COMPLEX PRODUCT STRUCTURES ON HOM-LIE ALGEBRAS

L. NOURMOHAMMADIFAR and E. PEYGHAN
Department of Mathematics, Faculty of Science, Arak University,
Arak 38156-8-8349, Iran
e-mails: l-nourmohammadifar@phd.araku.ac.ir, e-peyghan@araku.ac.ir

(Received 7 August 2017; revised 20 December 2017; accepted 1 February 2018; first published online 12 March 2018)

Abstract

In this paper, we introduce the notion of complex product structures on hom-Lie algebras and show that a hom-Lie algebra carrying a complex product structure is a double hom-Lie algebra and it is also endowed with a hom-left symmetric product. Moreover, we show that a complex product structure on a hom-Lie algebra determines uniquely a left symmetric product such that the complex and the product structures are invariant with respect to it. Finally, we introduce the notion of hyper-para-Kähler hom-Lie algebras and we present an example of hyper-para-Kähler hom-Lie algebras.

2010 Mathematics Subject Classification. 53C15, 53C25, 53D05.

1. Introduction. A complex product structure on a Lie algebra is a pair $\{J, K\}$ of a complex structure and a product structure on the Lie algebra that anticommute. This notion is an analogue of a hypercomplex structure on a Lie algebra, i.e., a pair of anticommuting complex structures.

Complex product structures on Lie algebras were introduced by Andrada and Salamon in [3]. Lie algebras carrying a complex product structure are closely related to many important fields in mathematics and mathematical physics, such as Rota-Baxter operators on pre-Lie algebras [11], geometric structures on compact complex surfaces that are related to the split quaternions [7], paraquaternionic Kähler structures [5] and nilpotent Lie algebras [2]. Recently, complex product structures have been extensively investigated in $[\mathbf{4}, \mathbf{6}, 19]$.

Hom-Lie algebras were introduced by Hartwig, Larsson, and Silvestrov in order to describe the structures on certain quantum deformations or q-deformations of the Witt and the Virasoro algebras [8]. A q-deformation of vector fields is achieved when replacing a derivation with a σ-derivation d_{σ}, where σ is an algebra endomorphism of a commutative associative algebra [9]. As this algebraic structure has a close relation with discrete and deformed vector fields and differential calculus, it plays an important role among some mathematicians and physicists $[\mathbf{8 , 1 0}]$. For example, some authors have studied cohomology and homology theories in $[1,18]$, representation theory in [15], and a matched pair of hom-Lie algebras [16].

The purpose of this paper is to introduce and study complex product structures on involutive hom-Lie algebras, which are natural generalizations of complex product structures on Lie algebras.

The paper is organized as follows. In Section 2, we review some definitions including hom-Lie algebra, hom-Lie subalgebra, double hom-Lie algebra, representation of a hom-Lie algebra, and pseudo-Riemannian hom-algebra. In Section 3, we give notions of Hermitian and para-Hermitian structures. Then, we introduce complex product structures on an involutive hom-Lie algebra. Also, we provide some properties of these structures on hom-Lie algebras. In the following, some examples of such structures are presented. In Section 4, we present the notions of a matched pair and hom-bicrossproduct of hom-Lie algebras. Also, it is shown that hom-Lie algebras carrying a complex product structure can be written in terms of double hom-Lie algebras endowed with a hom-left symmetric product. Moreover, we prove that under certain conditions a complex product structure on a hom-Lie algebra determines uniquely a hom-left symmetric product, such that the complex and the product structures are invariant with respect to it (see Proposition 4.6). In Section 5, we introduce a notion of a hyper-para-Kähler hom-Lie algebra and present an example of hyper-para-Kähler hom-Lie algebras.
2. Hom-algebras and pseudo-Riemannian metric on hom-Lie algebra. In this section, we present the definitions of hom-algebra, hom-left symmetric algebra, hom-Lie algebra and hom-Lie subalgebra. Then, we introduce a double hom-Lie algebra and a pseudo-Riemannian hom-algebra.

Let V be a linear space, $\cdot: V \times V \rightarrow V$ be a bilinear map (product) and $\phi_{V}: V \rightarrow$ V be an algebra morphism. Then, $\left(V, \cdot, \phi_{V}\right)$ is called a hom-algebra. For any $u \in V$, the left and the right multiplications by u are maps $L_{u}, R_{u}: V \rightarrow V$ given by $L_{u}(v)=u \cdot v$ and $R_{u}(v)=v \cdot u$, respectively. The commutator on V is given by $[u, v]=u \cdot v-v \cdot u$. If $\left(V, \cdot, \phi_{V}\right)$ is a hom-algebra and for any $u, v, w \in V$, we have

$$
\phi_{V}(u) \cdot(v \cdot w)=(u \cdot v) \cdot \phi_{V}(w)
$$

then we say $\left(V, \cdot, \phi_{V}\right)$ is a hom-associative algebra. A hom-left symmetric algebra is a hom-algebra $\left(V, \cdot, \phi_{V}\right)$ such that

$$
\operatorname{ass}_{\phi_{V}}(u, v, w)=\operatorname{ass}_{\phi_{V}}(v, u, w),
$$

where

$$
\operatorname{ass}_{\phi_{V}}(u, v, w)=(u \cdot v) \cdot \phi_{V}(w)-\phi_{V}(u) \cdot(v \cdot w) .
$$

Each hom-associative algebra is a hom-left symmetric algebra with $\operatorname{ass}_{\phi_{V}}(u, v, w)=0$, but the converse does not hold.

A hom-Lie algebra is a triple ($\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}$) consisting of a linear space \mathfrak{g}, a bilinear map (bracket) $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ and an algebra morphism $\phi_{\mathfrak{g}}: \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying the anti-symmetric property, i.e., $[u, v]=-[v, u]$ and the hom-Jacobi identity property, i.e.,

$$
\begin{equation*}
\circlearrowleft_{u, v, w}\left[\phi_{\mathfrak{g}}(u),[v, w]\right]=0, \quad \forall u, v, w \in \mathfrak{g} . \tag{1}
\end{equation*}
$$

Also, it is called regular (involutive), if $\phi_{\mathfrak{g}}$ is non-degenerate (satisfies $\phi_{\mathfrak{g}}{ }^{2}=1$). A subspace $\mathfrak{h} \subset \mathfrak{g}$ is called a hom-Lie subalgebra of \mathfrak{g} if $\phi_{\mathfrak{g}}(\mathfrak{h}) \subset \mathfrak{h}$ and $[u, v] \in \mathfrak{h}$, for any
$u, v \in \mathfrak{h}$. Also, a subspace $\mathfrak{h} \subset \mathfrak{g}$ is said to be an ideal of \mathfrak{g} if $\phi_{\mathfrak{g}}(\mathfrak{h}) \subset \mathfrak{h}$ and for $u \in \mathfrak{h}$ and $v \in \mathfrak{g}$ we have $[u, v] \in \mathfrak{h}$.

A homomorphism of hom-Lie algebras $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \phi_{\mathfrak{g}}\right)$ and $\left(\mathfrak{g}^{\prime},[\cdot, \cdot]_{\mathfrak{g}^{\prime}}, \phi_{\mathfrak{g}^{\prime}}\right)$ is a linear map $\psi: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ such that

$$
\psi \circ \phi_{\mathfrak{g}}=\phi_{\mathfrak{g}^{\prime}} \circ \psi, \quad \psi[u, v]_{\mathfrak{g}}=[\psi(u), \psi(v)]_{\mathfrak{g}^{\prime}},
$$

for any $u, v \in \mathfrak{g}[\mathbf{1 6]}$.
Definition 2.1. A triple $\left(\mathfrak{g}, \mathfrak{h}, \mathfrak{h}^{\prime}\right)$ of hom-Lie algebras forms a double hom-Lie algebra if $\mathfrak{h}, \mathfrak{h}^{\prime}$ are hom-Lie subalgebras of the hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}\right)$ and $\mathfrak{g}=$ $\mathfrak{h} \oplus \mathfrak{h}^{\prime}$ where, $\phi_{\mathfrak{g}}=\phi_{\mathfrak{g} \mid \mathfrak{h}}+\phi_{\mathfrak{g} \mid \mathfrak{h}^{\prime}}$.

Let $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}\right)$ be a hom-Lie algebra. A representation of \mathfrak{g} is a triple (V, A, ρ) in which V is a vector space, $A \in g l(V)$ and $\rho: \mathfrak{g} \rightarrow g l(V)$ is a linear map satisfying

$$
\left\{\begin{array}{l}
\rho\left(\phi_{\mathfrak{g}}(u)\right) \circ A=A \circ \rho(u), \tag{2}\\
\rho\left([u, v]_{\mathfrak{g}}\right) \circ A=\rho\left(\phi_{\mathfrak{g}}(u)\right) \circ \rho(v)-\rho\left(\phi_{\mathfrak{g}}(v)\right) \circ \rho(u),
\end{array}\right.
$$

for any $u, v \in \mathfrak{g}$. If we consider V^{*} as the dual vector space of V, then we can define a linear map $\rho^{*}: \mathfrak{g} \rightarrow g l\left(V^{*}\right)$ by

$$
\prec \rho^{*}(u)(\alpha), v \succ=-\prec \alpha, \rho(u)(v) \succ,
$$

for any $u \in \mathfrak{g}, v \in V, \alpha \in V^{*}$, where $\left\langle\rho^{*}(u)(\alpha), v \succ\right.$ is defined by $\rho^{*}(u)(\alpha)(v)$. A representation (V, A, ρ) is called admissible if $\left(V^{*}, A^{*}, \rho^{*}\right)$ is also a representation of \mathfrak{g} in which A^{*} is the transpose of the endomorphism A. It is known that the representation (V, A, ρ) is admissible if and only if [16]

$$
\left\{\begin{array}{l}
A \circ \rho\left(\phi_{\mathfrak{g}}(u)\right)=\rho(u) \circ A, \tag{3}\\
A \circ \rho\left([u, v]_{\mathfrak{g}}\right)=\rho(u) \circ \rho\left(\phi_{\mathfrak{g}}(v)\right)-\rho(v) \circ \rho\left(\phi_{\mathfrak{g}}(u)\right) .
\end{array}\right.
$$

Example 2.2. Consider a 4-dimensional linear space \mathfrak{g} with an arbitrary basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. We define the bracket [•, •] and linear map $\phi_{\mathfrak{g}}$ on \mathfrak{g} as follows:

$$
\left[e_{1}, e_{3}\right]=a e_{4}, \quad\left[e_{2}, e_{4}\right]=-a e_{3},
$$

and

$$
\phi_{\mathfrak{g}}\left(e_{1}\right)=-e_{2}, \quad \phi_{\mathfrak{g}}\left(e_{2}\right)=-e_{1}, \quad \phi_{\mathfrak{g}}\left(e_{3}\right)=e_{4}, \quad \phi_{\mathfrak{g}}\left(e_{4}\right)=e_{3} .
$$

The above bracket is not a Lie bracket on \mathfrak{g} if $a \neq 0$, because

$$
\left[e_{1},\left[e_{2}, e_{3}\right]\right]+\left[e_{2},\left[e_{3}, e_{1}\right]\right]+\left[e_{3},\left[e_{1}, e_{2}\right]\right]=\left[e_{2},-a e_{4}\right]=a^{2} e_{3}
$$

It is easy to see that

$$
\begin{aligned}
& {\left[\phi_{\mathfrak{g}}\left(e_{1}\right), \phi_{\mathfrak{g}}\left(e_{3}\right)\right]=a e_{3}=\phi_{\mathfrak{g}}\left(\left[e_{1}, e_{3}\right]\right),} \\
& {\left[\phi_{\mathfrak{g}}\left(e_{2}\right), \phi_{\mathfrak{g}}\left(e_{4}\right)\right]=-a e_{4}=\phi_{\mathfrak{g}}\left(\left[e_{2}, e_{4}\right]\right),}
\end{aligned}
$$

i.e., $\phi_{\mathfrak{g}}$ is an algebra morphism. Also, we can deduce

$$
\left[\phi_{\mathfrak{g}}\left(e_{i}\right),\left[e_{j}, e_{k}\right]\right]+\left[\phi_{\mathfrak{g}}\left(e_{j}\right),\left[e_{k}, e_{i}\right]+\left[\phi_{\mathfrak{g}}\left(e_{k}\right),\left[e_{i}, e_{j}\right]\right]=0, \quad i, j, k=1,2,3,4 .\right.
$$

Thus, $\left(\mathfrak{g},[\cdot \cdot \cdot], \phi_{\mathfrak{g}}\right)$ is a hom-Lie algebra.

