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Mahler measure of polynomial iterates

Igor Pritsker

Abstract. Granville recently asked how the Mahler measure behaves in the context of polynomial
dynamics. For a polynomial f (z) = zd +⋯ ∈ C[z], deg( f ) ≥ 2, we show that the Mahler measure of
the iterates f n grows geometrically fast with the degree dn , and find the exact base of that exponential
growth. This base is expressed via an integral of log+ ∣z∣ with respect to the invariant measure of the
Julia set for the polynomial f . Moreover, we give sharp estimates for such an integral when the Julia
set is connected.

1 Main results

For an arbitrary polynomial P(z) = cn∏n
k=1(z − zk) ∈ C[z] with cn ≠ 0, the Mahler

measure is given by

M(P) ∶= exp( 1
2π ∫ log ∣P(e iθ)∣ dθ) = ∣cn ∣

n
∏
k=1

max(1, ∣zk ∣),(1.1)

where the second equality is a well-known consequence of Jensen’s formula (see [2, 7,
11] for background and applications).

Let f (z) = zd +⋯ ∈ C[z], deg( f ) ≥ 2, and consider the n-fold iterates for f
denoted by f n , which are monic polynomials of degree dn , n ∈ N. At a recent
conference [9], Granville asked interesting questions on the behavior of the Mahler
measure under composition of polynomials. In particular, how the Mahler measure
of the polynomial iterates f n behaves as n →∞. Our primary goal is to show that
the Mahler measure of f n grows geometrically fast with the degree dn . In order to
state a precise result, we need to introduce the Julia set of f denoted by J, which is
a completely invariant compact set under iteration of f (see, e.g., [4] for details).
It is also known that there is a unique unit Borel measure μJ supported on J that is
invariant under f. In fact, μJ is the equilibrium measure of J in the sense of logarithmic
potential theory (see [4, 13]), and it expresses the steady-state distribution of charge
if J is viewed as conductor.

Theorem 1.1 If f (z) = zd +⋯ ∈ C[z], deg( f ) ≥ 2, is different from the monomial zd ,
then we have
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lim
n→∞

d−n log M( f n) = ∫ log+ ∣z∣dμJ(z) > 0,(1.2)

where μJ is the invariant (equilibrium) measure of the Julia set J for f.

Remark 1.2 If f (z) = zd , then f n(z) = zd n
, n ∈ N, and M( f n) = 1, n ∈ N, by (1.1).

Also note that the smallest value of ∫ log+ ∣z∣dμJ(z) is 0 that is attained for f (z) = zd

with J = T ∶= {∣z∣ = 1} and dμT(e i t) = dt/(2π), t ∈ [0, 2π).

In light of (1.2), we arrive at the question: How large can ∫ log+ ∣z∣dμJ(z) be? Since
the location of the Julia set J varies with f in such a way that J can be essentially
anywhere in the complex plane, the value of this integral can be arbitrarily large
with the values of log+ ∣z∣. Indeed, if J ⊂ {z ∶ ∣z∣ > R}, then ∫ log+ ∣z∣dμJ(z) ≥ log R
because μJ is the unit measure, where R > 1 can be arbitrarily large. However, if we
make proper normalization assumptions, then we obtain some precise upper bounds
stated below.

Let K be the filled-in Julia set that consists of the Julia set J and the union of the
bounded components of its complementC / J (see [4, p. 65]). It is clear that J = ∂K, so
that K is connected if and only if J is connected, which is known to hold if and only if
all the critical points of f are contained in K (see [4, p. 66]). Moreover, J and K share
the same equilibrium measure μJ = μK (cf. [3, 13]).

Theorem 1.3 If f (z) = zd +⋯ ∈ C[z], deg( f ) ≥ 2, J is connected, and 0 ∈ K, then

∫ log+ ∣z∣dμJ(z) ≤ ∫
4

1

log t dt
π
√

t(4 − t)
≈ 0.6461318945.(1.3)

Equality holds above for J = K = [0, 4] and f (z) = 2 Td(z/2 − 1), where Td(z) =
cos(d arccos z) is the classical Chebyshev polynomial.

