The Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

# Mahler measure of polynomial iterates 

Igor Pritsker®


#### Abstract

Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial $f(z)=z^{d}+\cdots \in \mathbb{C}[z], \operatorname{deg}(f) \geq 2$, we show that the Mahler measure of the iterates $f^{n}$ grows geometrically fast with the degree $d^{n}$, and find the exact base of that exponential growth. This base is expressed via an integral of $\log ^{+}|z|$ with respect to the invariant measure of the Julia set for the polynomial $f$. Moreover, we give sharp estimates for such an integral when the Julia set is connected.


## 1 Main results

For an arbitrary polynomial $P(z)=c_{n} \prod_{k=1}^{n}\left(z-z_{k}\right) \in \mathbb{C}[z]$ with $c_{n} \neq 0$, the Mahler measure is given by

$$
\begin{equation*}
M(P):=\exp \left(\frac{1}{2 \pi} \int \log \left|P\left(e^{i \theta}\right)\right| d \theta\right)=\left|c_{n}\right| \prod_{k=1}^{n} \max \left(1,\left|z_{k}\right|\right) \tag{1.1}
\end{equation*}
$$

where the second equality is a well-known consequence of Jensen's formula (see [2, 7, 11] for background and applications).

Let $f(z)=z^{d}+\cdots \in \mathbb{C}[z], \operatorname{deg}(f) \geq 2$, and consider the $n$-fold iterates for $f$ denoted by $f^{n}$, which are monic polynomials of degree $d^{n}, n \in \mathbb{N}$. At a recent conference [9], Granville asked interesting questions on the behavior of the Mahler measure under composition of polynomials. In particular, how the Mahler measure of the polynomial iterates $f^{n}$ behaves as $n \rightarrow \infty$. Our primary goal is to show that the Mahler measure of $f^{n}$ grows geometrically fast with the degree $d^{n}$. In order to state a precise result, we need to introduce the Julia set of $f$ denoted by $J$, which is a completely invariant compact set under iteration of $f$ (see, e.g., [4] for details). It is also known that there is a unique unit Borel measure $\mu_{J}$ supported on $J$ that is invariant under $f$. In fact, $\mu_{J}$ is the equilibrium measure of $J$ in the sense of logarithmic potential theory (see [4, 13]), and it expresses the steady-state distribution of charge if $J$ is viewed as conductor.

Theorem 1.1 If $f(z)=z^{d}+\cdots \in \mathbb{C}[z], \operatorname{deg}(f) \geq 2$, is different from the monomial $z^{d}$, then we have

[^0]\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d^{-n} \log M\left(f^{n}\right)=\int \log ^{+}|z| d \mu_{J}(z)>0 \tag{1.2}
\end{equation*}
$$

\]

where $\mu_{J}$ is the invariant (equilibrium) measure of the Julia set Jfor $f$.
Remark 1.2 If $f(z)=z^{d}$, then $f^{n}(z)=z^{d^{n}}, n \in \mathbb{N}$, and $M\left(f^{n}\right)=1, n \in \mathbb{N}$, by (1.1). Also note that the smallest value of $\int \log ^{+}|z| d \mu_{J}(z)$ is 0 that is attained for $f(z)=z^{d}$ with $J=\mathbb{T}:=\{|z|=1\}$ and $d \mu_{\mathbb{T}}\left(e^{i t}\right)=d t /(2 \pi), t \in[0,2 \pi)$.

In light of (1.2), we arrive at the question: How large can $\int \log ^{+}|z| d \mu_{J}(z)$ be? Since the location of the Julia set $J$ varies with $f$ in such a way that $J$ can be essentially anywhere in the complex plane, the value of this integral can be arbitrarily large with the values of $\log ^{+}|z|$. Indeed, if $J \subset\{z:|z|>R\}$, then $\int \log ^{+}|z| d \mu_{J}(z) \geq \log R$ because $\mu_{J}$ is the unit measure, where $R>1$ can be arbitrarily large. However, if we make proper normalization assumptions, then we obtain some precise upper bounds stated below.

Let $K$ be the filled-in Julia set that consists of the Julia set $J$ and the union of the bounded components of its complement $\mathbb{C} \backslash J$ (see [4, p. 65]). It is clear that $J=\partial K$, so that $K$ is connected if and only if $J$ is connected, which is known to hold if and only if all the critical points of $f$ are contained in $K$ (see [4, p. 66]). Moreover, $J$ and $K$ share the same equilibrium measure $\mu_{J}=\mu_{K}(c f .[3,13])$.