A quadruple $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}},\langle\cdot, \cdot\rangle\right)$ is called a pseudo-Riemannian hom-Lie algebra if $\left(\mathfrak{g},[\cdot, \cdot \cdot], \phi_{\mathfrak{g}}\right)$ is a finite-dimensional hom-Lie algebra and $\langle\cdot, \cdot\rangle$ is a bilinear symmetric non-degenerate form, such that for any $u, v \in \mathfrak{g},\left\langle\phi_{\mathfrak{g}}(u), \phi_{\mathfrak{g}}(v)\right\rangle=\langle u, v\rangle$ or $\left\langle\phi_{\mathfrak{g}}(u), v\right\rangle=$ $\left\langle u, \phi_{\mathfrak{g}}(v)\right\rangle$. In this case, we say that \mathfrak{g} admits a pseudo-Riemannian metric $\langle\cdot, \cdot\rangle$. It is known that if $\phi_{\mathfrak{g}}$ is an isomorphism, then exists a unique product • (is called hom-LeviCivita product) on it, which is given by Koszul's formula

$$
\begin{equation*}
2\left\langle u \cdot v, \phi_{\mathfrak{g}}(w)\right\rangle=\left\langle[u, v], \phi_{\mathfrak{g}}(w)\right\rangle+\left\langle[w, v], \phi_{\mathfrak{g}}(u)\right\rangle+\left\langle[w, u], \phi_{\mathfrak{g}}(v)\right\rangle, \tag{4}
\end{equation*}
$$

which satisfies $[u, v]=u \cdot v-v \cdot u$ and $\left\langle u \cdot v, \phi_{\mathfrak{g}}(w)\right\rangle=-\left\langle\phi_{\mathfrak{g}}(v), u \cdot w\right\rangle$ (see [13], for more details).

A quadruple $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, \omega\right)$ is called a symplectic hom-Lie algebra if $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}\right)$ is a regular hom-Lie algebra and ω is a bilinear skew-symmetric nondegenerate form (is called a symplectic structure), which is a 2 -hom-cocycle, i.e.,

$$
d \omega=0, \quad \omega\left(\phi_{\mathfrak{g}}(u), \phi_{\mathfrak{g}}(v)\right)=\omega(u, v)
$$

where, $d \omega \in \wedge^{3} \mathfrak{g}^{*}$ is given by

$$
\begin{equation*}
d \omega(u, v, w)=\omega\left(\phi_{\mathfrak{g}}(u),[v, w]\right)+\omega\left(\phi_{\mathfrak{g}}(v),[w, u]\right)+\omega\left(\phi_{\mathfrak{g}}(w),[u, v]\right), \tag{5}
\end{equation*}
$$

for any $u, v, w \in \mathfrak{g}$.
3. Complex product structures on hom-Lie algebras. In this section, we introduce complex product structures on hom-Lie algebras. We also present an example of these structures (see $[\mathbf{1 3}, \mathbf{1 4}]$ for more details).

An isomorphism $K: \mathfrak{g} \rightarrow \mathfrak{g}$ is called an almost product structure on an involutive hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot \cdot], \phi_{\mathfrak{g}}\right)$ if $K^{2}=I d_{\mathfrak{g}}$ and $\phi_{\mathfrak{g}} \circ K=K \circ \phi_{\mathfrak{g}}$. Also, $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, K\right)$ is called an almost product hom-Lie algebra. In this case, we have $\mathfrak{g}=\mathfrak{g}^{1} \oplus \mathfrak{g}^{-1}$, where

$$
\mathfrak{g}^{1}:=\operatorname{ker}\left(\phi_{\mathfrak{g}} \circ K-I d_{\mathfrak{g}}\right), \quad \mathfrak{g}^{-1}:=\operatorname{ker}\left(\phi_{\mathfrak{g}} \circ K+I d_{\mathfrak{g}}\right) .
$$

If \mathfrak{g}^{1} and \mathfrak{g}^{-1} have the same dimension n, then K is called an almost para-complex structure on $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}\right)$ (in this case the dimension of \mathfrak{g} is even). An almost product (almost para-complex) structure is called a product (para-complex) structure if

$$
\begin{align*}
{\left[\left(\phi_{\mathfrak{g}} \circ K\right) u,\left(\phi_{\mathfrak{g}} \circ K\right) v\right]=} & \phi_{\mathfrak{g}} \circ K\left[\left(\phi_{\mathfrak{g}} \circ K\right) u, v\right]+\phi_{\mathfrak{g}} \circ K\left[u,\left(\phi_{\mathfrak{g}} \circ K\right) v\right] \\
& -[u, v], \quad \forall u, v \in \mathfrak{g} . \tag{6}
\end{align*}
$$

A quadruple $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, J\right)$ is called an almost complex hom-Lie algebra if $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}\right)$ is an involutive hom-Lie algebra of even dimension $J: \mathfrak{g} \rightarrow \mathfrak{g}$ is an isomorphism such that $J^{2}=-I d_{\mathfrak{g}}$ and $\phi_{\mathfrak{g}} \circ J=J \circ \phi_{\mathfrak{g}}(J$ is called an almost complex structure). An almost complex structure is called a complex structure if

$$
\begin{equation*}
\left[\left(\phi_{\mathfrak{g}} \circ J\right) u,\left(\phi_{\mathfrak{g}} \circ J\right) v\right]=\phi_{\mathfrak{g}} \circ J\left[\left(\phi_{\mathfrak{g}} \circ J\right) u, v\right]+\phi_{\mathfrak{g}} \circ J\left[u,\left(\phi_{\mathfrak{g}} \circ J\right) v\right]+[u, v], \tag{7}
\end{equation*}
$$

for all $u, v \in \mathfrak{g}$.
A Hermitian structure of a hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}\right)$ is a pair $(J,\langle\cdot, \cdot\rangle)$ consisting of a complex structure and a pseudo-Riemannian metric $\langle\cdot, \cdot\rangle$, such that
for each $u, v \in \mathfrak{g}$

$$
\left\langle\left(\phi_{\mathfrak{g}} \circ J\right) u,\left(\phi_{\mathfrak{g}} \circ J\right) v\right\rangle=\langle u, v\rangle .
$$

In this case, $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, J,\langle\cdot, \cdot\rangle\right)$ is called a Hermitian hom-Lie algebra. A Hermitian hom-Lie algebra has a natural bilinear skew-symmetric nondegenerate form ω, which is defined by

$$
\omega(u, v)=\left\langle\left(\phi_{\mathfrak{g}} \circ J\right) u, v\right\rangle .
$$

Proposition 3.1. Let $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, J,\langle\cdot, \cdot\rangle\right)$ be a Hermitian hom-Lie algebra. If we consider the product \cdot as a hom-Levi-Civita product associated with metric $\langle\cdot, \cdot\rangle$ on \mathfrak{g} given by (4), then

$$
2\left\langle u \cdot \phi_{\mathfrak{g}}(J v)-\left(\phi_{\mathfrak{g}} \circ J\right)(u \cdot v), \phi_{\mathfrak{g}}(w)\right\rangle=d \omega(u, v, w)-d \omega\left(u, \phi_{\mathfrak{g}}(J v), \phi_{\mathfrak{g}}(J w)\right) .
$$

Proof. By Koszul's formula and the definition of ω, we get

$$
\begin{aligned}
2\left\langle u \cdot \phi_{\mathfrak{g}}(J v), \phi_{\mathfrak{g}}(w)\right\rangle= & \left\langle\left[u, \phi_{\mathfrak{g}}(J v)\right], \phi_{\mathfrak{g}}(w)\right\rangle+\left\langle\left[w, \phi_{\mathfrak{g}}(J v)\right], \phi_{\mathfrak{g}}(u)\right\rangle+\langle[w, u], J v\rangle \\
= & \omega\left(\left[u, \phi_{\mathfrak{g}}(J v)\right], J w\right)-\omega\left(\left(\phi_{\mathfrak{g}} \circ J\right)\left[w, \phi_{\mathfrak{g}}(J v)\right], \phi_{\mathfrak{g}}(u)\right) \\
& -\omega\left([w, u], \phi_{\mathfrak{g}}(v)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
-2\left\langle\left(\phi_{\mathfrak{g}} \circ J\right)(u \cdot v), \phi_{\mathfrak{g}}(w)\right\rangle= & 2\left\langle u \cdot v,\left(\phi_{\mathfrak{g}} \circ J\right) \phi_{\mathfrak{g}}(w)\right\rangle=\left\langle[u, v],\left(\phi_{\mathfrak{g}} \circ J\right) \phi_{\mathfrak{g}}(w)\right\rangle \\
& +\left\langle\left[\phi_{\mathfrak{g}}(J w), v\right], \phi_{\mathfrak{g}}(u)\right\rangle+\left\langle\left[\phi_{\mathfrak{g}}(J w), u\right], \phi_{\mathfrak{g}}(v)\right\rangle \\
= & -\omega\left([u, v], \phi_{\mathfrak{g}}(w)\right)-\omega\left(\left(\left(\phi_{\mathfrak{g}} \circ J\right)\left[\phi_{\mathfrak{g}}(J w), v\right], \phi_{\mathfrak{g}}(u)\right)\right. \\
& -\omega\left(J v,\left[\phi_{\mathfrak{g}}(J w), u\right]\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
d \omega\left(u, \phi_{\mathfrak{g}}(J v), \phi_{\mathfrak{g}}(J w)\right)= & \omega\left(\phi_{\mathfrak{g}}(u),\left[\phi_{\mathfrak{g}}(J v), \phi_{\mathfrak{g}}(J w)\right]\right)+\omega\left(J v,\left[\phi_{\mathfrak{g}}(J w), u\right]\right) \\
& +\omega\left(J w,\left[u, \phi_{\mathfrak{g}}(J v)\right]\right) .
\end{aligned}
$$

From the above equations, (5) and (7), we conclude the assertion.
Definition 3.2. A para-Hermitian structure of a hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}\right)$ is a pair $(K,\langle\cdot, \cdot\rangle)$ consisting of a para-complex structure and a pseudo-Riemannian metric $\langle\cdot, \cdot\rangle$ such that for each $u, v \in \mathfrak{g}$

$$
\left\langle\left(\phi_{\mathfrak{g}} \circ K\right) u,\left(\phi_{\mathfrak{g}} \circ K\right) v\right\rangle=-\langle u, v\rangle .
$$

In this case, $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, K,\langle\cdot, \cdot\rangle\right)$ is called a para-Hermitian hom-Lie algebra. Also, it defines a natural bilinear skew-symmetric nondegenerate form ω given by

$$
\omega(u, v)=\left\langle\left(\phi_{\mathfrak{g}} \circ K\right) u, v\right\rangle .
$$

Similar to the proof of Proposition 3.1, we can prove the following.

