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Abstract. In this paper, we introduce the notion of complex product structures
on hom-Lie algebras and show that a hom-Lie algebra carrying a complex product
structure is a double hom-Lie algebra and it is also endowed with a hom-left symmetric
product. Moreover, we show that a complex product structure on a hom-Lie algebra
determines uniquely a left symmetric product such that the complex and the product
structures are invariant with respect to it. Finally, we introduce the notion of hyper-
para-Kähler hom-Lie algebras and we present an example of hyper-para-Kähler
hom-Lie algebras.
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1. Introduction. A complex product structure on a Lie algebra is a pair {J, K}
of a complex structure and a product structure on the Lie algebra that anticommute.
This notion is an analogue of a hypercomplex structure on a Lie algebra, i.e., a pair of
anticommuting complex structures.

Complex product structures on Lie algebras were introduced by Andrada and
Salamon in [3]. Lie algebras carrying a complex product structure are closely related to
many important fields in mathematics and mathematical physics, such as Rota–Baxter
operators on pre-Lie algebras [11], geometric structures on compact complex surfaces
that are related to the split quaternions [7], paraquaternionic Kähler structures [5] and
nilpotent Lie algebras [2]. Recently, complex product structures have been extensively
investigated in [4, 6, 19].

Hom-Lie algebras were introduced by Hartwig, Larsson, and Silvestrov in order
to describe the structures on certain quantum deformations or q-deformations of the
Witt and the Virasoro algebras [8]. A q-deformation of vector fields is achieved when
replacing a derivation with a σ -derivation dσ , where σ is an algebra endomorphism of
a commutative associative algebra [9]. As this algebraic structure has a close relation
with discrete and deformed vector fields and differential calculus, it plays an important
role among some mathematicians and physicists [8, 10]. For example, some authors
have studied cohomology and homology theories in [1, 18], representation theory in
[15], and a matched pair of hom-Lie algebras [16].

The purpose of this paper is to introduce and study complex product structures
on involutive hom-Lie algebras, which are natural generalizations of complex product
structures on Lie algebras.
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The paper is organized as follows. In Section 2, we review some
definitions including hom-Lie algebra, hom-Lie subalgebra, double hom-Lie algebra,
representation of a hom-Lie algebra, and pseudo-Riemannian hom-algebra. In Section
3, we give notions of Hermitian and para-Hermitian structures. Then, we introduce
complex product structures on an involutive hom-Lie algebra. Also, we provide some
properties of these structures on hom-Lie algebras. In the following, some examples
of such structures are presented. In Section 4, we present the notions of a matched
pair and hom-bicrossproduct of hom-Lie algebras. Also, it is shown that hom-Lie
algebras carrying a complex product structure can be written in terms of double
hom-Lie algebras endowed with a hom-left symmetric product. Moreover, we prove
that under certain conditions a complex product structure on a hom-Lie algebra
determines uniquely a hom-left symmetric product, such that the complex and the
product structures are invariant with respect to it (see Proposition 4.6). In Section 5,
we introduce a notion of a hyper-para-Kähler hom-Lie algebra and present an example
of hyper-para-Kähler hom-Lie algebras.

2. Hom-algebras and pseudo-Riemannian metric on hom-Lie algebra. In this
section, we present the definitions of hom-algebra, hom-left symmetric algebra,
hom-Lie algebra and hom-Lie subalgebra. Then, we introduce a double hom-Lie
algebra and a pseudo-Riemannian hom-algebra.

Let V be a linear space, · : V × V → V be a bilinear map (product) and φV : V →
V be an algebra morphism. Then, (V, ·, φV ) is called a hom-algebra. For any u ∈ V , the
left and the right multiplications by u are maps Lu, Ru : V → V given by Lu(v) = u · v

and Ru(v) = v · u, respectively. The commutator on V is given by [u, v] = u · v − v · u.
If (V, ·, φV ) is a hom-algebra and for any u, v, w ∈ V , we have

φV (u) · (v · w) = (u · v) · φV (w),

then we say (V, ·, φV ) is a hom-associative algebra. A hom-left symmetric algebra is a
hom-algebra (V, ·, φV ) such that

assφV (u, v, w) = assφV (v, u, w),

where

assφV (u, v, w) = (u · v) · φV (w) − φV (u) · (v · w).

Each hom-associative algebra is a hom-left symmetric algebra with assφV (u, v, w) = 0,
but the converse does not hold.

A hom-Lie algebra is a triple (g, [·, ·], φg) consisting of a linear space g, a bilinear
map (bracket) [·, ·] : g × g → g and an algebra morphism φg : g → g satisfying the
anti-symmetric property, i.e., [u, v] = −[v, u] and the hom-Jacobi identity property,
i.e.,

�u,v,w [φg(u), [v,w]] = 0, ∀u, v, w ∈ g. (1)

Also, it is called regular (involutive), if φg is non-degenerate (satisfies φg
2 = 1). A

subspace h ⊂ g is called a hom-Lie subalgebra of g if φg(h) ⊂ h and [u, v] ∈ h, for any
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u, v ∈ h. Also, a subspace h ⊂ g is said to be an ideal of g if φg(h) ⊂ h and for u ∈ h

and v ∈ g we have [u, v] ∈ h.
A homomorphism of hom-Lie algebras (g, [·, ·]g, , φg) and (g′, [·, ·]g′ , φg′ ) is a linear

map ψ : g → g′ such that

ψ ◦ φg = φg′ ◦ ψ, ψ [u, v]g = [ψ(u), ψ(v)]g′ ,

for any u, v ∈ g [16].

