}+R_{2}\right)=3$, so by 2.3 (a) $\left\{R_{3}, R_{4}\right\}^{* *}=\left\{R_{1}, R_{2}\right\}^{* *}$ for any two distinct hyperbolic planes R_{3} and R_{4} in $\left\{R_{1}, R_{2}\right\}^{* *}$. Hence, since Ψ is a bijection of the hyperbolic planes of V onto those of W which maps orthogonal hyperbolic planes to orthogonal hyperbolic planes, we have

$$
\left\{\Psi\left(R_{3}\right), \Psi\left(R_{4}\right)\right\}^{* *}=\left\{\Psi\left(R_{1}\right), \Psi\left(R_{2}\right)\right\}^{* *}
$$

for any two distinct hyperbolic planes $\Psi\left(R_{3}\right)$ and $\Psi\left(R_{4}\right)$ in $\left\{\Psi\left(R_{1}\right), \Psi\left(R_{2}\right)\right\}^{* *}$. Thus $\operatorname{dim}\left(\Psi\left(R_{1}\right)+\Psi\left(R_{2}\right)\right)=3$ by 2.4. So $R_{1} \cap R_{2} \neq 0 \Rightarrow \Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right) \neq$ 0 . That $\Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right) \neq 0 \Rightarrow R_{1} \cap R_{2} \neq 0$, follows from consideration of the inverse isomorphism Λ^{-1} and the inverse bijection Ψ^{-1}.
3. Explicit description of the isomorphisms. Next we are going to examine more closely the possible isomorphisms between unitary congruence groups and give an explicit description of those isomorphisms that do exist.
3.1 Let the hypotheses be as in Theorem 1.7. Let R_{1} and R_{2} be two distinct hyperbolic planes of V such that $R_{1} \cap R_{2} \neq 0$. Let R_{3} be any hyperbolic plane of V. Then

$$
R_{3} \subseteq R_{1}+R_{2} \Leftrightarrow \Psi\left(R_{3}\right) \subseteq \Psi\left(R_{1}\right)+\Psi\left(R_{2}\right)
$$

Proof. Assume $R_{3} \subseteq R_{1}+R_{2}$. By 1.10, $\operatorname{dim}\left(\Psi\left(R_{1}\right)+\Psi\left(R_{2}\right)\right)=3$ since $\operatorname{dim}\left(R_{1}+R_{2}\right)=3$. By 2.3, $R_{3} \in\left(R_{1}+R_{2}\right)_{h}=\left\{R_{1}, R_{2}\right\}^{* *}$. Hence $\Psi\left(R_{3}\right) \in\left\{\Psi\left(R_{1}\right), \quad \Psi\left(R_{2}\right)\right\}^{* *}=\left(\Psi\left(R_{1}\right)+\Psi\left(R_{2}\right)\right)_{h}$, again by 2.3. Thus $\Psi\left(R_{3}\right) \subseteq \Psi\left(R_{1}\right)+\Psi\left(R_{2}\right)$. The converse implication follows by considering Ψ^{-1}.
3.2 Let R_{1}, R_{2}, R_{3} be three distinct hyperbolic planes in V. Then

$$
R_{1} \cap R_{2} \cap R_{3} \neq 0 \Leftrightarrow \Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right) \cap \Psi\left(R_{3}\right) \neq 0
$$

Proof. We need only prove \Rightarrow since the converse implication follows by considering Ψ^{-1}. So assume $R_{1} \cap R_{2} \cap R_{3} \neq 0$. Note that $\operatorname{dim}\left(R_{1}+R_{2}+R_{3}\right)$ equals 3 or 4 .

Case 1. $\operatorname{dim}\left(R_{1}+R_{2}+R_{3}\right)=4$: Then $R_{3} \nsubseteq R_{1}+R_{2}$ and so $\Psi\left(R_{3}\right) \nsubseteq \Psi\left(R_{1}\right)+\Psi\left(R_{2}\right)$ by 3.1. Now by 1.10 , we have $\Psi\left(R_{3}\right) \cap \Psi\left(R_{1}\right)=L_{1}$ and $\Psi\left(R_{3}\right) \cap \Psi\left(R_{2}\right)=L_{2}$, for certain lines L_{1} and L_{2}. If $L_{1} \neq L_{2}$, then $\Psi\left(R_{3}\right)=L_{1}+L_{2} \subseteq \Psi\left(R_{1}\right)+\Psi\left(R_{2}\right)$, a contradiction. Hence $L_{1}=L_{2}$. Thus $\Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right) \cap \Psi\left(R_{3}\right)=L_{1}$.