Proposition 3.3. Let $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, K,\langle\cdot, \cdot\rangle\right)$ be a para-Hermitian hom-Lie algebra. If we consider the product \cdot as a hom-Levi-Civita product associated with metric $\langle\cdot, \cdot\rangle$ on \mathfrak{g} given by (4), then

$$
2\left\langle u \cdot \phi_{\mathfrak{g}}(K v)-\left(\phi_{\mathfrak{g}} \circ K\right)(u \cdot v), \phi_{\mathfrak{g}}(w)\right\rangle=d \omega(u, v, w)+d \omega\left(u, \phi_{\mathfrak{g}}(K v), \phi_{\mathfrak{g}}(K w)\right) .
$$

Definition 3.4. A complex product structure on the hom-Lie algebra \mathfrak{g} is a pair $\{J, K\}$ of a complex structure J and a product structure K, such that $J \circ K=-K \circ J$ (note that $J \circ K=-K \circ J$ is equivalent to $\phi_{\mathfrak{g}} \circ J \circ K=-\phi_{\mathfrak{g}} \circ K \circ J$, because $\phi_{\mathfrak{g}}^{2}=$ $\left.I d_{\mathfrak{g}}\right)$.

We consider the vector spaces $\mathfrak{g}^{1}=\operatorname{ker}\left(\phi_{\mathfrak{g}} \circ K-I d_{\mathfrak{g}}\right)$ and $\mathfrak{g}^{-1}=\operatorname{ker}\left(\phi_{\mathfrak{g}} \circ K+I d_{\mathfrak{g}}\right)$ as eigenspaces corresponding to the eigenvalues 1 and -1 of $\phi_{\mathfrak{g}} \circ K$, respectively.

Theorem 3.5. Let $\{J, K\}$ be a complex product structure on the hom-Lie algebra \mathfrak{g}. Then,
(i) $\phi_{\mathfrak{g}} \circ J$ and J are isomorphisms between the eigenspaces \mathfrak{g}^{1} and \mathfrak{g}^{-1},
(ii) $\phi_{\mathfrak{g}} \circ K$ is a para-complex structure on \mathfrak{g},
(iii) \mathfrak{g}^{1} and \mathfrak{g}^{-1} are hom-Lie subalgebras of \mathfrak{g},
(iv) $\left(\mathfrak{g}, \mathfrak{g}^{1}, \mathfrak{g}^{-1}\right)$ is a double hom-Lie algebra,
(v) $J \circ \phi_{\mathfrak{g}^{1}}=\phi_{\mathfrak{g}^{-1}} \circ J$ and $J \circ \phi_{\mathfrak{g}^{-1}}=\phi_{\mathfrak{g}^{1}} \circ J$.

Proof. Let $u \in \mathfrak{g}^{1}$. Then, the condition $J \circ \phi_{\mathfrak{g}} \circ K=-\phi_{\mathfrak{g}} \circ K \circ J$ implies $J(u) \in$ \mathfrak{g}^{-1}. Thus, $J\left(\mathfrak{g}^{1}\right) \subset \mathfrak{g}^{-1}$. Similarly, we get $J\left(\mathfrak{g}^{-1}\right) \subset \mathfrak{g}^{1}$. So $J^{2}=-I d_{\mathfrak{g}}$ implies $J\left(\mathfrak{g}^{1}\right)=$ \mathfrak{g}^{-1}. Also, if we consider $J(u)=J(v)$ for any $u, v \in \mathfrak{g}^{1}$, then $J^{2}=-I d_{\mathfrak{g}}$ results in $u=v$. Thus, J is an isomorphism between \mathfrak{g}^{1} and \mathfrak{g}^{-1}. Similarly, the condition $\phi_{\mathfrak{g}} \circ J \circ$ $\phi_{\mathfrak{g}} \circ K=-\phi_{\mathfrak{g}} \circ K \circ \phi_{\mathfrak{g}} \circ J$ implies that $\phi_{\mathfrak{g}} \circ J$ is an isomorphism between \mathfrak{g}^{1} and \mathfrak{g}^{-1}. Therefore, we have (i). From (i), we conclude that $\operatorname{dimg}^{1}=\operatorname{dimg}^{-1}$ and so we have (ii). We now prove (iii). It is easy to see that (6) implies that \mathfrak{g}^{1} and \mathfrak{g}^{-1} are Lie subalgebras of \mathfrak{g}. Now, we let $u \in \mathfrak{g}^{1}$. Since $\left(K \circ \phi_{\mathfrak{g}}\right)(u)=u$ and $K \circ \phi_{\mathfrak{g}}=\phi_{\mathfrak{g}} \circ K$, we imply that

$$
\left(K \circ \phi_{\mathfrak{g}}\right)\left(\phi_{\mathfrak{g}}(u)\right)=\left(\phi_{\mathfrak{g}} \circ K \circ \phi_{\mathfrak{g}}\right)(u)=\phi_{\mathfrak{g}}(u),
$$

which gives $\phi_{\mathfrak{g}}(u) \in \mathfrak{g}^{1}$. Similarly, we obtain $\phi_{\mathfrak{g}}\left(u^{\prime}\right) \in \mathfrak{g}^{-1}$, for any $u^{\prime} \in \mathfrak{g}^{-1}$. Hence, it is easy to verify that \mathfrak{g}^{1} and \mathfrak{g}^{-1} are hom-Lie subalgebras. Therefore, we have (iii). Here, we prove (iv). According to (iii), we can write $\phi_{\mathfrak{g}}: \mathfrak{g}^{1} \oplus \mathfrak{g}^{-1} \rightarrow \mathfrak{g}^{1} \oplus \mathfrak{g}^{-1}$, as $\phi_{\mathfrak{g}}\left(u+u^{\prime}\right)=\phi_{\mathfrak{g}^{1}}(u)+\phi_{\mathfrak{g}^{-1}}\left(u^{\prime}\right)$ for any $u \in \mathfrak{g}^{1}, u^{\prime} \in \mathfrak{g}^{-1}$. This shows that $\left(\mathfrak{g}, \mathfrak{g}^{1}, \mathfrak{g}^{-1}\right)$ is a double hom-Lie algebra. To prove (v), let $u \in \mathfrak{g}^{1}$. Then, the conditions $J \mathfrak{g}^{1}=\mathfrak{g}^{-1}$, $\phi_{\mathfrak{g}^{1}} \subset \mathfrak{g}^{1}, \phi_{\mathfrak{g}^{-1}} \subset \mathfrak{g}^{-1}$ and $J \circ \phi_{\mathfrak{g}}=\phi_{\mathfrak{g}} \circ J$, conclude $J\left(\phi_{\mathfrak{g}^{1}}(u)\right)=\phi_{\mathfrak{g}^{-1}}(J u)$. Similarly, we have the second part.

Example 3.6. We consider the hom-Lie algebra ($\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}$) introduced in Example 2.2. If isomorphisms J and K are determined as

$$
\begin{aligned}
& J\left(e_{1}\right)=e_{4}, \quad J\left(e_{2}\right)=-e_{3}, \quad J\left(e_{3}\right)=e_{2}, \quad J\left(e_{4}\right)=-e_{1}, \\
& K\left(e_{1}\right)=-e_{2}, \quad K\left(e_{2}\right)=-e_{1}, \quad K\left(e_{3}\right)=-e_{4}, \quad K\left(e_{4}\right)=-e_{3},
\end{aligned}
$$

then we have

$$
J^{2}\left(e_{i}\right)=-K^{2}\left(e_{i}\right)=-\phi_{\mathfrak{g}}^{2}\left(e_{i}\right)=-e_{i}, \quad i=1,2,3,4 .
$$

Moreover, using the above equations, we get

$$
\begin{aligned}
& \left(J \circ \phi_{\mathfrak{g}}\right) e_{1}=e_{3}=\left(\phi_{\mathfrak{g}} \circ J\right) e_{1}, \quad\left(J \circ \phi_{\mathfrak{g}}\right) e_{2}=-e_{4}=\left(\phi_{\mathfrak{g}} \circ J\right) e_{2}, \\
& \left(J \circ \phi_{\mathfrak{g}}\right) e_{3}=-e_{1}=\left(\phi_{\mathfrak{g}} \circ J\right) e_{3}, \quad\left(J \circ \phi_{\mathfrak{g}}\right) e_{4}=e_{2}=\left(\phi_{\mathfrak{g}} \circ J\right) e_{4},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(K \circ \phi_{\mathfrak{g}}\right) e_{1}=e_{1}=\left(\phi_{\mathfrak{g}} \circ K\right) e_{1}, \quad\left(K \circ \phi_{\mathfrak{g}}\right) e_{2}=e_{2}=\left(\phi_{\mathfrak{g}} \circ K\right) e_{2}, \\
& \left(K \circ \phi_{\mathfrak{g}}\right) e_{3}=-e_{3}=\left(\phi_{\mathfrak{g}} \circ K\right) e_{3}, \quad\left(K \circ \phi_{\mathfrak{g}}\right) e_{4}=-e_{4}=\left(\phi_{\mathfrak{g}} \circ K\right) e_{4} .
\end{aligned}
$$

Also, we have

$$
\begin{array}{ll}
(J \circ K) e_{1}=e_{3}=-(K \circ J) e_{1}, & (J \circ K) e_{2}=-e_{4}=-(K \circ J) e_{2}, \\
(J \circ K) e_{3}=e_{1}=-(K \circ J) e_{3}, & (J \circ K) e_{4}=-e_{2}=-(K \circ J) e_{4} .
\end{array}
$$

Moreover, it follows that (6) and (7) hold. Therefore, $\{J, K\}$ is a complex product structure on $\mathfrak{g}=\mathfrak{g}^{1} \oplus \mathfrak{g}^{-1}$, where $\mathfrak{g}^{1}=\left\{e_{1}, e_{2}\right\}$ and $\mathfrak{g}^{-1}=\left\{e_{3}, e_{4}\right\}$.

