On smoothness of the Banach space embedding

J.R. Giles

For a Banach space X, smoothness at a point of the natural embedding \hat{X} in X^{**} , is characterised by a continuity property of the support mapping from X into X^* . It then becomes clear that there are many non-reflexive Banach spaces with smooth embedding, a matter of interest raised by Ivan Singer [Bull. Austral. Math. Soc. 12 (1975), 407-416].

For a normed linear space X with dual space X*, to each $x \in S(X) \equiv \{x \in X : ||x|| = 1\}$ we consider the set

$$D(x) \equiv \{f \in S(X^*) : f(x) = 1\};$$

(by the Hahn-Banach Theorem, D(x) is non-empty). A support mapping $x \mapsto f_x$ of X into X* maps each $x \in S(X)$ to $f_x \in D(x)$ and, for real $\lambda \ge 0$, $f_{\lambda x} = \lambda f_x$. X is smooth at $x \in S(X)$ if D(x) contains only one point. The norm of X is weakly (Gâteaux) differentiable at $x \in S(X)$ if, for real λ ,

$$\lim_{\lambda \to 0} \frac{\|x + \lambda y\| - \|x\|}{\lambda} \text{ exists for all } y \in S(X) ,$$

and is strongly (Fréchet) differentiable at $x \in S(X)$ if convergence to this limit is uniform for all $y \in S(X)$. X is smooth at $x \in S(X)$ if and only if the norm is weakly differentiable at x [3, p. 109].

We show the equivalence of two sets of conditions used to characterise differentiability of the norm. Our proof uses the extension to the Bishop-

Received 8 April 1975.

69

Phelps Theorem given by Bollobás [1, p. 181].

THE BISHOP-PHELPS-BOLLOBÁS THEOREM. For a Banach space X, given $0 < \varepsilon < 1$ and $x \in S(X)$, $f \in S(X^*)$ such that $|f(x)-1| < \varepsilon^2/4$, there exists a $y \in S(X)$ and $f_u \in D(y)$ such that $||f-f_u|| < \varepsilon$ and $||x-y|| < \varepsilon$.

LEMMA. For a Banach space X, the following conditions are equivalent at $x \in S(X)$:

- 1. for every sequence $\{f_n\}$ in $S(X^\star)$ such that $f_n(x) \neq 1$, we have that $\{f_n\}$ is
 - (i) $\sigma(X^*, X)$ -,
 - (ii) o(X*, X**)-,
 - (iii) norm-convergent;
- 2. every support mapping $x \mapsto f_x$ of X into X* is continuous on S(X) at x when X has the norm-topology and X* has the
 - (i) $\sigma(X^*, X) ,$
 - (ii) $\sigma(X^*, X^{**})_{-}$,
 - (iii) norm-topology.

Proof. Suppose that 1 holds. It is clear that all such sequences $\{f_n\}$ converge to the same limit f where $\|f\| \leq 1$. Then for any sequence $\{x_n\}$ in S(X) where $\{x_n\}$ is norm-convergent to x, we have for $f_{x_n} \in D(x_n)$ that

$$\left|f_{x_{n}}(x)-1\right| = \left|f_{x_{n}}(x)-f_{x_{n}}(x_{n})\right| \leq ||x-x_{n}||;$$

so $f_{x_n}(x) \rightarrow 1$ and, therefore, the sequence $\left\{f_{x_n}\right\}$ is

- (i) $\sigma(X^*, X) ,$
- (ii) $\sigma(X^*, X^{**})$ -,
- (iii) norm-convergent to f.

Since

$$\begin{split} |f(x)-1| &\leq \left| f(x) - f_{x_n}(x) \right| + \left| f_{x_n}(x) - f_{x_n}(x_n) \right| \\ &\leq \left| \left(f - f_{x_n} \right)(x) \right| + \|x - x_n\| \end{split}$$

we have that $f \in D(x)$. So there exists a support mapping which is continuous on S(X) at x. However, this implies that X is smooth at x and that every support mapping is continuous at x [3, p. 107 and p. 109].

Suppose that 2 holds. This implies that X is smooth at x. For any sequence $\{f_n\}$ in $S(X^*)$ where $f_n(x) \neq 1$, we have, by the Bishop-Phelps-Bollobás Theorem, that there exists a sequence $\{y_n\}$ in S(X) and a sequence $\{f_{y_n}\}$ where $f_{y_n} \in D(y_n)$, such that $\{f_n - f_{y_n}\}$ is normconvergent to 0 and $\{y_n\}$ is norm-convergent to x. But then $\{f_{y_n}\}$ is

- (i) $\sigma(X^*, X) = ,$
- (ii) $\sigma(X^*, X^{**})$ -,
- (iii) norm-convergent to $f_x \in D(x)$.

Therefore, $\{f_n\}$ is

- (i) $\sigma(X^*, X) ,$
- (ii) $\sigma(X^*, X^{**}) = ,$
- (iii) norm-convergent to f_r .

Šmulian has shown the equivalence of 1 (i) to weak differentiability of the norm at x [9, p. 91] and 1 (iii) to strong differentiability of the norm at x [10, p. 645]. The equivalence of 2 (i) to weak differentiability of the norm at x and 2 (iii) to strong differentiability of the norm at x is shown in [3, p. 107]. It is the particular equivalence of 1 (ii) and 2 (ii) which we require and it will follow from our theorem that these conditions are themselves equivalent to weak differentiability of the norm at $\hat{x} \in X^{**}$. Our theorem relies essentially on the following result given by Lindenstrauss and Tzafriri [6, p. 196].