Case 2. $\operatorname{dim}\left(R_{1}+R_{2}+R_{3}\right)=3$: Let $R_{1} \cap R_{2} \cap R_{3}=F_{1} \cdot x$. Since x is in the hyperbolic plane R_{1}, there is an isotropic vector y in R_{1} such that $f_{1}(x, y) \neq 0$. A dimension argument shows $\left(F_{1} x\right)^{*} \cap\left(F_{1} y\right)^{*}$ is not contained in $R_{1}+R_{2}+R_{3}$, and so there is an isotropic vector v in $\left(F_{1} x\right)^{*} \cap\left(F_{1} y\right)^{*}$
with v not in $R_{1}+R_{2}+R_{3}$. It follows that $y+v$ is isotropic, and $y+v$ is in neither $\left(F_{1} x\right)^{*}$ nor $R_{1}+R_{2}+R_{3}$. Let H be the plane spanned by the vectors x and $y+v$; then H is isotropic and regular and so H is a hyperbolic plane. Also $H \cap\left(R_{1}+R_{2}+R_{3}\right)=F_{1} \cdot x$. By Case $1, \Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right) \cap \Psi(H)=$ L and $\Psi\left(R_{2}\right) \cap \Psi\left(R_{3}\right) \cap \Psi(H)=K$ for certain lines L and K. Thus $L=$ $\Psi(H) \cap \Psi\left(R_{2}\right)=K$. Hence $\Psi\left(R_{1}\right) \cap \Psi\left(R_{2}\right) \cap \Psi\left(R_{3}\right)=L$.

Corollary $3.2(\mathrm{a})$ Let $\left\{R_{\alpha}\right\}$ be any family of hyperbolic planes in V. Then

$$
\bigcap_{\alpha} R_{\alpha} \neq 0 \Leftrightarrow \bigcap_{\alpha} \Psi\left(R_{\alpha}\right) \neq 0 .
$$

Now for any line L in V, let $\left\{R_{\alpha}\right\}$ be the family of all hyperbolic planes in V which contain L. By $3.2(\mathrm{a})$ we have that $\bigcap_{\alpha} \Psi\left(R_{\alpha}\right)$ is a line in W; we will call this line L^{\prime}. It is easily verified that the map $L \rightarrow L^{\prime}$ is an orthogonalitypreserving bijection of the lines of V onto the lines of W. And for any line L in V, we see that L is isotropic if and only if L^{\prime} is isotropic.

Now suppose we have two projective congruence groups G and H which are subgroups of $P U\left(V, f_{1}\right)$ and $P U\left(W, f_{2}\right)$ respectively. Suppose Λ is an isomorphism of G onto H. The proof of Theorem 2.1 shows that either f_{1} and f_{2} are both skew-symmetric, or else f_{1} and f_{2} are both skew-hermitian but not skewsymmetric. In the first case, $\operatorname{dim} V=\operatorname{dim} W$ since the dimension of a symplectic space is twice the maximum number of pairwise orthogonal hyperbolic planes. In the second case, $\operatorname{dim} V=\operatorname{dim} W$ because the dimension of a hermitian space equals the maximum number of pairwise orthogonal anisotropic lines. Now under the bijection $L \rightarrow L^{\prime}$, two lines L_{1} and L_{2} are orthogonal if and only if $L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime}$ are orthogonal. So the images (under $L \rightarrow L^{\prime}$) of all the lines contained in a fixed hyperplane of V again lie in a hyperplane of W. Thus the bijection $L \rightarrow L^{\prime}$ satisfies the hypotheses of the Fundamental Theorem of Projective Geometry as given in [1, pp. 77-79]. Thus there is a semilinear isomorphism g of V onto W such that $g L=L^{\prime}$ for all lines L of V. It follows that g preserves orthogonality; i.e.,

$$
f_{1}\left(L_{1}, L_{2}\right)=0 \Leftrightarrow f_{2}\left(f L_{1}, g L_{2}\right)=0
$$

for any two lines, L_{1}, L_{2} in V. Thus by [7, Theorem 4.1] it follows that

$$
\begin{equation*}
\phi\left(J_{1}(\lambda)\right)=J_{2}(\phi(\lambda)) \quad \text { for all } \lambda \in F_{1} \tag{i}
\end{equation*}
$$

where ϕ is the field isomorphism associated to g. (Here J_{i} denotes the involution of f_{i} for $i=1,2$.)