Lemma 3.7. Let ($\mathfrak{g},[\cdot, \cdot \cdot], \phi_{\mathfrak{g}}$) be a hom-Lie algebra with a complex product structure $\{J, K\}$. If we consider \mathfrak{g}^{-1} as an ideal in \mathfrak{g}, then \mathfrak{g}^{-1} is abelian. Moreover, \mathfrak{g}^{1} carries a hom-left symmetric product given by

$$
\begin{equation*}
u \cdot v=-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[u, \phi_{\mathfrak{g}^{-1}}(J v)\right], \quad \forall u, v \in \mathfrak{g}^{1} . \tag{8}
\end{equation*}
$$

Proof. Since \mathfrak{g}^{-1} and \mathfrak{g}^{1} are hom-Lie subalgebras of \mathfrak{g}, using (7), we get

$$
\left[\left(\phi_{\mathfrak{g}^{1}} \circ J\right) u^{\prime},\left(\phi_{\mathfrak{g}^{1}} \circ J\right) v^{\prime}\right]-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[\left(\phi_{\mathfrak{g}^{1}} \circ J\right) u^{\prime}, v^{\prime}\right]-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[u^{\prime},\left(\phi_{\mathfrak{g}^{1}} \circ J\right) v^{\prime}\right]=\left[u^{\prime}, v^{\prime}\right],
$$

for all $u^{\prime}, v^{\prime} \in \mathfrak{g}^{-1}$. Since \mathfrak{g}^{-1} is an ideal in \mathfrak{g} and $\phi_{\mathfrak{g}^{1}} \circ J \subset \mathfrak{g}^{1}$, we conclude that the left-hand side of the above equation is in \mathfrak{g}^{1} and the right-hand side of it is also in \mathfrak{g}^{-1}. Therefore, \mathfrak{g}^{-1} is an abelian ideal. Now, if we consider $u, v, w \in \mathfrak{g}^{1}$, then using (7) and (8) we obtain

$$
\begin{aligned}
u \cdot v-v \cdot u & =-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[u, \phi_{\mathfrak{g}^{-1}}(J v)\right]-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[\phi_{\mathfrak{g}^{-1}}(J u), v\right] \\
& =[u, v]-\left[\left(\phi_{\mathfrak{g}^{-1}} \circ J\right) u,\left(\phi_{\mathfrak{g}^{-1}} \circ J\right) v\right] .
\end{aligned}
$$

Since \mathfrak{g}^{-1} is an abelian ideal, then from the above equation we obtain

$$
\begin{equation*}
u \cdot v-v \cdot u=[u, v] . \tag{9}
\end{equation*}
$$

Also, using the hom-Jacobi identity and (8), we get

$$
\begin{aligned}
& \phi_{\mathfrak{g}^{1}}(u) \cdot(v \cdot w)-\phi_{\mathfrak{g}^{1}}(v) \cdot(u \cdot w) \\
& =-\phi_{\mathfrak{g}^{1}}(u) \cdot\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[v, \phi_{\mathfrak{g}^{-1}}(J w)\right]+\phi_{\mathfrak{g}^{1}}(v) \cdot\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[u, \phi_{\mathfrak{g}^{-1}}(J w)\right] \\
& =-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[\phi_{\mathfrak{g}^{1}}(u),\left[v, \phi_{\mathfrak{g}^{-1}}(J w)\right]\right]+\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[\phi_{\mathfrak{g}^{1}}(v),\left[u, \phi_{\mathfrak{g}^{-1}}(J w)\right]\right] \\
& =\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[\left(\phi_{\mathfrak{g}^{-1}} \circ J\right) \phi_{\mathfrak{g}^{1}}(w),[u, v]\right]=[u, v] \cdot \phi_{\mathfrak{g}^{1}}(w) .
\end{aligned}
$$

Moreover, (8) and part (v) of Theorem 3.5 yield

$$
\begin{aligned}
\phi_{\mathfrak{g}^{1}}(u) \cdot \phi_{\mathfrak{g}^{1}}(v) & =-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[\phi_{\mathfrak{g}^{1}}(u),\left(\phi_{\mathfrak{g}^{-1}} \circ J\right) \phi_{\mathfrak{g}^{1}}(v)\right]=-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[\phi_{\mathfrak{g}^{1}}(u), \phi_{\mathfrak{g}^{-1}}^{2}(J v)\right] \\
& =-\left(\phi_{\mathfrak{g}^{1}} \circ J \circ \phi_{\mathfrak{g}^{-1}}\right)\left[u, \phi_{\mathfrak{g}^{-1}}(J v)\right] \\
& =-\phi_{\mathfrak{g}^{1}}\left(\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[u, \phi_{\mathfrak{g}^{-1}}(J v)\right]\right)=\phi_{\mathfrak{g}^{1}}(u \cdot v) .
\end{aligned}
$$

Consequently, (9) and the last equation imply $\left[\phi_{\mathfrak{g}^{1}}(u), \phi_{\mathfrak{g}^{1}}(v)\right]=\phi_{\mathfrak{g}^{1}}[u, v]$. Therefore, the product \cdot is a hom-left symmetric product on \mathfrak{g}^{1}.

Example 3.8. We consider a 4-dimensional hom-Lie algebra ($\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}$) with an arbitrary basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, where

$$
\left[e_{1}, e_{2}\right]=a e_{1}+a e_{2}, \quad\left[e_{1}, e_{3}\right]=a e_{3}, \quad\left[e_{2}, e_{3}\right]=a e_{4}, \quad\left[e_{1}, e_{4}\right]=-a e_{3}, \quad\left[e_{2}, e_{4}\right]=-a e_{4}
$$

and

$$
\phi_{\mathfrak{g}}\left(e_{1}\right)=-e_{2}, \quad \phi_{\mathfrak{g}}\left(e_{2}\right)=-e_{1}, \quad \phi_{\mathfrak{g}}\left(e_{3}\right)=-e_{4}, \quad \phi_{\mathfrak{g}}\left(e_{4}\right)=-e_{3} .
$$

If $a=0$, then the above bracket is a Lie bracket on \mathfrak{g}. Let isomorphisms J and K be given by

$$
\begin{array}{lll}
J\left(e_{1}\right)=-e_{3}, & J\left(e_{2}\right)=-e_{4}, & J\left(e_{3}\right)=e_{1}, \quad J\left(e_{4}\right)=e_{2} \\
K\left(e_{1}\right)=-e_{2}, & K\left(e_{2}\right)=-e_{1}, \quad K\left(e_{3}\right)=e_{4}, \quad K\left(e_{4}\right)=e_{3} .
\end{array}
$$

Then, we have

$$
J^{2}\left(e_{i}\right)=-K^{2}\left(e_{i}\right)=-\phi_{\mathfrak{g}}^{2}\left(e_{i}\right)=-e_{i}, \quad i=1,2,3,4 .
$$

Also, using the above equations, we infer

$$
\begin{aligned}
& \left(J \circ \phi_{\mathfrak{g}}\right) e_{1}=e_{4}=\left(\phi_{\mathfrak{g}} \circ J\right) e_{1}, \quad\left(J \circ \phi_{\mathfrak{g}}\right) e_{2}=e_{3}=\left(\phi_{\mathfrak{g}} \circ J\right) e_{2}, \\
& \left(J \circ \phi_{\mathfrak{g}}\right) e_{3}=-e_{2}=\left(\phi_{\mathfrak{g}} \circ J\right) e_{3}, \quad\left(J \circ \phi_{\mathfrak{g}}\right) e_{4}=-e_{1}=\left(\phi_{\mathfrak{g}} \circ J\right) e_{4},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(K \circ \phi_{\mathfrak{g}}\right) e_{1}=e_{1}=\left(\phi_{\mathfrak{g}} \circ K\right) e_{1}, \quad\left(K \circ \phi_{\mathfrak{g}}\right) e_{2}=e_{2}=\left(\phi_{\mathfrak{g}} \circ K\right) e_{2}, \\
& \left(K \circ \phi_{\mathfrak{g}}\right) e_{3}=-e_{3}=\left(\phi_{\mathfrak{g}} \circ K\right) e_{3}, \quad\left(K \circ \phi_{\mathfrak{g}}\right) e_{4}=-e_{4}=\left(\phi_{\mathfrak{g}} \circ K\right) e_{4} .
\end{aligned}
$$

It is easy to see that (6) and (7) hold, i.e., J and K are complex and product structures on ($\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}$), respectively. Also, we obtain

$$
\begin{array}{ll}
(J \circ K) e_{1}=e_{4}=-(K \circ J) e_{1}, & (J \circ K) e_{2}=e_{3}=-(K \circ J) e_{2}, \\
(J \circ K) e_{3}=e_{2}=-(K \circ J) e_{3}, & (J \circ K) e_{4}=e_{1}=-(K \circ J) e_{4} .
\end{array}
$$

Therefore, the pair $\{J, K\}$ is a complex product structure on \mathfrak{g}. Moreover, we can write \mathfrak{g} as $\mathfrak{g}=\mathfrak{g}^{1} \oplus \mathfrak{g}^{-1}$, where $\mathfrak{g}^{1}=\left\{e_{1}, e_{2}\right\}$ and $\mathfrak{g}^{-1}=\left\{e_{3}, e_{4}\right\}$. Since \mathfrak{g}^{-1} is an abelian ideal in $\mathfrak{g}, \mathfrak{g}^{1}$ carries a hom-left symmetric product. If we denote this product with \cdot, then
using (8) we have

$$
\begin{aligned}
& e_{1} \cdot e_{2}=-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[e_{1}, \phi_{\mathfrak{g}^{-1}}\left(J e_{2}\right)\right]=-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[e_{1}, e_{3}\right]=-a\left(\phi_{\mathfrak{g}^{1}} \circ J\right) e_{3}=a e_{2}, \\
& e_{2} \cdot e_{1}=-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[e_{2}, \phi_{\mathfrak{g}^{-1}}\left(J e_{1}\right)\right]=-\left(\phi_{\mathfrak{g}^{1}} \circ J\right)\left[e_{2}, e_{4}\right]=a\left(\phi_{\mathfrak{g}^{1}} \circ J\right) e_{4}=-a e_{1}, \\
& e_{1} \cdot e_{1}=-a e_{2}, \quad e_{2} \cdot e_{2}=a e_{1} .
\end{aligned}
$$

4. Matched pairs. In this section, we present the notions of a matched pair and hom-bicrossproduct of hom-Lie algebras. Also, it is shown that hom-Lie algebras carrying a complex product structure in terms of double hom-Lie algebras are endowed with a hom-left symmetric product.