Symmetry assumptions also produce interesting results such as the one below.

Theorem 1.4 If f (z) = zd +⋯ ∈ C[z], deg( f ) ≥ 2, is either an odd or an even
function, and J is connected, then

∫ log+ ∣z∣dμJ(z) ≤ 2∫
2

1

log t dt
π
√

1 − t2
≈ 0.3230659472.(1.4)

Equality holds above for J = [−2, 2] and f (z) = 2 Td(z/2), where Td(z) =
cos(d arccos z).

A classical example that satisfies the assumptions of Theorem 1.4 is given by the
family of quadratic polynomials f (z) = z2 + c with c from the Mandelbrot set (see
Chapter VIII of [4]).

We remark that the growth of the Mahler measure for the iterates exhibited here
is essentially due to the intrinsic connection of the Mahler measure to the unit circle.
A more suitable version of the Mahler measure for the dynamical setting is known
(see the recent papers [5, 6], where the first one surveys many developments in
the area). Another related notion is dynamical (or canonical) height (see [14] for a
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comprehensive exposition). There are many other connections of the Mahler measure
and its generalizations with polynomial dynamics. Thus, the integral of (1.2) can be
interpreted as the Arakelov–Zhang pairing of f and z2 that arises as a limit of average
Weil heights in [12]. It is practically impossible to discuss all these interesting relations
in detail in this short note.

For the proofs of Theorems 1.1, 1.3, and 1.4, we need the well-known result of Brolin
[3, Theorem 16.1] on the equidistribution of preimages for the iterates f n :

Brolin’s Theorem. Let w ∈ C be any point with one possible exception. Consider the
preimages of w under f n denoted by {zk ,n}d n

k=1 , i.e., all solutions of the equation f n(z) =
w listed according to multiplicities. Define the normalized counting measures in those
preimages by

τn ∶=
1

dn

d n

∑
k=1

δzk ,n ,(1.5)

where δz denotes a unit point mass at z. Then we have the following weak∗ convergence:

τn
∗→ μJ as n →∞.(1.6)

Brolin’s result has the following implication, which is crucial for our purposes.

Corollary 1.5. If f (z) = zd +⋯ ∈ C[z], deg( f ) ≥ 2, is not the monomial zd , then we
have for the zeros of f n denoted by {zk ,n}d n

k=1 that

τn =
1

dn

d n

∑
k=1

δzk ,n

∗→ μJ as n →∞.(1.7)

Proof The exceptional points in Brolin’s Theorem arise as values omitted by the
family of iterates { f n}∞n=1 in a neighborhood of any point ζ ∈ J. It follows that
there are at most two such omitted values by Montel’s theorem on normal families,
for otherwise the family { f n}∞n=1 would be normal in that neighborhood, which
contradicts the definition of the Julia set J for f. Moreover, Lemma 2.2 of [3] states
that the exceptional values are the same for all points ζ ∈ J . Since f is a polynomial
in our settings, it certainly omits the value ∞ in every disk {z ∶ ∣z − ζ ∣ < r}, where
r > 0, ζ ∈ J , so that at most one exceptional value can occur in this case. For example,
if f (z) = zd , then this exceptional value is 0 in every disk {z ∶ ∣z − ζ ∣ < 1}, where
ζ ∈ J = T the unit circumference. However, 0 cannot be an exceptional value for any
polynomial in Theorem 1.1. Indeed, since deg( f ) ≥ 2 and f is not the monomial zd ,
there is a root w0 ≠ 0 of f. If we assume that 0 is an exceptional point for Brolin’s
Theorem, equivalently an omitted value for the family { f n}∞n=1 in a neighborhood V
of a point ζ ∈ J , then the same must be true for w0 because f n(z0) = w0 for a point
z0 ∈ V implies f n+1(z0) = 0. But two finite omitted values 0, w0 mean that the family
{ f n}∞n=1 must be normal in V, contradicting the definition of the Julia set J . Thus, 0
is not an exceptional point, and Corollary 1.5 is an immediate consequence of Brolin’s
Theorem. ∎
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2 Proofs of the main results

We continue with the same notations as before.