$$
\begin{equation*}
f_{2}(g x, g y)=\alpha \cdot \phi\left(f_{1}(x, y)\right) \quad \text { for all } x, y \in V \tag{ii}
\end{equation*}
$$

where α is a scalar in F_{2} such that $J_{2}(\alpha)=\alpha$, and

$$
\begin{equation*}
\sigma \in U\left(V, f_{1}\right) \text { implies } g \sigma g^{-1} \in U\left(W, f_{2}\right) \tag{iii}
\end{equation*}
$$

A semilinear isomorphism g of V onto W satisfying (i) and (ii) above is
called a unitary semi-similitude. By (iii) we can define a map Λ_{g} of $U\left(V, f_{1}\right)$ onto $U\left(W, f_{2}\right)$ by

$$
\Lambda_{g}(\sigma)=g \sigma g^{-1}, \quad \text { for all } \sigma \in U\left(V, f_{1}\right)
$$

Clearly Λ_{g} is an isomorphism. Therefore, Λ_{g} induces an isomorphism $\bar{\Lambda}_{g}$ of $P U\left(V, f_{1}\right)$ onto $P U\left(W, f_{2}\right)$ defined by

$$
\bar{\Lambda}_{g}(\bar{\sigma})=\overline{\Lambda_{g}(\sigma)}, \quad \text { for all } \bar{\sigma} \in P U\left(V, f_{1}\right)
$$

Therefore, $\Lambda_{g}^{-1} \circ \Lambda$ is a monomorphism of G into $\operatorname{PU}\left(V, f_{1}\right)$ which for any isotropic line L of V maps each projective transvection in G with proper line L to a projective transvection with proper line L again. An argument similar to the proof of [9, Proposition 4.4] shows that $\bar{\Lambda}_{g}{ }^{-1} \circ \Lambda$ is the identity map on G, and so $\Lambda=\bar{\Lambda}_{q} \mid G$. Thus we have proved

Theorem 3.3. Let G and H be projective unitary congruence groups. Suppose $G \subseteq P U\left(V, f_{1}\right)$ and $H \subseteq P U\left(W, f_{2}\right)$ where V and W are finite-dimensional vector spaces over fields F_{1} and F_{2} respectively, each field of characteristic not 2. Suppose f_{1} and f_{2} both have Witt indices at least 3 , and let Λ be an isomorphism of G onto H. Then there is a unitary semi-similitude g of V onto W such that

$$
\Lambda(\bar{\sigma})=\bar{\Lambda}_{g}(\bar{\sigma}) \quad \text { for all } \bar{\sigma} \in G
$$

Corollary. Let S_{1} and S_{2} be unitary congruence groups such that $S_{1} \subseteq U\left(V, f_{1}\right)$ and $S_{2} \subseteq U\left(W, f_{2}\right)$, where the hypotheses on $V, W, F_{1}, F_{2}, f_{1}$, and f_{2} are as in Theorem 3.3. Suppose Λ is an isomorphism of S_{1} onto S_{2}. Then there is a unitary semi-similitude g of V onto W and a homomorphism χ of S_{1} into the elements of F_{2} of norm 1 such that

$$
\Lambda(\sigma)=\chi(\sigma) \cdot g \sigma g^{-1} \quad \text { for all } \sigma \in S_{1} .
$$

References

1. J. Dieudonné, La géométrie des groupes classiques (Springer-Verlag, Berlin, 1963).
2. - On the automorphisms of the classical groups, Mem. Amer. Math. Soc., New York, 1951.
3. O. T. O'Meara, The automorphisms of the standard symplectic group over any integral domain, J. Reine Angew. Math. 230 (1968), 104-138.
4. -_Group theoretic characterization of transvections using CDC, Math. Z. 110 (1969), 385-394.
5. O'Meara and Zassenhaus, The automorphisms of the linear congruence groups over Dedekind domains, J. Number Theory 1 (1969), 211-221.
6. C. E. Rickart, Isomorphic groups of linear transformations, Amer. J. Math. 72 (1950), 451-464.
7. -_Isomorphic groups of linear transformations, II, Amer. J. Math. 73 (1951), 697-716.
8. R. E. Solazzi, The automorphisms of certain subgroups of $\mathrm{PGL}_{n}(\mathrm{~V})$, Illinois J. Math. 16 (1972), 330-349.
9. -_The automorphisms of the symplectic congruence groups, J. Algebra 21 (1972), 91-102.
10. -Isomorphism theory of congruence groups, Bull. Amer. Math. Soc. 77 (1971), 164-168.
11. - On the isomorphism between certain congruence groups, Proc. Amer. Math. Soc. 35 (1972), 405-410.

Indiana University, Bloomington, Indiana

[^0]: Received June 1, 1972 and in revised form, November 24, 1972.