Definition 4.1 ([16]). A pair of hom-Lie algebras $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \phi_{\mathfrak{g}}\right)$ and $\left(\mathfrak{g}^{\prime},[\cdot, \cdot]_{\mathfrak{g}^{\prime}}, \phi_{\mathfrak{g}^{\prime}}\right)$ with representations $\rho: \mathfrak{g} \rightarrow g l\left(\mathfrak{g}^{\prime}\right)$ and $\rho^{\prime}: \mathfrak{g}^{\prime} \rightarrow g l(\mathfrak{g})$ with respect to $\phi_{\mathfrak{g}^{\prime}}$ and $\phi_{\mathfrak{g}}$, respectively, is called a matched pair of hom-Lie algebras if

$$
\begin{aligned}
\rho^{\prime}\left(\phi_{\mathfrak{g}^{\prime}}\left(u^{\prime}\right)\right)[u, v]_{\mathfrak{g}}= & {\left[\rho^{\prime}\left(u^{\prime}\right)(u), \phi_{\mathfrak{g}}(v)\right]_{\mathfrak{g}}+\left[\phi_{\mathfrak{g}}(u), \rho^{\prime}\left(u^{\prime}\right)(v)\right]_{\mathfrak{g}}+\rho^{\prime}\left(\rho(v)\left(u^{\prime}\right)\right)\left(\phi_{\mathfrak{g}}(u)\right) } \\
& -\rho^{\prime}\left(\rho(u)\left(u^{\prime}\right)\right)\left(\phi_{\mathfrak{g}}(v)\right), \\
\rho\left(\phi_{\mathfrak{g}}(u)\right)\left[u^{\prime}, v^{\prime}\right]_{\mathfrak{g}^{\prime}}= & {\left[\rho(u)\left(u^{\prime}\right), \phi_{\mathfrak{g}^{\prime}}\left(v^{\prime}\right)\right]_{\mathfrak{g}^{\prime}}+\left[\phi_{\mathfrak{g}^{\prime}}\left(u^{\prime}\right), \rho(u)\left(v^{\prime}\right)\right]_{\mathfrak{g}^{\prime}}+\rho\left(\rho^{\prime}\left(v^{\prime}\right)(u)\right)\left(\phi_{\mathfrak{g}^{\prime}}\left(u^{\prime}\right)\right) } \\
& -\rho\left(\rho^{\prime}\left(u^{\prime}\right)(u)\right)\left(\phi_{\mathfrak{g}^{\prime}}\left(v^{\prime}\right)\right),
\end{aligned}
$$

for any $u, v \in \mathfrak{g}, u^{\prime}, v^{\prime} \in \mathfrak{g}^{\prime}$. We denote a matched pair of hom-Lie algebras \mathfrak{g} and \mathfrak{g}^{\prime} by $\left(\mathfrak{g}, \mathfrak{g}^{\prime}, \rho, \rho^{\prime}\right)$.

Given a matched pair ($\mathfrak{g}, \mathfrak{g}^{\prime}, \rho, \rho^{\prime}$) of hom-Lie algebras ($\mathfrak{g},[\cdot, \cdot \cdot]_{\mathfrak{g}}, \phi_{\mathfrak{g}}$) and $\left(\mathfrak{g}^{\prime},[\cdot, \cdot]_{\mathfrak{g}^{\prime}}, \phi_{\mathfrak{g}^{\prime}}\right)$, we can construct a new hom-Lie algebra $\mathfrak{g} \bowtie_{\rho^{\prime}}^{\rho} \mathfrak{g}^{\prime}=\left(\mathfrak{g} \oplus \mathfrak{g}^{\prime}, \Phi,[\cdot, \cdot]\right)$, where

$$
\begin{aligned}
\Phi\left(u, u^{\prime}\right) & =\left(\phi_{\mathfrak{g}}(u), \phi_{\mathfrak{g}^{\prime}}\left(u^{\prime}\right)\right), \\
{\left[\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right] } & =\left([u, v]_{\mathfrak{g}}-\rho^{\prime}\left(v^{\prime}\right)(u)+\rho^{\prime}\left(u^{\prime}\right)(v),\left[u^{\prime}, v^{\prime}\right]_{\mathfrak{g}^{\prime}}-\rho(v)\left(u^{\prime}\right)+\rho(u)\left(v^{\prime}\right)\right) .
\end{aligned}
$$

We will call $\mathfrak{g} \bowtie_{\rho^{\prime}}^{\rho} \mathfrak{g}^{\prime}$ the hom-bicrossproduct of \mathfrak{g} and \mathfrak{g}^{\prime} (see [16], for more details). Considering $\mathfrak{g} \equiv \mathfrak{g} \oplus\{0\}$ and $\mathfrak{g}^{\prime} \equiv\{0\} \oplus \mathfrak{g}^{\prime}$, we observe that $\left(\mathfrak{g} \oplus \mathfrak{g}^{\prime}, \mathfrak{g}, \mathfrak{g}^{\prime}\right)$ is a double hom-Lie algebra.

Conversely, if $\left(\mathfrak{g} \oplus \mathfrak{g}^{\prime}, \mathfrak{g}, \mathfrak{g}^{\prime}\right)$ is a double hom-Lie algebra, then $\left(\mathfrak{g}, \mathfrak{g}^{\prime}, \rho, \rho^{\prime}\right)$ forms a matched pair of hom-Lie algebras \mathfrak{g}^{\prime} and \mathfrak{g} such that the representations $\rho: \mathfrak{g} \rightarrow \operatorname{gl}\left(\mathfrak{g}^{\prime}\right)$ and $\rho^{\prime}: \mathfrak{g}^{\prime} \rightarrow g l(\mathfrak{g})$ are given by

$$
\begin{equation*}
\left[u, u^{\prime}\right]=\rho(u) u^{\prime}-\rho^{\prime}\left(u^{\prime}\right) u, \quad \forall u \in \mathfrak{g}, u^{\prime} \in \mathfrak{g}^{\prime} . \tag{10}
\end{equation*}
$$

From the above description, we can deduce the following.
Corollary 4.2. Let $\left(\mathfrak{g}, \phi_{\mathfrak{g}},[\cdot, \cdot]\right)$ be a hom-Lie algebra with a complex product structure $\{J, K\}$. Then, there exist representations $\rho: \mathfrak{g}^{1} \rightarrow g l\left(\mathfrak{g}^{-1}\right)$ and $\rho^{\prime}: \mathfrak{g}^{-1} \rightarrow g l\left(\mathfrak{g}^{1}\right)$ with respect to $\phi_{\mathfrak{g}^{-1}}$ and $\phi_{\mathfrak{g}^{1}}$, respectively, such that $\left(\mathfrak{g}^{1}, \mathfrak{g}^{-1}, \rho, \rho^{\prime}\right)$ forms a matched pair of hom-Lie algebras.

Proposition 4.3. Let $\left(\mathfrak{g}, \phi_{\mathfrak{g}},[\cdot, \cdot]\right)$ be a hom-Lie algebra with a complex product structure $\{J, K\}$. Then, there exist representations $\rho^{*}: \mathfrak{g}^{1} \rightarrow g l\left(\mathfrak{g}^{1}\right)$ and
$\rho^{* \prime}: \mathfrak{g}^{-1} \rightarrow g l\left(\mathfrak{g}^{-1}\right)$ with respect to $\phi_{\mathfrak{g}^{1}}$ and $\phi_{\mathfrak{g}^{-1}}$, respectively, such that

$$
\begin{equation*}
\rho^{*}(u):=-\phi_{\mathfrak{g}^{1}} \circ J \circ \rho(u) \circ \phi_{\mathfrak{g}^{-1}} \circ J, \quad \rho^{* \prime}\left(u^{\prime}\right):=-\phi_{\mathfrak{g}^{-1}} \circ J \circ \rho^{\prime}\left(u^{\prime}\right) \circ \phi_{\mathfrak{g}^{1}} \circ J . \tag{11}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\left[u, u^{\prime}\right]=-\phi_{\mathfrak{g}^{-1}} \circ J \circ \rho^{*}(u) \circ \phi_{\mathfrak{g}^{1}} \circ J\left(u^{\prime}\right)+\phi_{\mathfrak{g}^{1}} \circ J \circ \rho^{* \prime}\left(u^{\prime}\right) \circ \phi_{\mathfrak{g}^{-1}} \circ J(u), \tag{12}
\end{equation*}
$$

for any $u \in \mathfrak{g}^{1}$ and $u^{\prime} \in \mathfrak{g}^{-1}$.
Proof. Using Corollary 4.2 and isomorphisms $\phi_{\mathfrak{g}^{-1}} \circ J: \mathfrak{g}^{1} \rightarrow \mathfrak{g}^{-1}$ and $\phi_{\mathfrak{g}^{1}} \circ J:$ $\mathfrak{g}^{-1} \rightarrow \mathfrak{g}^{1}$, we can consider ρ and ρ^{\prime} as (11). Now, we show that ρ^{*} is a representation with respect to $\phi_{\mathfrak{g}^{1}}$. Using (11), we have

$$
\rho^{*}\left(\phi_{\mathfrak{g}^{1}}(u)\right) \circ \phi_{\mathfrak{g}^{1}}=-\phi_{\mathfrak{g}^{1}} \circ J \circ \rho\left(\phi_{\mathfrak{g}^{1}}(u)\right) \circ \phi_{\mathfrak{g}^{-1}} \circ J \circ \phi_{\mathfrak{g}^{1}} .
$$

Since ρ is a representation with respect to $\phi_{\mathfrak{g}^{-1}}$ and $\phi_{\mathfrak{g}^{1}} \circ J=J \circ \phi_{\mathfrak{g}^{-1}}$, the above equation implies

$$
\begin{aligned}
\rho^{*}\left(\phi_{\mathfrak{g}^{1}}(u)\right) \circ \phi_{\mathfrak{g}^{1}} & =-\phi_{\mathfrak{g}^{1}} \circ J \circ \phi_{\mathfrak{g}^{-1}} \circ \rho(u) \circ J \circ \phi_{\mathfrak{g}^{1}} \\
& =-\phi_{\mathfrak{g}^{1}} \circ \phi_{\mathfrak{g}^{1}} \circ J \circ \rho(u) \circ \phi_{\mathfrak{g}^{-1}} \circ J=\phi_{\mathfrak{g}^{1}} \circ \rho^{*}(u) .
\end{aligned}
$$

Also, we get

$$
\begin{aligned}
\rho^{*}\left([u, v]_{\mathfrak{g}^{1}}\right) \circ \phi_{\mathfrak{g}^{1}}= & -\phi_{\mathfrak{g}^{1}} \circ J \circ \rho\left([u, v]_{\mathfrak{g}^{1}}\right) \circ \phi_{\mathfrak{g}^{-1}} \circ J \circ \phi_{\mathfrak{g}^{1}} \\
= & -\phi_{\mathfrak{g}^{1}} \circ J \circ \rho\left(\phi_{\mathfrak{g}^{1}}(u)\right) \circ \rho(v) \circ J \circ \phi_{\mathfrak{g}^{1}} \\
& +\phi_{\mathfrak{g}^{1}} \circ J \circ \rho\left(\phi_{\mathfrak{g}^{1}}(v)\right) \circ \rho(u) \circ J \circ \phi_{\mathfrak{g}^{1}} .
\end{aligned}
$$

Applying $\phi_{\mathfrak{g}^{-1}} \circ J \circ \phi_{\mathfrak{g}^{1}} \circ J=-I d_{\mathfrak{g}}$ in the last equation, we obtain

$$
\begin{aligned}
\rho^{*}\left([u, v]_{\mathfrak{g}^{1}}\right) \circ \phi_{\mathfrak{g}^{1}}= & \phi_{\mathfrak{g}^{1}} \circ J \circ \rho\left(\phi_{\mathfrak{g}^{1}}(u)\right) \circ \phi_{\mathfrak{g}^{-1}} \circ J \circ \phi_{\mathfrak{g}^{1}} \circ J \circ \rho(v) \circ \phi_{\mathfrak{g}^{-1}} \circ J \\
& -\phi_{\mathfrak{g}^{1}} \circ J \circ \rho\left(\phi_{\mathfrak{g}^{1}}(v)\right) \circ \phi_{\mathfrak{g}^{-1}} \circ J \circ \phi_{\mathfrak{g}^{1}} \circ J \circ \rho(u) \circ \phi_{\mathfrak{g}^{-1}} \circ J \\
= & \rho^{*}\left(\phi_{\mathfrak{g}^{1}}(u)\right) \circ \rho^{*}(v)-\rho^{*}\left(\phi_{\mathfrak{g}^{1}}(v)\right) \circ \rho^{*}(u) .
\end{aligned}
$$

Similarly, we can see that $\rho^{* \prime}$ is a representation with respect to $\phi_{\mathfrak{g}^{-1}}$. Equations (10) and (11) imply (12).