Theorem 1.3 If $f(z)=z^{d}+\cdots \in \mathbb{C}[z], \operatorname{deg}(f) \geq 2, J$ is connected, and $0 \in K$, then

$$
\begin{equation*}
\int \log ^{+}|z| d \mu_{J}(z) \leq \int_{1}^{4} \frac{\log t d t}{\pi \sqrt{t(4-t)}} \approx 0.6461318945 \tag{1.3}
\end{equation*}
$$

Equality holds above for $J=K=[0,4]$ and $f(z)=2 T_{d}(z / 2-1)$, where $T_{d}(z)=$ $\cos (d \arccos z)$ is the classical Chebyshev polynomial.

Symmetry assumptions also produce interesting results such as the one below.
Theorem 1.4 If $f(z)=z^{d}+\cdots \in \mathbb{C}[z], \operatorname{deg}(f) \geq 2$, is either an odd or an even function, and $J$ is connected, then

$$
\begin{equation*}
\int \log ^{+}|z| d \mu_{J}(z) \leq 2 \int_{1}^{2} \frac{\log t d t}{\pi \sqrt{1-t^{2}}} \approx 0.3230659472 \tag{1.4}
\end{equation*}
$$

Equality holds above for $J=[-2,2]$ and $f(z)=2 T_{d}(z / 2)$, where $T_{d}(z)=$ $\cos (d \arccos z)$.

A classical example that satisfies the assumptions of Theorem 1.4 is given by the family of quadratic polynomials $f(z)=z^{2}+c$ with $c$ from the Mandelbrot set (see Chapter VIII of [4]).

We remark that the growth of the Mahler measure for the iterates exhibited here is essentially due to the intrinsic connection of the Mahler measure to the unit circle. A more suitable version of the Mahler measure for the dynamical setting is known (see the recent papers [5, 6], where the first one surveys many developments in the area). Another related notion is dynamical (or canonical) height (see [14] for a
comprehensive exposition). There are many other connections of the Mahler measure and its generalizations with polynomial dynamics. Thus, the integral of (1.2) can be interpreted as the Arakelov-Zhang pairing of $f$ and $z^{2}$ that arises as a limit of average Weil heights in [12]. It is practically impossible to discuss all these interesting relations in detail in this short note.

For the proofs of Theorems 1.1, 1.3, and 1.4, we need the well-known result of Brolin [3, Theorem 16.1] on the equidistribution of preimages for the iterates $f^{n}$ :

Brolin's Theorem. Let $w \in \mathbb{C}$ be any point with one possible exception. Consider the preimages of $w$ under $f^{n}$ denoted by $\left\{z_{k, n}\right\}_{k=1}^{d^{n}}$, i.e., all solutions of the equation $f^{n}(z)=$ $w$ listed according to multiplicities. Define the normalized counting measures in those preimages by

$$
\begin{equation*}
\tau_{n}:=\frac{1}{d^{n}} \sum_{k=1}^{d^{n}} \delta_{z_{k, n}}, \tag{1.5}
\end{equation*}
$$

where $\delta_{z}$ denotes a unit point mass at $z$. Then we have the following weak ${ }^{*}$ convergence:

$$
\begin{equation*}
\tau_{n} \xrightarrow{*} \mu_{J} \quad \text { as } n \rightarrow \infty . \tag{1.6}
\end{equation*}
$$

Brolin's result has the following implication, which is crucial for our purposes.
Corollary 1.5. If $f(z)=z^{d}+\cdots \in \mathbb{C}[z], \operatorname{deg}(f) \geq 2$, is not the monomial $z^{d}$, then we have for the zeros of $f^{n}$ denoted by $\left\{z_{k, n}\right\}_{k=1}^{d^{n}}$ that

$$
\begin{equation*}
\tau_{n}=\frac{1}{d^{n}} \sum_{k=1}^{d^{n}} \delta_{z_{k, n}} \xrightarrow{*} \mu_{J} \quad \text { as } n \rightarrow \infty . \tag{1.7}
\end{equation*}
$$