DEFINITION 2.1. A triple (g, h, h′) of hom-Lie algebras forms a double hom-Lie
algebra if h, h′ are hom-Lie subalgebras of the hom-Lie algebra (g, [·, ·], φg) and g =
h ⊕ h′ where, φg = φg|h + φg|h′ .

Let (g, [·, ·], φg) be a hom-Lie algebra. A representation of g is a triple (V, A, ρ) in
which V is a vector space, A ∈ gl(V ) and ρ : g → gl(V ) is a linear map satisfying{

ρ(φg(u)) ◦ A = A ◦ ρ(u),
ρ([u, v]g) ◦ A = ρ(φg(u)) ◦ ρ(v) − ρ(φg(v)) ◦ ρ(u),

(2)

for any u, v ∈ g. If we consider V∗ as the dual vector space of V , then we can define a
linear map ρ∗ : g → gl(V∗) by

≺ ρ∗(u)(α), v �= − ≺ α, ρ(u)(v) �,

for any u ∈ g, v ∈ V, α ∈ V∗, where ≺ ρ∗(u)(α), v � is defined by ρ∗(u)(α)(v). A
representation (V, A, ρ) is called admissible if (V∗, A∗, ρ∗) is also a representation of g
in which A∗ is the transpose of the endomorphism A. It is known that the representation
(V, A, ρ) is admissible if and only if [16]{

A ◦ ρ(φg(u)) = ρ(u) ◦ A,

A ◦ ρ([u, v]g) = ρ(u) ◦ ρ(φg(v)) − ρ(v) ◦ ρ(φg(u)).
(3)

EXAMPLE 2.2. Consider a 4-dimensional linear space g with an arbitrary basis
{e1, e2, e3, e4}. We define the bracket [·, ·] and linear map φg on g as follows:

[e1, e3] = ae4, [e2, e4] = −ae3,

and

φg(e1) = −e2, φg(e2) = −e1, φg(e3) = e4, φg(e4) = e3.

The above bracket is not a Lie bracket on g if a = 0, because

[e1, [e2, e3]] + [e2, [e3, e1]] + [e3, [e1, e2]] =[e2,−ae4] = a2e3.

It is easy to see that

[φg(e1), φg(e3)] =ae3 = φg([e1, e3]),

[φg(e2), φg(e4)] = − ae4 = φg([e2, e4]),

i.e., φg is an algebra morphism. Also, we can deduce

[φg(ei), [ej, ek]] + [φg(ej), [ek, ei] + [φg(ek), [ei, ej]] = 0, i, j, k = 1, 2, 3, 4.

Thus, (g, [·, ·], φg) is a hom-Lie algebra.
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A quadruple (g, [·, ·], φg, 〈·, ·〉) is called a pseudo-Riemannian hom-Lie algebra if
(g, [·, ·], φg) is a finite-dimensional hom-Lie algebra and 〈·, ·〉 is a bilinear symmetric
non-degenerate form, such that for any u, v ∈ g, 〈φg(u), φg(v)〉 = 〈u, v〉 or 〈φg(u), v〉 =
〈u, φg(v)〉. In this case, we say that g admits a pseudo-Riemannian metric 〈·, ·〉. It is
known that if φg is an isomorphism, then exists a unique product · (is called hom-Levi-
Civita product) on it, which is given by Koszul’s formula

2〈u · v, φg(w)〉 = 〈[u, v], φg(w)〉 + 〈[w, v], φg(u)〉 + 〈[w, u], φg(v)〉, (4)

which satisfies [u, v] = u · v − v · u and 〈u · v, φg(w)〉 = −〈φg(v), u · w〉 (see [13], for
more details).

A quadruple (g, [·, ·], φg, ω) is called a symplectic hom-Lie algebra if (g, [·, ·], φg)
is a regular hom-Lie algebra and ω is a bilinear skew-symmetric nondegenerate form
(is called a symplectic structure), which is a 2-hom-cocycle, i.e.,

dω = 0, ω(φg(u), φg(v)) = ω(u, v),

where, dω ∈ ∧3g∗ is given by

dω(u, v, w) = ω(φg(u), [v,w]) + ω(φg(v), [w, u]) + ω(φg(w), [u, v]), (5)

for any u, v, w ∈ g.

3. Complex product structures on hom-Lie algebras. In this section, we introduce
complex product structures on hom-Lie algebras. We also present an example of these
structures (see [13, 14] for more details).

An isomorphism K : g → g is called an almost product structure on an involutive
hom-Lie algebra (g, [·, ·], φg) if K2 = Id

g
and φg ◦ K = K ◦ φg. Also, (g, [·, ·], φg, K) is

called an almost product hom-Lie algebra. In this case, we have g = g1 ⊕ g−1, where

g1 := ker(φg ◦ K − Idg), g−1 := ker(φg ◦ K + Idg).

If g1 and g−1 have the same dimension n, then K is called an almost para-complex
structure on (g, [·, ·], φg) (in this case the dimension of g is even). An almost product
(almost para-complex) structure is called a product (para-complex) structure if

[(φg ◦ K)u, (φg ◦ K)v] = φg ◦ K [(φg ◦ K)u, v] + φg ◦ K[u, (φg ◦ K)v]

−[u, v], ∀u, v ∈ g. (6)

A quadruple (g, [·, ·], φg, J) is called an almost complex hom-Lie algebra if
(g, [·, ·], φg) is an involutive hom-Lie algebra of even dimension J : g → g is an
isomorphism such that J2 = −Id

g
and φg ◦ J = J ◦ φg (J is called an almost complex

structure). An almost complex structure is called a complex structure if

[(φg ◦ J)u, (φg ◦ J)v] = φg ◦ J[(φg ◦ J)u, v] + φg ◦ J[u, (φg ◦ J)v] + [u, v], (7)

for all u, v ∈ g.
A Hermitian structure of a hom-Lie algebra (g, [·, ·], φg) is a pair (J, 〈·, ·〉)

consisting of a complex structure and a pseudo-Riemannian metric 〈·, ·〉, such that
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for each u, v ∈ g

〈(φg ◦ J)u, (φg ◦ J)v〉 = 〈u, v〉.