Proof of Theorem 1.1 It is clear from (1.1) that

d−n log M( f n) = 1
dn

d n

∑
k=1

log+ ∣zk ,n ∣ = ∫ log+ ∣z∣ dτn(z).

Since log+ ∣z∣ is a continuous function in C, the limit relation in (1.2) follows from the
weak∗ convergence of (1.7). One only needs to observe here that the sets {zk ,n}d n

k=1 are
uniformly bounded for all n ∈ N, say belong to a fixed disk DR = {z ∶ ∣z∣ ≤ R}, so that
log+ ∣z∣ can be extended from DR to C /DR as a continuous function with compact
support in C.

The inequality in (1.2) follows from the work of Fernández [8], who showed that
the Julia set J of f different from zd must have points in the domain Δ = {z ∶ ∣z∣ > 1}.
It is well known that supp μJ = J (see [3, Lemma 15.2] and [13, pp. 195–197]). Thus,

∫ log+ ∣z∣dμJ(z) = ∫
Δ

log ∣z∣dμJ(z) > 0. ∎

Proof of Theorem 1.3 Recall that the logarithmic capacity of the Julia set for a
monic polynomial is equal to 1 (see Lemma 15.1 of [3] and Theorem 6.5.1 of [13]
for a detailed proof). The book [13] contains a complete account on logarithmic
potential theory, and on capacity in particular. Since J = ∂K, the equilibrium measure
of K is μK = μJ , and the capacity of K is 1 (cf. [13]). Clearly, K is a connected set
because J is so. The conditions that the capacity of K is 1, 0 ∈ K and K is connected
introduce restrictions on the size of K and, consequently, on the size of the integral
∫ log+ ∣z∣dμJ(z) in (1.2). Theorem 6.2 of [1] (see also Corollary 6 of [10]) gives that
the largest value of this integral is attained when K = [0, 4] = J, in which case it is well
known [13] that

dμK(x) = dμJ(x) =
dx

π
√

x(4 − x)
, x ∈ (0, 4).

To apply Theorem 6.2 of [1], we also need to note that log+ ∣z∣ =max(0, log ∣z∣) is
clearly a convex function of log ∣z∣. Thus, we have the upper bound (1.3)

∫ log+ ∣z∣dμJ(z) ≤ ∫
4

1

log t dt
π
√

t(4 − t)
≈ 0.6461318945.

The case of equality for J = [0, 4] is attained by the polynomial f (z) = 2 Td(z/2 − 1),
where Td(z) = cos(d arccos z) is the classical Chebyshev polynomial of the first kind
(see Sections 1.6.2 and 6.2 of [14] for details). ∎

Proof of Theorem 1.4 We proceed with a proof similar to the previous one, but
use Corollary 6.3 of [1] instead of Theorem 6.2 of [1]. We have that capacity of J is 1
by Theorem 6.5.1 of [13], and J is connected by our assumption. Corollary 6.3 of [1] is
applied to the filled-in Julia set K, so that J = ∂K, where the equilibrium measure of K
is μK = μJ , and the capacity of K is 1. Again, K is connected because J is so. Moreover,
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both J and K are symmetric with respect to the origin because f is even or odd. If f
is odd, then 0 is a fixed point of f, implying that 0 ∈ K . If f is even, then 0 is a critical
point of f ; hence, 0 ∈ K because we assume that J is connected (cf. [4, p. 66]). Thus,
0 ∈ K under our assumptions, and we obtain from Corollary 6.3 of [1] that the largest
value of the integral in (1.4) is attained for J = K = [−2, 2] ∶

∫ log+ ∣z∣dμJ(z) = ∫ log+ ∣z∣dμK(z) ≤ 2∫
2

1

log t dt
π
√

1 − t2
≈ 0.3230659472,

where we used that the equilibrium measure for J = K = [−2, 2] is the Chebyshev
distribution [13]

dμK(x) = dμJ(x) =
dx

π
√

4 − x2
, x ∈ (−2, 2).

It is well known that J = [−2, 2] for f (z) = 2 Td(z/2), where Td(z) = cos(d arccos z)
(see Sections 1.6.2 and 6.2 of [14]). ∎
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