Applying (12), we can write ρ^{*} and $\rho^{* \prime}$ as follows:

$$
\begin{equation*}
\rho^{*}(u) v=-\pi^{1}\left(\phi_{\mathfrak{g}} \circ J\left[u, \phi_{\mathfrak{g}^{-1}}(J v)\right]\right), \quad \rho^{* \prime}\left(u^{\prime}\right) v^{\prime}=-\pi^{-1}\left(\phi_{\mathfrak{g}} \circ J\left[u^{\prime}, \phi_{\mathfrak{g}^{1}}\left(J v^{\prime}\right)\right]\right), \tag{13}
\end{equation*}
$$

for any $u, v \in \mathfrak{g}^{1}, u^{\prime}, v^{\prime} \in \mathfrak{g}^{-1}$ where $\pi^{1}: \mathfrak{g} \rightarrow \mathfrak{g}^{1}$ and $\pi^{-1}: \mathfrak{g} \rightarrow \mathfrak{g}^{-1}$ are the projections.
Theorem 4.4. Let $\{J, K\}$ be a complex product structure on a hom-Lie algebra $\left(\mathfrak{g}, \phi_{\mathfrak{g}},[\cdot, \cdot]\right)$. Then, \mathfrak{g}^{1} and \mathfrak{g}^{-1} carry hom-left symmetric algebra structures.

Proof. We consider $\cdot: \mathfrak{g}^{1} \times \mathfrak{g}^{1} \rightarrow \mathfrak{g}^{1}$ as a bilinear product on \mathfrak{g}^{1} given by $u \cdot v:=$ $\rho^{*}(u) v$, where ρ^{*} is determined in Proposition 4.3. Since ρ^{*} is a representation with respect to $\phi_{\mathfrak{g}^{1}}$, we obtain

$$
\phi_{\mathfrak{g}^{1}}(u \cdot v)=\phi_{\mathfrak{g}^{1}}\left(\rho^{*}(u) v\right)=\rho^{*}\left(\phi_{\mathfrak{g}^{1}}(u)\right) \phi_{\mathfrak{g}^{1}}(v)=\phi_{\mathfrak{g}^{1}}(u) \cdot \phi_{\mathfrak{g}^{1}}(v),
$$

and

$$
\begin{aligned}
\phi_{\mathfrak{g}^{1}}(u) \cdot(v \cdot w)-\phi_{\mathfrak{g}^{1}}(v) \cdot(u \cdot w) & =\rho^{*}\left(\phi_{\mathfrak{g}^{1}}(u)\right) \rho^{*}(v) w-\rho^{*}\left(\phi_{\mathfrak{g}^{1}}(v)\right) \rho^{*}(u) w \\
& =\rho^{*}\left([u, v]_{\mathfrak{g}^{1}}\right)\left(\phi_{\mathfrak{g}^{1}}(w)\right)=[u, v] \cdot \phi_{\mathfrak{g}^{1}}(w) .
\end{aligned}
$$

Also, (7) and (13) imply

$$
\begin{aligned}
u \cdot v-v \cdot u & =\rho^{*}(u) v-\rho^{*}(v) u=-\pi^{1}\left(\phi_{\mathfrak{g}} \circ J\left(\left[u, \phi_{\mathfrak{g}^{-1}}(J v)\right]+\left[\phi_{\mathfrak{g}^{-1}}(J u), v\right]\right)\right) \\
& =\pi^{1}\left([u, v]-\left[\phi_{\mathfrak{g}^{-1}}(J u), \phi_{\mathfrak{g}^{-1}}(J v)\right]\right)=[u, v] .
\end{aligned}
$$

The two last equations imply

$$
\phi_{\mathfrak{g}^{1}}(u) \cdot(v \cdot w)-\phi_{\mathfrak{g}^{1}}(v) \cdot(u \cdot w)=(u \cdot v) \cdot \phi_{\mathfrak{g}^{1}}(w)-(v \cdot u) \cdot \phi_{\mathfrak{g}^{1}}(w) .
$$

Therefore, \mathfrak{g}^{1} carries a hom-left symmetric algebra structure. We define a bilinear product $\cdot: \mathfrak{g}^{-1} \times \mathfrak{g}^{-1} \rightarrow \mathfrak{g}^{-1}$ on \mathfrak{g}^{-1} by $u^{\prime} \cdot v^{\prime}:=\rho^{*^{\prime}}\left(u^{\prime}\right) v^{\prime}$. Similarly, it is shown that \cdot is a hom-left symmetric product on \mathfrak{g}^{-1}.

Let $\left(\mathfrak{g}, \phi_{\mathfrak{g}},[\cdot, \cdot]\right)$ be a hom-Lie algebra with a complex product structure $\{J, K\}$. We extend the hom-left symmetric products of \mathfrak{g}^{1} and \mathfrak{g}^{-1} to \mathfrak{g} by

$$
\begin{equation*}
\left(u+u^{\prime}\right) \cdot\left(v+v^{\prime}\right)=u \cdot v+\rho(u) v^{\prime}+\rho^{\prime}\left(u^{\prime}\right) v+u^{\prime} \cdot v^{\prime} . \tag{14}
\end{equation*}
$$

We consider two bilinear maps $\Psi: \mathfrak{g}^{1} \times \mathfrak{g}^{-1} \rightarrow \operatorname{End}\left(\mathfrak{g}^{1}\right)$ and $\Psi^{*}: \mathfrak{g}^{-1} \times \mathfrak{g}^{1} \rightarrow$ $\operatorname{End}\left(\mathfrak{g}^{-1}\right)$ defined by

$$
\begin{aligned}
\Psi\left(u, u^{\prime}\right) w= & \rho^{\prime}\left(\phi_{\mathfrak{g}^{-1}}\left(u^{\prime}\right)\right)(u \cdot w)-\phi_{\mathfrak{g}^{1}}(u) \cdot \rho^{\prime}\left(v^{\prime}\right) w \\
& -\rho^{\prime}\left(v^{\prime}\right) u \cdot \phi_{\mathfrak{g}^{1}}(w)+\rho^{\prime}\left(\rho(u) u^{\prime}\right)\left(\phi_{\mathfrak{g}^{1}}(w)\right), \\
\Psi^{*}\left(u^{\prime}, u\right) w^{\prime}= & \rho\left(\phi_{\mathfrak{g}^{1}}(u)\right)\left(u^{\prime} \cdot w^{\prime}\right)-\phi_{\mathfrak{g}^{-1}}\left(u^{\prime}\right) \cdot \rho(v) w^{\prime} \\
& -\rho(v) u^{\prime} \cdot \phi_{\mathfrak{g}^{-1}}\left(w^{\prime}\right)+\rho\left(\rho^{\prime}\left(u^{\prime}\right) u\right)\left(\phi_{\mathfrak{g}^{-1}}\left(w^{\prime}\right)\right),
\end{aligned}
$$

for any $u, w \in \mathfrak{g}^{1}, u^{\prime}, w^{\prime} \in \mathfrak{g}^{-1}$.
Proposition 4.5. Let $\left(\mathfrak{g}, \phi_{\mathfrak{g}},[\cdot, \cdot]\right)$ be a hom-Lie algebra with a complex product structure $\{J, K\}$. Then, the product \cdot on \mathfrak{g} given by (14) is a hom-left symmetric product if and only if $\Psi\left(u, u^{\prime}\right) w=\Psi^{*}\left(u^{\prime}, u\right) w^{\prime}=0$, for any $u, w \in \mathfrak{g}^{1}, u^{\prime}, w^{\prime} \in \mathfrak{g}^{-1}$.

Proof. Using (14), we get

$$
\begin{aligned}
& \phi_{\mathfrak{g}}\left(u+u^{\prime}\right) \cdot \phi_{\mathfrak{g}}\left(v+v^{\prime}\right)=\left(\phi_{\mathfrak{g}^{1}}(u)+\phi_{\mathfrak{g}^{-1}}\left(u^{\prime}\right)\right) \cdot\left(\phi_{\mathfrak{g}^{1}}(v)+\phi_{\mathfrak{g}^{-1}}\left(v^{\prime}\right)\right) \\
& =\phi_{\mathfrak{g}^{1}}(u) \cdot \phi_{\mathfrak{g}^{1}}(v)+\rho\left(\phi_{\mathfrak{g}^{1}}(u)\right)\left(\phi_{\mathfrak{g}^{-1}}\left(v^{\prime}\right)\right)+\rho^{\prime}\left(\phi_{\mathfrak{g}^{-1}}\left(u^{\prime}\right)\right)\left(\phi_{\mathfrak{g}^{1}}(v)\right)+\phi_{\mathfrak{g}^{-1}}\left(u^{\prime}\right) \cdot \phi_{\mathfrak{g}^{-1}}\left(v^{\prime}\right) \\
& \left.=\phi_{\mathfrak{g}^{1}}(u \cdot v)+\phi_{\mathfrak{g}^{-1}}\left(\rho(u) v^{\prime}\right)+\phi_{\mathfrak{g}^{1}}\left(\rho^{\prime}\left(u^{\prime}\right) v\right)+\phi_{\mathfrak{g}^{-1}}\left(u^{\prime} \cdot v^{\prime}\right)=\phi_{\mathfrak{g}}\left(u+u^{\prime}\right) \cdot\left(v+v^{\prime}\right)\right) .
\end{aligned}
$$

Also, a direct computation yields

$$
\begin{aligned}
& \left(\left(u+u^{\prime}\right) \cdot\left(v+v^{\prime}\right)\right) \cdot \phi_{\mathfrak{g}}\left(w+w^{\prime}\right)-\phi_{\mathfrak{g}}\left(u+u^{\prime}\right) \cdot\left(\left(v+v^{\prime}\right) \cdot\left(w+w^{\prime}\right)\right) \\
& \quad-\left(\left(v+v^{\prime}\right) \cdot\left(u+u^{\prime}\right)\right) \cdot \phi_{\mathfrak{g}}\left(w+w^{\prime}\right) \\
& \quad+\phi_{\mathfrak{g}}\left(v+v^{\prime}\right) \cdot\left(\left(u+u^{\prime}\right) \cdot\left(w+w^{\prime}\right)\right)=\Psi\left(u, v^{\prime}\right) w-\Psi\left(v, u^{\prime}\right) w \\
& \quad+\Psi^{*}\left(u^{\prime}, v\right) w^{\prime}-\Psi^{*}\left(v^{\prime}, u\right) w^{\prime}+\rho\left([u, v]_{\mathfrak{g}^{1}}\right)\left(\phi_{\mathfrak{g}^{-1}}\left(w^{\prime}\right)\right) \\
& \quad-\rho\left(\phi_{\mathfrak{g}^{1}}(u)\right)\left(\rho(v) w^{\prime}\right)+\rho\left(\phi_{\mathfrak{g}^{1}}(v)\right)\left(\rho(u) w^{\prime}\right) \\
& \quad+\rho^{\prime}\left(\left[u^{\prime}, v^{\prime}\right]_{\mathfrak{g}^{-1}}\right)\left(\phi_{\mathfrak{g}^{1}}(w)\right)-\rho^{\prime}\left(\phi_{\mathfrak{g}^{-1}}\left(u^{\prime}\right)\right)\left(\rho^{\prime}\left(v^{\prime}\right) w\right)+\rho^{\prime}\left(\phi_{\mathfrak{g}^{-1}}\left(v^{\prime}\right)\right)\left(\rho^{\prime}\left(u^{\prime}\right) w\right) .
\end{aligned}
$$