In this case, (g, [·, ·], φg, J, 〈·, ·〉) is called a Hermitian hom-Lie algebra. A Hermitian
hom-Lie algebra has a natural bilinear skew-symmetric nondegenerate form ω, which
is defined by

ω(u, v) = 〈(φg ◦ J)u, v〉.

PROPOSITION 3.1. Let (g, [·, ·], φg, J, 〈·, ·〉) be a Hermitian hom-Lie algebra. If we
consider the product · as a hom-Levi-Civita product associated with metric 〈·, ·〉 on g

given by (4), then

2〈u · φg(Jv) − (φg ◦ J)(u · v), φg(w)〉 = dω(u, v, w) − dω(u, φg(Jv), φg(Jw)).

Proof. By Koszul’s formula and the definition of ω, we get

2〈u · φg(Jv), φg(w)〉 =〈[u, φg(Jv)], φg(w)〉 + 〈[w,φg(Jv)], φg(u)〉 + 〈[w, u], Jv〉
=ω([u, φg(Jv)], Jw) − ω((φg ◦ J)[w,φg(Jv)], φg(u))

− ω([w, u], φg(v)),

and

−2〈(φg ◦ J)(u · v), φg(w)〉 =2〈u · v, (φg ◦ J)φg(w)〉 = 〈[u, v], (φg ◦ J)φg(w)〉
+ 〈[φg(Jw), v], φg(u)〉 + 〈[φg(Jw), u], φg(v)〉

= − ω([u, v], φg(w)) − ω((φg ◦ J)[φg(Jw), v], φg(u))

− ω(Jv, [φg(Jw), u]).

On the other hand, we have

dω(u, φg(Jv), φg(Jw)) = ω(φg(u), [φg(Jv), φg(Jw)]) + ω(Jv, [φg(Jw), u])

+ω(Jw, [u, φg(Jv)]).

From the above equations, (5) and (7), we conclude the assertion. �
DEFINITION 3.2. A para-Hermitian structure of a hom-Lie algebra (g, [·, ·], φg) is a

pair (K, 〈·, ·〉) consisting of a para-complex structure and a pseudo-Riemannian metric
〈·, ·〉 such that for each u, v ∈ g

〈(φg ◦ K)u, (φg ◦ K)v〉 = −〈u, v〉.

In this case, (g, [·, ·], φg, K, 〈·, ·〉) is called a para-Hermitian hom-Lie algebra. Also, it
defines a natural bilinear skew-symmetric nondegenerate form ω given by

ω(u, v) = 〈(φg ◦ K)u, v〉.

Similar to the proof of Proposition 3.1, we can prove the following.
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PROPOSITION 3.3. Let (g, [·, ·], φg, K, 〈·, ·〉) be a para-Hermitian hom-Lie algebra. If
we consider the product · as a hom-Levi-Civita product associated with metric 〈·, ·〉 on g

given by (4), then

2〈u · φg(Kv) − (φg ◦ K)(u · v), φg(w)〉 = dω(u, v, w) + dω(u, φg(Kv), φg(Kw)).

DEFINITION 3.4. A complex product structure on the hom-Lie algebra g is a pair
{J, K} of a complex structure J and a product structure K , such that J ◦ K = −K ◦ J
(note that J ◦ K = −K ◦ J is equivalent to φg ◦ J ◦ K = −φg ◦ K ◦ J, because φ2

g =
Idg).

We consider the vector spacesg1 = ker(φg ◦ K − Idg) andg−1 = ker(φg ◦ K + Idg)
as eigenspaces corresponding to the eigenvalues 1 and −1 of φg ◦ K , respectively.

THEOREM 3.5. Let {J, K} be a complex product structure on the hom-Lie algebra g.
Then,

(i) φg ◦ J and J are isomorphisms between the eigenspaces g1 and g−1,
(ii) φg ◦ K is a para-complex structure on g,

(iii) g1 and g−1 are hom-Lie subalgebras of g,
(iv) (g, g1, g−1) is a double hom-Lie algebra,
(v) J ◦ φg1 = φg−1 ◦ J and J ◦ φg−1 = φg1 ◦ J.

Proof. Let u ∈ g1. Then, the condition J ◦ φg ◦ K = −φg ◦ K ◦ J implies J(u) ∈
g−1. Thus, J(g1) ⊂ g−1. Similarly, we get J(g−1) ⊂ g1. So J2 = −Idg implies J(g1) =
g−1. Also, if we consider J(u) = J(v) for any u, v ∈ g1, then J2 = −Idg results in
u = v. Thus, J is an isomorphism between g1 and g−1. Similarly, the condition φg ◦ J ◦
φg ◦ K = −φg ◦ K ◦ φg ◦ J implies that φg ◦ J is an isomorphism between g1 and g−1.
Therefore, we have (i). From (i), we conclude that dimg1 = dimg−1 and so we have (ii).
We now prove (iii). It is easy to see that (6) implies that g1 and g−1 are Lie subalgebras
of g. Now, we let u ∈ g1. Since (K ◦ φg)(u) = u and K ◦ φg = φg ◦ K , we imply that