Proof The exceptional points in Brolin's Theorem arise as values omitted by the family of iterates $\left\{f^{n}\right\}_{n=1}^{\infty}$ in a neighborhood of any point $\zeta \in J$. It follows that there are at most two such omitted values by Montel's theorem on normal families, for otherwise the family $\left\{f^{n}\right\}_{n=1}^{\infty}$ would be normal in that neighborhood, which contradicts the definition of the Julia set $J$ for $f$. Moreover, Lemma 2.2 of [3] states that the exceptional values are the same for all points $\zeta \in J$. Since $f$ is a polynomial in our settings, it certainly omits the value $\infty$ in every disk $\{z:|z-\zeta|<r\}$, where $r>0, \zeta \in J$, so that at most one exceptional value can occur in this case. For example, if $f(z)=z^{d}$, then this exceptional value is 0 in every disk $\{z:|z-\zeta|<1\}$, where $\zeta \in J=\mathbb{T}$ the unit circumference. However, 0 cannot be an exceptional value for any polynomial in Theorem 1.1. Indeed, since $\operatorname{deg}(f) \geq 2$ and $f$ is not the monomial $z^{d}$, there is a root $w_{0} \neq 0$ of $f$. If we assume that 0 is an exceptional point for Brolin's Theorem, equivalently an omitted value for the family $\left\{f^{n}\right\}_{n=1}^{\infty}$ in a neighborhood $V$ of a point $\zeta \in J$, then the same must be true for $w_{0}$ because $f^{n}\left(z_{0}\right)=w_{0}$ for a point $z_{0} \in V$ implies $f^{n+1}\left(z_{0}\right)=0$. But two finite omitted values $0, w_{0}$ mean that the family $\left\{f^{n}\right\}_{n=1}^{\infty}$ must be normal in $V$, contradicting the definition of the Julia set $J$. Thus, 0 is not an exceptional point, and Corollary 1.5 is an immediate consequence of Brolin's Theorem.

## 2 Proofs of the main results

We continue with the same notations as before.
Proof of Theorem 1.1 It is clear from (1.1) that

$$
d^{-n} \log M\left(f^{n}\right)=\frac{1}{d^{n}} \sum_{k=1}^{d^{n}} \log ^{+}\left|z_{k, n}\right|=\int \log ^{+}|z| d \tau_{n}(z)
$$

Since $\log ^{+}|z|$ is a continuous function in $\mathbb{C}$, the limit relation in (1.2) follows from the weak $^{*}$ convergence of (1.7). One only needs to observe here that the sets $\left\{z_{k, n}\right\}_{k=1}^{d^{n}}$ are uniformly bounded for all $n \in \mathbb{N}$, say belong to a fixed disk $D_{R}=\{z:|z| \leq R\}$, so that $\log ^{+}|z|$ can be extended from $D_{R}$ to $\mathbb{C} \backslash D_{R}$ as a continuous function with compact support in $\mathbb{C}$.

The inequality in (1.2) follows from the work of Fernández [8], who showed that the Julia set $J$ of $f$ different from $z^{d}$ must have points in the domain $\Delta=\{z:|z|>1\}$. It is well known that $\operatorname{supp} \mu_{J}=J$ (see [3, Lemma 15.2] and [13, pp. 195-197]). Thus,

$$
\int \log ^{+}|z| d \mu_{J}(z)=\int_{\Delta} \log |z| d \mu_{J}(z)>0
$$

Proof of Theorem 1.3 Recall that the logarithmic capacity of the Julia set for a monic polynomial is equal to 1 (see Lemma 15.1 of [3] and Theorem 6.5.1 of [13] for a detailed proof). The book [13] contains a complete account on logarithmic potential theory, and on capacity in particular. Since $J=\partial K$, the equilibrium measure of $K$ is $\mu_{K}=\mu_{J}$, and the capacity of $K$ is 1 (cf. [13]). Clearly, $K$ is a connected set because $J$ is so. The conditions that the capacity of $K$ is $1,0 \in K$ and $K$ is connected introduce restrictions on the size of $K$ and, consequently, on the size of the integral $\int \log ^{+}|z| d \mu_{J}(z)$ in (1.2). Theorem 6.2 of [1] (see also Corollary 6 of [10]) gives that the largest value of this integral is attained when $K=[0,4]=J$, in which case it is well known [13] that

$$
d \mu_{K}(x)=d \mu_{J}(x)=\frac{d x}{\pi \sqrt{x(4-x)}}, \quad x \in(0,4)
$$

To apply Theorem 6.2 of [1], we also need to note that $\log ^{+}|z|=\max (0, \log |z|)$ is clearly a convex function of $\log |z|$. Thus, we have the upper bound (1.3)

$$
\int \log ^{+}|z| d \mu_{J}(z) \leq \int_{1}^{4} \frac{\log t d t}{\pi \sqrt{t(4-t)}} \approx 0.6461318945
$$

The case of equality for $J=[0,4]$ is attained by the polynomial $f(z)=2 T_{d}(z / 2-1)$, where $T_{d}(z)=\cos (d \arccos z)$ is the classical Chebyshev polynomial of the first kind (see Sections 1.6.2 and 6.2 of [14] for details).