Since ρ and ρ^{\prime} are representations with respect to $\phi_{\mathfrak{g}^{-1}}$ and $\phi_{\mathfrak{g}^{1}}$, respectively, the above equation reduces to

$$
\begin{aligned}
& \left(\left(u+u^{\prime}\right) \cdot\left(v+v^{\prime}\right)\right) \cdot \phi_{\mathfrak{g}}\left(w+w^{\prime}\right)-\phi_{\mathfrak{g}}\left(u+u^{\prime}\right) \cdot\left(\left(v+v^{\prime}\right) \cdot\left(w+w^{\prime}\right)\right) \\
& \quad-\left(\left(v+v^{\prime}\right) \cdot\left(u+u^{\prime}\right)\right) \cdot \phi_{\mathfrak{g}}\left(w+w^{\prime}\right) \\
& \quad+\phi_{\mathfrak{g}}\left(v+v^{\prime}\right) \cdot\left(\left(u+u^{\prime}\right) \cdot\left(w+w^{\prime}\right)\right)=\Psi\left(u, v^{\prime}\right) w-\Psi\left(v, u^{\prime}\right) w \\
& \quad+\Psi^{*}\left(u^{\prime}, v\right) w^{\prime}-\Psi^{*}\left(v^{\prime}, u\right) w^{\prime} .
\end{aligned}
$$

Therefore, we conclude the assertion.
Let $\left(\mathfrak{g}, \phi_{\mathfrak{g}},[\cdot, \cdot]\right)$ be a hom-Lie algebra. We consider

$$
T(X, Y):=L_{X} Y-L_{Y} X-[X, Y]
$$

and call it the tensor torsion of \mathfrak{g}. Also, we define the tensor curvature \mathcal{K} of \mathfrak{g} as follows:

$$
\begin{equation*}
\mathcal{K}(X, Y):=L_{\phi_{\mathfrak{g}}(X)} \circ L_{Y}-L_{\phi_{\mathfrak{g}}(Y)} \circ L_{X}-L_{[X, Y]} \circ \phi_{\mathfrak{g}}, \tag{15}
\end{equation*}
$$

for any $X, Y \in \mathfrak{g}$.
Under the assumptions of Proposition 4.5, on a hom-Lie algebra ($\left.\mathfrak{g}, \phi_{\mathfrak{g}},[\cdot, \cdot]\right)$ with a complex product structure $\{J, K\}$, we set

$$
L_{X}^{C P} Y:=X \cdot Y, \quad \forall X, Y \in \mathfrak{g}
$$

where \cdot is the hom-left symmetric product on \mathfrak{g} that satisfies (14). Using (10), (14) and Proposition 4.5, we can write

$$
\begin{aligned}
& {[X, Y]=L_{X}^{C P} Y-L_{Y}^{C P} X} \\
& L_{\phi_{\mathfrak{g}}(X)}^{C P} \circ L_{Y}^{C P}-L_{\phi_{\mathfrak{g}}(Y)}^{C P} \circ L_{X}^{C P}=L_{[X, Y]_{\mathfrak{g}}}^{C P} \circ \phi_{\mathfrak{g}}
\end{aligned}
$$

which are equivalent to the vanishing of the torsion and the curvature tensors of (\mathfrak{g}, \cdot).
Proposition 4.6. Let $\left(\mathfrak{g}, \phi_{\mathfrak{g}},[\cdot, \cdot]\right)$ be a hom-Lie algebra with a complex product structure $\{J, K\}$. Under the assumptions of Proposition $4.5, J$ and K are invariant with respect to hom-left symmetric product - given by (14), i.e.,

$$
\begin{aligned}
L_{X}^{C P} \circ \phi_{\mathfrak{g}} \circ J & =\phi_{\mathfrak{g}} \circ J \circ L_{X}^{C P}, \\
L_{X}^{C P} \circ \phi_{\mathfrak{g}} \circ K & =\phi_{\mathfrak{g}} \circ K \circ L_{X}^{C P},
\end{aligned}
$$

for any $X \in \mathfrak{g}$. Moreover, the hom-left symmetric product . satisfying in two above equations is unique.

Proof. Let $u, v \in \mathfrak{g}^{1}, u^{\prime}, v^{\prime} \in \mathfrak{g}^{-1}$. Then, (11) and (14) imply

$$
\begin{aligned}
& L_{\left(u+u^{\prime}\right)}^{C P}\left(\left(\phi_{\mathfrak{g}} \circ J\right)\left(v+v^{\prime}\right)\right)=\left(u+u^{\prime}\right) \cdot\left(\phi_{\mathfrak{g}^{-1}}(J v)+\phi_{\mathfrak{g}^{1}}\left(J v^{\prime}\right)\right) \\
& \quad=u \cdot \phi_{\mathfrak{g}^{1}}\left(J v^{\prime}\right)+\rho(u)\left(\phi_{\mathfrak{g}^{-1}}(J v)\right)+\rho^{\prime}\left(u^{\prime}\right) \phi_{\mathfrak{g}^{1}}\left(J v^{\prime}\right)+u^{\prime} \cdot \phi_{\mathfrak{g}^{-1}}(J v) \\
& \quad=\phi_{\mathfrak{g}^{1}}\left(J \rho(u) v^{\prime}\right)+\phi_{\mathfrak{g}^{-1}}(J(u \cdot v))+\phi_{\mathfrak{g}^{1}}\left(J\left(u^{\prime} \cdot v^{\prime}\right)\right)+\phi_{\mathfrak{g}^{-1}}\left(J \rho^{\prime}\left(u^{\prime}\right) v\right) \\
& \quad=\left(\phi_{\mathfrak{g}} \circ J\right)\left(\left(u+u^{\prime}\right) \cdot\left(v+v^{\prime}\right)\right)=\left(\phi_{\mathfrak{g}} \circ J\right) L_{\left(u+u^{\prime}\right)}^{C P}\left(v+v^{\prime}\right) .
\end{aligned}
$$

Also, we conclude

$$
\begin{aligned}
& L_{\left(u+u^{\prime}\right)}^{C P}\left(\left(\phi_{\mathfrak{g}} \circ K\right)\left(v+v^{\prime}\right)\right)=\left(u+u^{\prime}\right) \cdot\left(\phi_{\mathfrak{g}}(K v)+\phi_{\mathfrak{g}}\left(K v^{\prime}\right)\right) \\
& \quad=\left(u+u^{\prime}\right) \cdot\left(v-v^{\prime}\right)=u \cdot v-\rho(u) v^{\prime}+\rho^{\prime}\left(u^{\prime}\right) v-u^{\prime} \cdot v^{\prime} \\
& \quad=\left(\phi_{\mathfrak{g}} \circ K\right)\left(\left(u+u^{\prime}\right) \cdot\left(v+v^{\prime}\right)\right)=\left(\phi_{\mathfrak{g}} \circ K\right) L_{\left(u+u^{\prime}\right)}^{C P}\left(v+v^{\prime}\right) .
\end{aligned}
$$

Finally, we show the uniqueness of hom-left symmetric product. Let \triangleright and \bullet be two such products and A is (1,2)-tensor defined by $A_{X}:=L_{X}^{\triangleright}-L_{X}^{\bullet}$. Since $L_{X}^{\triangleright} \circ \phi_{\mathfrak{g}} \circ K=$ $\phi_{\mathfrak{g}} \circ K \circ L_{X}^{\triangleright}$ and $L_{X}^{\bullet} \circ \phi_{\mathfrak{g}} \circ K=\phi_{\mathfrak{g}} \circ K \circ L_{X}^{\bullet}$, we obtain

$$
\begin{aligned}
A_{X} \circ \phi_{\mathfrak{g}} \circ K & =L_{X}^{\triangleright} \circ \phi_{\mathfrak{g}} \circ K-L_{X}^{\bullet} \circ \phi_{\mathfrak{g}} \circ K=\phi_{\mathfrak{g}} \circ K \circ L_{X}^{\triangleright}-\phi_{\mathfrak{g}} \circ K \circ L_{X}^{\bullet} \\
& =\phi_{\mathfrak{g}} \circ K \circ\left(L_{X}^{\triangleright}-L_{X}^{\bullet}\right)=\phi_{\mathfrak{g}} \circ K \circ A_{X} .
\end{aligned}
$$

Similarly, we have $A_{X} \circ \phi_{\mathfrak{g}} \circ J=\phi_{\mathfrak{g}} \circ J \circ A_{X}$. Moreover, A is symmetric, i.e.,

$$
A_{X} Y=L_{X}^{\triangleright} Y-L_{X}^{\bullet} Y=L_{Y}^{\triangleright} X+[X, Y]_{\mathfrak{g}}-L_{Y}^{\bullet} X+[Y, X]_{\mathfrak{g}}=A_{Y} X
$$

From the above equations, we deduce

$$
\begin{aligned}
A_{\phi_{\mathfrak{g}}(J X)} \phi_{\mathfrak{g}}(K Y) & =\left(\phi_{\mathfrak{g}} \circ K\right) A_{\phi_{\mathfrak{g}}(J X)} Y=\left(\phi_{\mathfrak{g}} \circ K\right) A_{Y} \phi_{\mathfrak{g}}(J X)=\left(\phi_{\mathfrak{g}} \circ K\right)\left(\phi_{\mathfrak{g}} \circ J\right) A_{Y} X \\
& =-\left(\phi_{\mathfrak{g}} \circ J\right)\left(\phi_{\mathfrak{g}} \circ K\right) A_{Y} X=-\left(\phi_{\mathfrak{g}} \circ J\right)\left(\phi_{\mathfrak{g}} \circ K\right) A_{X} Y \\
& =-A_{\phi_{\mathfrak{g}}(J X)} \phi_{\mathfrak{g}}(K Y),
\end{aligned}
$$

which gives $A=0$.
5. Hyper-para-Kähler hom-Lie algebra. In this section, we introduce hyper-paraKähler structures on hom-Lie algebras. Also, we present an example of these structures.