(K ◦ φg)(φg(u)) = (φg ◦ K ◦ φg)(u) = φg(u),

which gives φg(u) ∈ g1. Similarly, we obtain φg(u′) ∈ g−1, for any u′ ∈ g−1. Hence, it
is easy to verify that g1 and g−1 are hom-Lie subalgebras. Therefore, we have (iii).
Here, we prove (iv). According to (iii), we can write φg : g1 ⊕ g−1 → g1 ⊕ g−1, as
φg(u + u′) = φg1 (u) + φg−1 (u′) for any u ∈ g1, u′ ∈ g−1. This shows that (g, g1, g−1) is
a double hom-Lie algebra. To prove (v), let u ∈ g1. Then, the conditions Jg1 = g−1,
φg1 ⊂ g1, φg−1 ⊂ g−1 and J ◦ φg = φg ◦ J, conclude J(φg1 (u)) = φg−1 (Ju). Similarly, we
have the second part. �

EXAMPLE 3.6. We consider the hom-Lie algebra (g, [·, ·], φg) introduced in Example
2.2. If isomorphisms J and K are determined as

J(e1) = e4, J(e2) = −e3, J(e3) = e2, J(e4) = −e1,

K(e1) = −e2, K(e2) = −e1, K(e3) = −e4, K(e4) = −e3,

then we have

J2(ei) = −K2(ei) = −φ2
g(ei) = −ei, i = 1, 2, 3, 4.
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Moreover, using the above equations, we get

(J ◦ φg)e1 =e3 = (φg ◦ J)e1, (J ◦ φg)e2 = −e4 = (φg ◦ J)e2,

(J ◦ φg)e3 = − e1 = (φg ◦ J)e3, (J ◦ φg)e4 = e2 = (φg ◦ J)e4,

and

(K ◦ φg)e1 =e1 = (φg ◦ K)e1, (K ◦ φg)e2 = e2 = (φg ◦ K)e2,

(K ◦ φg)e3 = − e3 = (φg ◦ K)e3, (K ◦ φg)e4 = −e4 = (φg ◦ K)e4.

Also, we have

(J ◦ K)e1 =e3 = −(K ◦ J)e1, (J ◦ K)e2 = −e4 = −(K ◦ J)e2,

(J ◦ K)e3 =e1 = −(K ◦ J)e3, (J ◦ K)e4 = −e2 = −(K ◦ J)e4.

Moreover, it follows that (6) and (7) hold. Therefore, {J, K} is a complex product
structure on g = g1 ⊕ g−1, where g1 = {e1, e2} and g−1 = {e3, e4}.

LEMMA 3.7. Let (g, [·, ·], φg) be a hom-Lie algebra with a complex product structure
{J, K}. If we consider g−1 as an ideal in g, then g−1 is abelian. Moreover, g1 carries a
hom-left symmetric product given by

u · v = −(φg1 ◦ J)[u, φg−1 (Jv)], ∀u, v ∈ g1. (8)

Proof. Since g−1 and g1 are hom-Lie subalgebras of g, using (7), we get

[(φg1 ◦ J)u′, (φg1 ◦ J)v′] − (φg1 ◦ J)[(φg1 ◦ J)u′, v′] − (φg1 ◦ J)[u′, (φg1 ◦ J)v′] = [u′, v′],

for all u′, v′ ∈ g−1. Since g−1 is an ideal in g and φg1 ◦ J ⊂ g1, we conclude that the
left-hand side of the above equation is in g1 and the right-hand side of it is also in g−1.
Therefore, g−1 is an abelian ideal. Now, if we consider u, v, w ∈ g1, then using (7) and
(8) we obtain

u · v − v · u = − (φg1 ◦ J)[u, φg−1 (Jv)] − (φg1 ◦ J)[φg−1 (Ju), v]

=[u, v] − [(φg−1 ◦ J)u, (φg−1 ◦ J)v].

Since g−1 is an abelian ideal, then from the above equation we obtain

u · v − v · u = [u, v]. (9)

Also, using the hom-Jacobi identity and (8), we get

φg1 (u) · (v · w) − φg1 (v) · (u · w)

= −φg1 (u) · (φg1 ◦ J)[v, φg−1 (Jw)] + φg1 (v) · (φg1 ◦ J)[u, φg−1 (Jw)]

= −(φg1 ◦ J)[φg1 (u), [v, φg−1 (Jw)]] + (φg1 ◦ J)[φg1 (v), [u, φg−1 (Jw)]]

= (φg1 ◦ J)[(φg−1 ◦ J)φg1 (w), [u, v]] = [u, v] · φg1 (w).
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Moreover, (8) and part (v) of Theorem 3.5 yield

φg1 (u) · φg1 (v) = − (φg1 ◦ J)[φg1 (u), (φg−1 ◦ J)φg1 (v)] = −(φg1 ◦ J)[φg1 (u), φ2
g−1 (Jv)]

= − (φg1 ◦ J ◦ φg−1 )[u, φg−1 (Jv)]

= − φg1 ((φg1 ◦ J)[u, φg−1 (Jv)]) = φg1 (u · v).

Consequently, (9) and the last equation imply [φg1 (u), φg1 (v)] = φg1 [u, v]. Therefore,
the product · is a hom-left symmetric product on g1. �

EXAMPLE 3.8. We consider a 4-dimensional hom-Lie algebra (g, [·, ·], φg) with an
arbitrary basis {e1, e2, e3, e4}, where

[e1, e2] = ae1 + ae2, [e1, e3] = ae3, [e2, e3] = ae4, [e1, e4] = −ae3, [e2, e4] = −ae4,

and

φg(e1) = −e2, φg(e2) = −e1, φg(e3) = −e4, φg(e4) = −e3.