Proof of Theorem 1.4 We proceed with a proof similar to the previous one, but use Corollary 6.3 of [1] instead of Theorem 6.2 of [1]. We have that capacity of $J$ is 1 by Theorem 6.5 .1 of [13], and $J$ is connected by our assumption. Corollary 6.3 of [1] is applied to the filled-in Julia set $K$, so that $J=\partial K$, where the equilibrium measure of $K$ is $\mu_{K}=\mu_{J}$, and the capacity of $K$ is 1 . Again, $K$ is connected because $J$ is so. Moreover,
both $J$ and $K$ are symmetric with respect to the origin because $f$ is even or odd. If $f$ is odd, then 0 is a fixed point of $f$, implying that $0 \in K$. If $f$ is even, then 0 is a critical point of $f$; hence, $0 \in K$ because we assume that $J$ is connected (cf. [4, p. 66]). Thus, $0 \in K$ under our assumptions, and we obtain from Corollary 6.3 of [1] that the largest value of the integral in (1.4) is attained for $J=K=[-2,2]$ :

$$
\int \log ^{+}|z| d \mu_{J}(z)=\int \log ^{+}|z| d \mu_{K}(z) \leq 2 \int_{1}^{2} \frac{\log t d t}{\pi \sqrt{1-t^{2}}} \approx 0.3230659472
$$

where we used that the equilibrium measure for $J=K=[-2,2]$ is the Chebyshev distribution [13]

$$
d \mu_{K}(x)=d \mu_{J}(x)=\frac{d x}{\pi \sqrt{4-x^{2}}}, \quad x \in(-2,2)
$$

It is well known that $J=[-2,2]$ for $f(z)=2 T_{d}(z / 2)$, where $T_{d}(z)=\cos (d \arccos z)$ (see Sections 1.6.2 and 6.2 of [14]).

Acknowledgment This paper was initiated at the conference "Equidistribution and Arithmetic Dynamics" held at Oklahoma State University during June 20-24, 2022.

## References

[1] A. Baernstein II, R. S. Laugesen, and I. E. Pritsker, Moment inequalities for equilibrium measures in the plane. Pure Appl. Math. Q. 7(2011), 51-86.
[2] P. Borwein, Computational excursions in analysis and number theory, Springer, New York, 2002.
[3] H. Brolin, Invariant sets under iteration of rational functions. Ark. Mat. 6(1965), 103-144.
[4] L. Carleson and T. W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, 3080, Springer, New York, 1993.
[5] A. Carter, M. Lalín, M. Manes, and A. Miller, Dynamical Mahler measure: a survey and some recent results. Preprint, 2022. arXiv:2204.04101
[6] A. Carter, M. Lalín, M. Manes, A. Miller, and L. Mocz, Two-variable polynomials with dynamical Mahler measure zero. Res. Number Theory 8(2022), Article no. 25.
[7] G. Everest and T. Ward, Heights of polynomials and entropy in algebraic dynamics, Springer, London, 1999.
[8] J. L. Fernández, A note on the Julia set of polynomials. Complex Variables Theory Appl. 12(1989), 83-85.
[9] A. Granville, Problem posed at the conference "Equidistribution and Arithmetic Dynamics," Oklahoma State University, June 20-24, 2022.
[10] R. Laugesen, Extremal problems involving logarithmic and Green capacity. Duke Math. J. 70(1993), 445-480.
[11] J. McKee and C. Smyth, Around the unit circle: Mahler measure, integer matrices and roots of unity, Springer, Cham, 2021.
[12] C. Petsche, L. Szpiro, and T. J. Tucker, A dynamical pairing between two rational maps. Trans. Amer. Math. Soc. 364(2012), 1687-1710.
[13] T. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995.
[14] J. H. Silverman, The arithmetic of dynamical systems, Springer, New York, 2007.
Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA
e-mail: igor@math.okstate.edu


[^0]:    Received by the editors December 28, 2022; revised January 5, 2023; accepted January 6, 2023.
    Published online on Cambridge Core January 12, 2023.
    The author was partially supported by NSA grant H98230-21-1-0008, NSF grant DMS-2152935, and by the Vaughn Foundation endowed Professorship in Number Theory.

    AMS subject classification: 11C08, 37F10, 37P30, 30C10, 30C15.
    Keywords: Mahler measure, polynomial dynamics, Julia set, invariant measure.