Definition 5.1. An almost complex structure J on a symplectic hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, \Omega\right)$ is called Ω-tame if

$$
\Omega\left(X, \phi_{\mathfrak{g}}(J X)\right)>0, \quad \forall X \neq 0 .
$$

Also, J is called Ω-compatible if it is Ω-tame and

$$
\Omega\left(\phi_{\mathfrak{g}}(J X), \phi_{\mathfrak{g}}(J Y)\right)=\Omega(X, Y), \quad \forall X, Y \in \mathfrak{g} .
$$

Using the condition Ω-compatible of the structure J, we can define a Riemannian metric $\langle\cdot, \cdot\rangle$ on \mathfrak{g} as follows:

$$
\langle X, Y\rangle:=\Omega\left(X, \phi_{\mathfrak{g}}(J Y)\right)
$$

From the above equations, we conclude $\left\langle\phi_{\mathfrak{g}}(J X), \phi_{\mathfrak{g}}(J Y)\right\rangle:=\langle X, Y\rangle$.
Definition 5.2. Let ($\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, \Omega$) be a symplectic hom-Lie algebra. An almost para-complex structure K on \mathfrak{g} is called Ω-compatible if

$$
\Omega\left(\phi_{\mathfrak{g}}(K X), \phi_{\mathfrak{g}}(K Y)\right)=-\Omega(X, Y), \quad \forall X, Y \in \mathfrak{g} .
$$

A pseudo-Riemannian metric associated with structure K is determined by $\ll X, Y \gg:=\Omega\left(\phi_{\mathfrak{g}}(K X), Y\right)$ that satisfies

$$
\ll \phi_{\mathfrak{g}}(K X), \phi_{\mathfrak{g}}(K Y) \gg=-\ll X, Y \gg .
$$

From Propositions 3.1 and 3.3, we deduce the following.
Corollary 5.3. Let J and K be complex and para-complex structures on a symplectic hom-Lie algebra (\mathfrak{g}, Ω), respectively. If J and K are Ω-compatible structures, then we have

$$
\begin{array}{r}
X \cdot{ }_{J} \phi_{\mathfrak{g}}(J Y)=\left(\phi_{\mathfrak{g}} \circ J\right)\left(X \cdot{ }_{J} Y\right), \\
X \cdot \cdot_{K} \phi_{\mathfrak{g}}(K Y)=\left(\phi_{\mathfrak{g}} \circ K\right)\left(X \cdot \cdot_{K} Y\right),
\end{array}
$$

where $\cdot{ }_{J}$ and ${ }_{K}$ denote the hom-Levi-Civita product associated with $\langle\cdot, \cdot\rangle$ and $\left.\ll \cdot, \cdot\right\rangle$, respectively.

Definition 5.4. A hyper-para-Kähler hom-Lie algebra is a symplectic hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, \Omega\right)$ endowed with a complex product structure $\{J, K\}$, such that J, K are Ω-compatible.

Using $\langle\cdot, \cdot\rangle$ and \ll, >, we have

$$
\left\langle\phi_{\mathfrak{g}}(K X), Y\right\rangle=\Omega\left(\phi_{\mathfrak{g}}(K X), \phi_{\mathfrak{g}}(J Y)\right)=\ll X, \phi_{\mathfrak{g}}(J Y) \gg .
$$

By Theorem 3.5 and taking into account the above definition, we can easily conclude the following:
(i) \mathfrak{g}^{1} and \mathfrak{g}^{-1} are subalgebras isotropic with respect to \ll, >, and Lagrangian with respect to Ω,
(ii) $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}},\langle\cdot, \cdot\rangle, J\right)$ is a Hermitian hom-Lie algebra,
(iii) $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, \lll, \gg, K\right)$ is a para-Hermitian hom-Lie algebra,
(v) for any $X \in \mathfrak{g}, X \cdot{ }_{K} \mathfrak{g}^{1} \subset \mathfrak{g}^{1}$ and $X \cdot{ }_{K} \mathfrak{g}^{-1} \subset \mathfrak{g}^{-1}$ (see $[\mathbf{1 3 , 1 4]}$ for more details).

Example 5.5. We consider the hom-Lie algebra ($\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}$) introduced in Example 2.2 endowed with complex product structure given in Example 3.6. We now consider the bilinear skew-symmetric nondegenerate form Ω as follows:

$$
\left[\begin{array}{cccc}
0 & 0 & A & 0 \tag{16}\\
0 & 0 & 0 & -A \\
-A & 0 & 0 & 0 \\
0 & A & 0 & 0
\end{array}\right], \quad A \neq 0
$$

Then, we get

$$
\begin{array}{ll}
\Omega\left(\phi_{\mathfrak{g}}\left(e_{1}\right), \phi_{\mathfrak{g}}\left(e_{3}\right)\right)=A=\Omega\left(e_{1}, e_{3}\right), & \Omega\left(\phi_{\mathfrak{g}}\left(e_{2}\right), \phi_{\mathfrak{g}}\left(e_{4}\right)\right)=-A=\Omega\left(e_{2}, e_{4}\right), \\
\Omega\left(\phi_{\mathfrak{g}}\left(e_{1}\right), \phi_{\mathfrak{g}}\left(e_{2}\right)\right)=0=\Omega\left(e_{1}, e_{2}\right), & \Omega\left(\phi_{\mathfrak{g}}\left(e_{1}\right), \phi_{\mathfrak{g}}\left(e_{4}\right)\right)=0=\Omega\left(e_{1}, e_{4}\right), \\
\Omega\left(\phi_{\mathfrak{g}}\left(e_{2}\right), \phi_{\mathfrak{g}}\left(e_{3}\right)\right)=0=\Omega\left(e_{2}, e_{3}\right), & \Omega\left(\phi_{\mathfrak{g}}\left(e_{3}\right), \phi_{\mathfrak{g}}\left(e_{4}\right)\right)=0=\Omega\left(e_{3}, e_{4}\right),
\end{array}
$$

and

$$
\Omega\left(\left[e_{i}, e_{j}\right], \phi_{\mathfrak{g}}\left(e_{k}\right)\right)+\Omega\left(\left[e_{j}, e_{k}\right], \phi_{\mathfrak{g}}\left(e_{i}\right)\right)+\Omega\left(\left[e_{k}, e_{i}\right], \phi_{\mathfrak{g}}\left(e_{j}\right)\right)=0, \quad i, j, k=1,2,3,4 .
$$

The above relations show that Ω is 2 -hom-cocycle, and so $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, \Omega\right)$ is a symplectic hom-Lie algebra. Using the above equations, we obtain

$$
\Omega\left(e_{1}, \phi_{\mathfrak{g}}\left(J e_{1}\right)=\Omega\left(e_{2}, \phi_{\mathfrak{g}}\left(J e_{2}\right)=\Omega\left(e_{3}, \phi_{\mathfrak{g}}\left(J e_{3}\right)=\Omega\left(e_{4}, \phi_{\mathfrak{g}}\left(J e_{4}\right)=A,\right.\right.\right.\right.
$$

i.e., the complex structure J is a Ω-tame. Also, we get

$$
\begin{gathered}
\Omega\left(\phi_{\mathfrak{g}}\left(J e_{i}\right), \phi_{\mathfrak{g}}\left(J e_{j}\right)\right)=\Omega\left(e_{i}, e_{j}\right), \quad i, j=1,2,3,4, \\
\Omega\left(\phi_{\mathfrak{g}}\left(K e_{i}\right), \phi_{\mathfrak{g}}\left(K e_{j}\right)\right)=-\Omega\left(e_{i}, e_{j}\right), \quad i, j=1,2,3,4, \\
\Omega\left(\phi_{\mathfrak{g}}\left(J e_{1}\right), \phi_{\mathfrak{g}}\left(J e_{3}\right)\right)=A=\Omega\left(e_{1}, e_{3}\right), \\
\Omega\left(\phi_{\mathfrak{g}}\left(J e_{2}\right), \phi_{\mathfrak{g}}\left(J e_{4}\right)\right)=-A=\Omega\left(e_{2}, e_{4}\right),
\end{gathered}
$$

and

$$
\begin{aligned}
& \Omega\left(\phi_{\mathfrak{g}}\left(K e_{1}\right), \phi_{\mathfrak{g}}\left(K e_{3}\right)\right)=-A=-\Omega\left(e_{1}, e_{3}\right), \\
& \Omega\left(\phi_{\mathfrak{g}}\left(K e_{2}\right), \phi_{\mathfrak{g}}\left(K e_{4}\right)\right)=A=-\Omega\left(e_{2}, e_{4}\right),
\end{aligned}
$$

i.e., the structures J and K are Ω-compatible. Therefore, $\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, \Omega\right)$ is a hyper-para-Kähler hom-Lie algebra.

Acknowledgements. The authors are very grateful to the referees for various helpful suggestions and comments.

REFERENCES

1. F. Ammar, Z. Ejbehi and A. Makhlouf, Cohomology and deformations of homalgebras, J. Lie Theory 21(4) (2011), 813-836.
2. A. Andrada, Complex product structures on 6 -dimensional nilpotent Lie algebras, Forum Math. 20 (2008), 285-315.
3. A. Andrada and S. Salamon, Complex product structures on Lie algebras, Forum Math. 17 (2005), 261-295.
4. S. Benayadi and M. Boucetta, On para-Kähler and hyper-para-Kähler Lie algebras, J. Algebra 436 (2015), 61-101.
5. A. V. Caldarella, On paraquaternionic submersions between paraquaternionic Kähler manifolds, Acta Appl. Math. 112 (2010), 1-14.
6. R. Campoamor-Stursberg, I. E. Cardoso and G. P. Ovando, Extending invariant complex structures, Int. J. Math. 26 (2015), 1-25.
7. J. Davidov, G. Grantcharov, O. Mushkarov and M. Yotov, Compact complex surfaces with geometric structures related to split quaternions, Nucl. Phys. 865 (2012), 330-352.
8. J. Hartwig, D. Larsson and S. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), 314-361.
9. C. Laurent-Gengoux, A. Makhlouf and J. Teles, Universal algebra of a hom-Lie algebra and group-like elements, J. Pure Appl. Algebra 222(5) (2018), 1139-1163.
10. D. Larsson and S. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocyclelike identities, J. Algebra 288 (2005), 321-344.
11. X. Li, D. Hou and C. Bai, Rota-Baxter operators on pre-Lie algebras, J. Nonlinear Math. Phys. 14 (2007), 269-289.
12. S. Majid, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations, Pacific J. Math. 141 (1990), 311-332.
13. E. Peyghan and L. Nourmohammadifar, Para-Kähler hom-Lie algebras, J. Algebra Appl. To appear.
14. E. Peyghan and L. Nourmohammadifar, Complex and Kähler structures on hom-Lie algebras, arXiv:1610.07775.
15. Y. Sheng, Representations of hom-Lie algebras, Algebras Represent. Theor. 15 (2012), 1081-1098.
16. Y. Sheng and C. Bai, A new approach to hom-Lie bialgebras, J. Algebra 399 (2014), 232-250.
17. Y. Sheng and D. Chen, hom-Lie 2-algebras, J. Algebra 376 (2013), 174-195.
18. D. Yau, hom-algebras and homology, J. Lie Theory 19 (2009), 409-421.
19. Y. Zhang, C. Bai and L. Guo, The category and operad of matching dialgebras, J. Algebra 21 (2013), 851-865.