If a = 0, then the above bracket is a Lie bracket on g. Let isomorphisms J and K be
given by

J(e1) = −e3, J(e2) = −e4, J(e3) = e1, J(e4) = e2,

K(e1) = −e2, K(e2) = −e1, K(e3) = e4, K(e4) = e3.

Then, we have

J2(ei) = −K2(ei) = −φ2
g(ei) = −ei, i = 1, 2, 3, 4.

Also, using the above equations, we infer

(J ◦ φg)e1 =e4 = (φg ◦ J)e1, (J ◦ φg)e2 = e3 = (φg ◦ J)e2,

(J ◦ φg)e3 = − e2 = (φg ◦ J)e3, (J ◦ φg)e4 = −e1 = (φg ◦ J)e4,

and

(K ◦ φg)e1 =e1 = (φg ◦ K)e1, (K ◦ φg)e2 = e2 = (φg ◦ K)e2,

(K ◦ φg)e3 = − e3 = (φg ◦ K)e3, (K ◦ φg)e4 = −e4 = (φg ◦ K)e4.

It is easy to see that (6) and (7) hold, i.e., J and K are complex and product structures
on (g, [·, ·], φg), respectively. Also, we obtain

(J ◦ K)e1 =e4 = −(K ◦ J)e1, (J ◦ K)e2 = e3 = −(K ◦ J)e2,

(J ◦ K)e3 =e2 = −(K ◦ J)e3, (J ◦ K)e4 = e1 = −(K ◦ J)e4.

Therefore, the pair {J, K} is a complex product structure on g. Moreover, we can write
g as g = g1 ⊕ g−1, where g1 = {e1, e2} and g−1 = {e3, e4}. Since g−1 is an abelian ideal
in g, g1 carries a hom-left symmetric product. If we denote this product with ·, then
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using (8) we have

e1 · e2 = − (φg1 ◦ J)[e1, φg−1 (Je2)] = −(φg1 ◦ J)[e1, e3] = −a(φg1 ◦ J)e3 = ae2,

e2 · e1 = − (φg1 ◦ J)[e2, φg−1 (Je1)] = −(φg1 ◦ J)[e2, e4] = a(φg1 ◦ J)e4 = −ae1,

e1 · e1 = − ae2, e2 · e2 = ae1.

4. Matched pairs. In this section, we present the notions of a matched pair
and hom-bicrossproduct of hom-Lie algebras. Also, it is shown that hom-Lie algebras
carrying a complex product structure in terms of double hom-Lie algebras are endowed
with a hom-left symmetric product.

DEFINITION 4.1 ([16]). A pair of hom-Lie algebras (g, [·, ·]g, φg) and (g′, [·, ·]g′ , φg′ )
with representations ρ : g → gl(g′) and ρ ′ : g′ → gl(g) with respect to φg′ and φg,
respectively, is called a matched pair of hom-Lie algebras if

ρ ′(φg′(u′))[u, v]g = [ρ ′(u′)(u), φg(v)]g + [φg(u), ρ ′(u′)(v)]g + ρ ′(ρ(v)(u′))(φg(u))

− ρ ′(ρ(u)(u′))(φg(v)),

ρ(φg(u))[u′, v′]g′ = [ρ(u)(u′), φg′ (v′)]g′ + [φg′(u′), ρ(u)(v′)]g′ + ρ(ρ ′(v′)(u))(φg′(u′))
− ρ(ρ ′(u′)(u))(φg′(v′)),

for any u, v ∈ g, u′, v′ ∈ g′. We denote a matched pair of hom-Lie algebras g and g′ by
(g, g′, ρ, ρ ′).

Given a matched pair (g, g′, ρ, ρ ′) of hom-Lie algebras (g, [·, ·]g, φg) and
(g′, [·, ·]g′ , φg′ ), we can construct a new hom-Lie algebra g ��

ρ

ρ ′ g
′ = (g ⊕ g′,�, [·, ·]),

where

�(u, u′) = (φg(u), φg′ (u′)),
[(u, u′), (v, v′)] = ([u, v]g − ρ ′(v′)(u) + ρ ′(u′)(v), [u′, v′]g′ − ρ(v)(u′) + ρ(u)(v′)).

We will call g ��
ρ

ρ ′ g
′ the hom-bicrossproduct of g and g′ (see [16], for more details).

Considering g ≡ g ⊕ {0} and g′ ≡ {0} ⊕ g′, we observe that (g ⊕ g′, g, g′) is a double
hom-Lie algebra.

Conversely, if (g ⊕ g′, g, g′) is a double hom-Lie algebra, then (g, g′, ρ, ρ ′) forms a
matched pair of hom-Lie algebras g′ and g such that the representations ρ : g → gl(g′)
and ρ ′ : g′ → gl(g) are given by

[u, u′] = ρ(u)u′ − ρ ′(u′)u, ∀u ∈ g, u′ ∈ g′. (10)

From the above description, we can deduce the following.

COROLLARY 4.2. Let (g, φg, [·, ·]) be a hom-Lie algebra with a complex product
structure {J, K}. Then, there exist representations ρ : g1 → gl(g−1) and ρ ′ : g−1 → gl(g1)
with respect to φg−1 and φg1 , respectively, such that (g1, g−1, ρ, ρ ′) forms a matched pair
of hom-Lie algebras.

PROPOSITION 4.3. Let (g, φg, [·, ·]) be a hom-Lie algebra with a complex
product structure {J, K}. Then, there exist representations ρ∗ : g1 → gl(g1) and
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ρ∗′ : g−1 → gl(g−1) with respect to φg1 and φg−1 , respectively, such that

ρ∗(u) := −φg1 ◦ J ◦ ρ(u) ◦ φg−1 ◦ J, ρ∗′(u′) := −φg−1 ◦ J ◦ ρ ′(u′) ◦ φg1 ◦ J. (11)

Also, we have

[u, u′] = −φg−1 ◦ J ◦ ρ∗(u) ◦ φg1 ◦ J(u′) + φg1 ◦ J ◦ ρ∗′(u′) ◦ φg−1 ◦ J(u), (12)

for any u ∈ g1 and u′ ∈ g−1.

Proof. Using Corollary 4.2 and isomorphisms φg−1 ◦ J : g1 → g−1 and φg1 ◦ J :
g−1 → g1, we can consider ρ and ρ ′ as (11). Now, we show that ρ∗ is a representation
with respect to φg1 . Using (11), we have

ρ∗(φg1 (u)) ◦ φg1 = −φg1 ◦ J ◦ ρ(φg1 (u)) ◦ φg−1 ◦ J ◦ φg1 .

Since ρ is a representation with respect to φg−1 and φg1 ◦ J = J ◦ φg−1 , the above
equation implies

ρ∗(φg1 (u)) ◦ φg1 = − φg1 ◦ J ◦ φg−1 ◦ ρ(u) ◦ J ◦ φg1

= − φg1 ◦ φg1 ◦ J ◦ ρ(u) ◦ φg−1 ◦ J = φg1 ◦ ρ∗(u).

Also, we get

ρ∗([u, v]g1 ) ◦ φg1 = − φg1 ◦ J ◦ ρ([u, v]g1 ) ◦ φg−1 ◦ J ◦ φg1

= − φg1 ◦ J ◦ ρ(φg1 (u)) ◦ ρ(v) ◦ J ◦ φg1

+ φg1 ◦ J ◦ ρ(φg1 (v)) ◦ ρ(u) ◦ J ◦ φg1 .

Applying φg−1 ◦ J ◦ φg1 ◦ J = −Idg in the last equation, we obtain

ρ∗([u, v]g1 ) ◦ φg1 = φg1 ◦ J ◦ ρ(φg1 (u)) ◦ φg−1 ◦ J ◦ φg1 ◦ J ◦ ρ(v) ◦ φg−1 ◦ J

− φg1 ◦ J ◦ ρ(φg1 (v)) ◦ φg−1 ◦ J ◦ φg1 ◦ J ◦ ρ(u) ◦ φg−1 ◦ J

= ρ∗(φg1 (u)) ◦ ρ∗(v) − ρ∗(φg1 (v)) ◦ ρ∗(u).

Similarly, we can see that ρ∗′ is a representation with respect to φg−1 . Equations (10)
and (11) imply (12). �

Applying (12), we can write ρ∗ and ρ∗′ as follows:

ρ∗(u)v = −π1(φg ◦ J[u, φg−1 (Jv)]), ρ∗′(u′)v′ = −π−1(φg ◦ J[u′, φg1 (Jv′)]), (13)

for any u, v ∈ g1, u′, v′ ∈ g−1 where π1 : g → g1 and π−1 : g → g−1 are the projections.

THEOREM 4.4. Let {J, K} be a complex product structure on a hom-Lie algebra
(g, φg, [·, ·]). Then, g1 and g−1 carry hom-left symmetric algebra structures.

Proof. We consider · : g1 × g1 → g1 as a bilinear product on g1 given by u · v :=
ρ∗(u)v, where ρ∗ is determined in Proposition 4.3. Since ρ∗ is a representation with
respect to φg1 , we obtain

φg1 (u · v) = φg1 (ρ∗(u)v) = ρ∗(φg1 (u))φg1 (v) = φg1 (u) · φg1 (v),
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and

φg1 (u) · (v · w) − φg1 (v) · (u · w) = ρ∗(φg1 (u))ρ∗(v)w − ρ∗(φg1 (v))ρ∗(u)w

= ρ∗([u, v]g1 )(φg1 (w)) = [u, v] · φg1 (w).

Also, (7) and (13) imply

u · v − v · u =ρ∗(u)v − ρ∗(v)u = −π1(φg ◦ J([u, φg−1 (Jv)] + [φg−1 (Ju), v])
)

=π1([u, v] − [φg−1 (Ju), φg−1 (Jv)]) = [u, v].

The two last equations imply

φg1 (u) · (v · w) − φg1 (v) · (u · w) = (u · v) · φg1 (w) − (v · u) · φg1 (w).

Therefore, g1 carries a hom-left symmetric algebra structure. We define a bilinear
product · : g−1 × g−1 → g−1 on g−1 by u′ · v′ := ρ∗′(u′)v′. Similarly, it is shown that ·
is a hom-left symmetric product on g−1. �

Let (g, φg, [·, ·]) be a hom-Lie algebra with a complex product structure {J, K}. We
extend the hom-left symmetric products of g1 and g−1 to g by

(u + u′) · (v + v′) = u · v + ρ(u)v′ + ρ ′(u′)v + u′ · v′. (14)

We consider two bilinear maps 
 : g1 × g−1 → End(g1) and 
∗ : g−1 × g1 →
End(g−1) defined by


(u, u′)w =ρ ′(φg−1 (u′))(u · w) − φg1 (u) · ρ ′(v′)w
− ρ ′(v′)u · φg1 (w) + ρ ′(ρ(u)u′)(φg1 (w)),


∗(u′, u)w′ =ρ(φg1 (u))(u′ · w′) − φg−1 (u′) · ρ(v)w′

− ρ(v)u′ · φg−1 (w′) + ρ(ρ ′(u′)u)(φg−1 (w′)),

for any u, w ∈ g1, u′, w′ ∈ g−1.

PROPOSITION 4.5. Let (g, φg, [·, ·]) be a hom-Lie algebra with a complex product
structure {J, K}. Then, the product · on g given by (14) is a hom-left symmetric product
if and only if 
(u, u′)w = 
∗(u′, u)w′ = 0, for any u, w ∈ g1, u′, w′ ∈ g−1.

Proof. Using (14), we get

φg(u + u′) · φg(v + v′) = (φg1 (u) + φg−1 (u′)) · (φg1 (v) + φg−1 (v′))
= φg1 (u) · φg1 (v) + ρ(φg1 (u))(φg−1 (v′)) + ρ ′(φg−1 (u′))(φg1 (v)) + φg−1 (u′) · φg−1 (v′)
= φg1 (u · v) + φg−1 (ρ(u)v′) + φg1 (ρ ′(u′)v) + φg−1 (u′ · v′) = φg((u + u′) · (v + v′)).

https://doi.org/10.1017/S001708951800006X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951800006X


80 L. NOURMOHAMMADIFAR AND E. PEYGHAN

Also, a direct computation yields

((u + u′) · (v + v′)) · φg(w + w′) − φg(u + u′) · ((v + v′) · (w + w′))
− ((v + v′) · (u + u′)) · φg(w + w′)
+ φg(v + v′) · ((u + u′) · (w + w′)) = 
(u, v′)w − 
(v, u′)w
+ 
∗(u′, v)w′ − 
∗(v′, u)w′ + ρ([u, v]g1 )(φg−1 (w′))
− ρ(φg1 (u))(ρ(v)w′) + ρ(φg1 (v))(ρ(u)w′)
+ ρ ′([u′, v′]g−1 )(φg1 (w)) − ρ ′(φg−1 (u′))(ρ ′(v′)w) + ρ ′(φg−1 (v′))(ρ ′(u′)w).

Since ρ and ρ ′ are representations with respect to φg−1 and φg1 , respectively, the above
equation reduces to

((u + u′) · (v + v′)) · φg(w + w′) − φg(u + u′) · ((v + v′) · (w + w′))
− ((v + v′) · (u + u′)) · φg(w + w′)
+ φg(v + v′) · ((u + u′) · (w + w′)) = 
(u, v′)w − 
(v, u′)w
+ 
∗(u′, v)w′ − 
∗(v′, u)w′.

Therefore, we conclude the assertion. �
Let (g, φg, [·, ·]) be a hom-Lie algebra. We consider

T(X, Y ) := LX Y − LY X − [X, Y ],

and call it the tensor torsion of g. Also, we define the tensor curvature K of g as follows:

K(X, Y ) := Lφg(X) ◦ LY − Lφg(Y ) ◦ LX − L[X,Y ] ◦ φg, (15)

for any X, Y ∈ g.
Under the assumptions of Proposition 4.5, on a hom-Lie algebra (g, φg, [·, ·]) with

a complex product structure {J, K}, we set

LCP
X Y := X · Y, ∀X, Y ∈ g,

where · is the hom-left symmetric product on g that satisfies (14). Using (10), (14) and
Proposition 4.5, we can write

[X, Y ] = LCP
X Y − LCP

Y X,

LCP
φg(X) ◦ LCP

Y − LCP
φg(Y ) ◦ LCP

X = LCP
[X,Y ]g ◦ φg,

which are equivalent to the vanishing of the torsion and the curvature tensors of (g, ·).
PROPOSITION 4.6. Let (g, φg, [·, ·]) be a hom-Lie algebra with a complex product

structure {J, K}. Under the assumptions of Proposition 4.5, J and K are invariant with
respect to hom-left symmetric product · given by (14), i.e.,

LCP
X ◦ φg ◦ J =φg ◦ J ◦ LCP

X ,

LCP
X ◦ φg ◦ K =φg ◦ K ◦ LCP

X ,
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for any X ∈ g. Moreover, the hom-left symmetric product · satisfying in two above
equations is unique.

Proof. Let u, v ∈ g1, u′, v′ ∈ g−1. Then, (11) and (14) imply

LCP
(u+u′)((φg ◦ J)(v + v′)) = (u + u′) · (φg−1 (Jv) + φg1 (Jv′))

= u · φg1 (Jv′) + ρ(u)(φg−1 (Jv)) + ρ ′(u′)φg1 (Jv′) + u′ · φg−1 (Jv)

= φg1 (Jρ(u)v′) + φg−1 (J(u · v)) + φg1 (J(u′ · v′)) + φg−1 (Jρ ′(u′)v)

= (φg ◦ J)((u + u′) · (v + v′)) = (φg ◦ J)LCP
(u+u′)(v + v′).

Also, we conclude

LCP
(u+u′)((φg ◦ K)(v + v′)) = (u + u′) · (φg(Kv) + φg(Kv′))

= (u + u′) · (v − v′) = u · v − ρ(u)v′ + ρ ′(u′)v − u′ · v′

= (φg ◦ K)((u + u′) · (v + v′)) = (φg ◦ K)LCP
(u+u′)(v + v′).

Finally, we show the uniqueness of hom-left symmetric product. Let � and • be two
such products and A is (1, 2)-tensor defined by AX := L�

X − L•
X . Since L�

X ◦ φg ◦ K =
φg ◦ K ◦ L�

X and L•
X ◦ φg ◦ K = φg ◦ K ◦ L•

X , we obtain

AX ◦ φg ◦ K =L�
X ◦ φg ◦ K − L•

X ◦ φg ◦ K = φg ◦ K ◦ L�
X − φg ◦ K ◦ L•

X

=φg ◦ K ◦ (L�
X − L•

X ) = φg ◦ K ◦ AX .

Similarly, we have AX ◦ φg ◦ J = φg ◦ J ◦ AX . Moreover, A is symmetric, i.e.,

AX Y = L�
X Y − L•

X Y = L�
Y X + [X, Y ]g − L•

Y X + [Y, X ]g = AY X.

From the above equations, we deduce

Aφg(JX)φg(KY ) =(φg ◦ K)Aφg(JX)Y = (φg ◦ K)AYφg(JX) = (φg ◦ K)(φg ◦ J)AY X

= − (φg ◦ J)(φg ◦ K)AY X = −(φg ◦ J)(φg ◦ K)AX Y

= − Aφg(JX)φg(KY ),

which gives A = 0. �

5. Hyper-para-Kähler hom-Lie algebra. In this section, we introduce hyper-para-
Kähler structures on hom-Lie algebras. Also, we present an example of these structures.

DEFINITION 5.1. An almost complex structure J on a symplectic hom-Lie algebra
(g, [·, ·], φg,�) is called �-tame if

�(X, φg(JX)) > 0, ∀X = 0.

Also, J is called �-compatible if it is �-tame and

�(φg(JX), φg(JY )) = �(X, Y ), ∀X, Y ∈ g.
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Using the condition �-compatible of the structure J, we can define a Riemannian
metric 〈·, ·〉 on g as follows:

〈X, Y〉 := �(X, φg(JY )).

From the above equations, we conclude 〈φg(JX), φg(JY )〉 := 〈X, Y〉.
DEFINITION 5.2. Let (g, [·, ·], φg,�) be a symplectic hom-Lie algebra. An almost

para-complex structure K on g is called �-compatible if

�(φg(KX), φg(KY )) = −�(X, Y ), ∀X, Y ∈ g.

A pseudo-Riemannian metric associated with structure K is determined by
� X, Y �:= �(φg(KX), Y ) that satisfies

� φg(KX), φg(KY ) �= − � X, Y � .

From Propositions 3.1 and 3.3, we deduce the following.

COROLLARY 5.3. Let J and K be complex and para-complex structures on a
symplectic hom-Lie algebra (g,�), respectively. If J and K are �-compatible structures,
then we have

X ·J φg(JY ) = (φg ◦ J)(X ·J Y ),

X ·K φg(KY ) = (φg ◦ K)(X ·K Y ),

where ·J and ·K denote the hom-Levi-Civita product associated with 〈·, ·〉 and � ·, · �,
respectively.

DEFINITION 5.4. A hyper-para-Kähler hom-Lie algebra is a symplectic hom-Lie
algebra (g, [·, ·], φg,�) endowed with a complex product structure {J, K}, such that
J, K are �-compatible.

Using 〈·, ·〉 and �,�, we have

〈φg(KX), Y〉 = �(φg(KX), φg(JY )) =� X, φg(JY ) � .

By Theorem 3.5 and taking into account the above definition, we can easily conclude
the following:

(i) g1 and g−1 are subalgebras isotropic with respect to �,�, and Lagrangian
with respect to �,

(ii) (g, [·, ·], φg, 〈·, ·〉, J) is a Hermitian hom-Lie algebra,
(iii) (g, [·, ·], φg,�,�, K) is a para-Hermitian hom-Lie algebra,
(v) for any X ∈ g, X ·K g1 ⊂ g1 and X ·K g−1 ⊂ g−1 (see [13,14] for more details).

EXAMPLE 5.5. We consider the hom-Lie algebra (g, [·, ·], φg) introduced in Example
2.2 endowed with complex product structure given in Example 3.6. We now consider
the bilinear skew-symmetric nondegenerate form � as follows:

⎡
⎢⎢⎣

0 0 A 0
0 0 0 −A

−A 0 0 0
0 A 0 0

⎤
⎥⎥⎦ , A = 0. (16)
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Then, we get

�(φg(e1), φg(e3)) =A = �(e1, e3), �(φg(e2), φg(e4)) = −A = �(e2, e4),

�(φg(e1), φg(e2)) =0 = �(e1, e2), �(φg(e1), φg(e4)) = 0 = �(e1, e4),

�(φg(e2), φg(e3)) =0 = �(e2, e3), �(φg(e3), φg(e4)) = 0 = �(e3, e4),

and

�([ei, ej], φg(ek)) + �([ej, ek], φg(ei)) + �([ek, ei], φg(ej)) = 0, i, j, k = 1, 2, 3, 4.

The above relations show that � is 2-hom-cocycle, and so (g, [·, ·], φg,�) is a symplectic
hom-Lie algebra. Using the above equations, we obtain

�(e1, φg(Je1) = �(e2, φg(Je2) = �(e3, φg(Je3) = �(e4, φg(Je4) = A,

i.e., the complex structure J is a �-tame. Also, we get

�(φg(Jei), φg(Jej)) =�(ei, ej), i, j = 1, 2, 3, 4,

�(φg(Kei), φg(Kej)) = − �(ei, ej), i, j = 1, 2, 3, 4,

�(φg(Je1), φg(Je3)) =A = �(e1, e3),

�(φg(Je2), φg(Je4)) = − A = �(e2, e4),

and

�(φg(Ke1), φg(Ke3)) = − A = −�(e1, e3),

�(φg(Ke2), φg(Ke4)) =A = −�(e2, e4),

i.e., the structures J and K are �-compatible. Therefore, (g, [·, ·], φg,�) is a hyper-
para-Kähler hom-Lie algebra.
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