THE PRINCIPLE OF LOCAL REFLEXIVITY. For a Banach space X, A is a finite dimensional subspace of X^{**} , B is a finite set in X^* , and $0 < \delta < 1$. There exists a linear mapping $T : A \rightarrow X$ such that $T(\hat{x}) = x$ for all $\hat{x} \in A \cap \hat{X}$, f(T(F)) = F(f) for all $F \in A$ and $f \in B$, and $(1-\delta)||F|| \le ||T(F)|| \le (1+\delta)||F||$ for all $F \in A$.

THEOREM. For a Banach space X, X^{**} is smooth at $\hat{x} \in S(\hat{X})$ if and only if every support mapping $x \mapsto f_x$ of X into X^* is continuous on S(X) at x when X has the norm-topology and X^* has the $\sigma(X^*, X^{**})$ topology.

Proof. Suppose that X^{**} is smooth at $\hat{x} \in S(\hat{X})$. Then every support mapping $F \mapsto \mathsf{F}_F$ of X^{**} into X^{***} is continuous on $S(X^{**})$ at \hat{x} when X^{**} has the norm-topology and X^{***} has the $\sigma(X^{***}, X^{**})$ topology, [3, p. 107]. Every support mapping $x \mapsto f_x$ of X into X^* induces a support mapping $\hat{x} \mapsto \hat{f}_x$ of \hat{X} into \hat{X}^* which can be extended to a support mapping $F \mapsto \mathsf{F}_F$ of X^{**} into X^{***} , and so it is continuous on S(X) at x when X has the norm-topology and X^* has the $\sigma(X^*, X^{**})$ -topology.

Suppose that X^{**} is not smooth at $\hat{x} \in S(\hat{X})$; that is, there exists an $\hat{f}_x \in S(\hat{X}^*)$ and $F \in S(X^{***})$ where $F \neq \hat{f}_x$ such that $f_x(x) = F(\hat{x}) = 1$. Now there exists an $F \in S(X^{**})$ and an r > 0 such that $(F-\hat{f}_x)(F) \ge r$. Using the Principle of Local Reflexivity as in [11], we have that for every $\delta > 0$ there exists a mapping T^{δ} : $\operatorname{span}\{\hat{f}_x, F\} \to X^*$ such that $T^{\delta}(\hat{f}_x) = f_x$, $\hat{x}(T^{\delta}F) = F(\hat{x}) = 1$, $F\left(T^{\delta}F-f_x\right) = (F-\hat{f}_x)(F) \ge r$, and $1 - \delta \le ||T^{\delta}F|| \le 1 + \delta$. Now consider a sequence $\{\delta_n\}$ where $\delta_n \to 0^+$. The sequence $\{f_n\}$ in $S(X^*)$, where $f_n = \left(T^{\delta n}F\right)/\left(||T^{\delta n}F||\right)$, has the property that $f_n(x) + 1$, but lim inf $F(f_n-f_x) \ge r$, so $\{f_n\}$ is not $\sigma(X^*, X^{**})$ -convergent to f_x . It follows from the lemma that there exists a support mapping which is not

continuous on S(X) at x when X has the norm-topology and X* has the $\sigma(X^*, X^{**})$ -topology.

We deduce, from the continuity characterisation of strong differentiability of the norm [3, p. 107], the following implication of our theorem.

COROLLARY 1. A Banach space X with norm strongly differentiable at $x \in S(X)$ has X** smooth at $\hat{x} \in S(\hat{X})$.

For a non-reflexive Banach space X, X^{***} has a non-smooth point in $S(\hat{X}^*)$, [5]. In [8] Singer has shown that for a non-reflexive Banach space X with a certain subspace property, X^{**} has a non-smooth point in $S(\hat{X})$. Our theorem provides us with many examples of non-reflexive Banach spaces with smooth embedding. Using Restrepo's result, [7], that every Banach space X with separable dual X^* can be equivalently renormed to have norm strongly differentiable on S(X), we can specify a significant class of such spaces.

COROLLARY 2. A Banach space X with separable dual X* can be equivalently renormed to have X** smooth on $S(\hat{X})$.

It is of interest to observe that a Banach space X with separable dual X⁴, so renormed does not necessarily have X^{**} smooth. If c_0 is so renormed, then \hat{c}_0 is smooth; but Day has shown that m cannot be given an equivalent smooth norm [2, p. 522]. However, it is possible to have c_0 so renormed that m is strongly differentiable on $D(l_1)$, [4, p. 395].

Note added in proof (13 June 1975). Dr E.N. Dancer has pointed out that the theorem can also be proved using the fact that $\hat{B}(X^*)$ is $\sigma(X^{***}, X^{**})$ -dense in $B(X^{***})$ and without using the principle of local reflexivity.

References

 [1] Béla Bollobás, "An extension to the theorem of Bishop and Phelps", Bull. London Math. Soc. 2 (1970), 181-182.

- [2] Mahlon M. Day, "Strict convexity and smoothness of normed spaces", Trans. Amer. Math. Soc. 78 (1955), 516-528.
- [3] J.R. Giles, "On a characterisation of differentiability of the norm of a normed linear space", J. Austral. Math. Soc. 12 (1971), 106-114.
- [4] J.R. Giles, "On a differentiability condition for reflexivity of a Banach space", J. Austral. Math. Soc. 12 (1971), 393-396.
- [5] J.R. Giles, "A non-reflexive Banach space has non-smooth third conjugate space", Canad. Math. Bull. 17 (1974), 117-119.
- [6] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces
 (Lecture Notes in Mathematics, 338. Springer-Verlag, Berlin, Heidelberg, New York, 1973).
- [7] Guillermo Restrepo, "Differentiable norms in Banach spaces", Bull. Amer. Math. Soc. 70 (1964), 413-414.
- [8] Ivan Singer, "On the problem of non-smoothness of non-reflexive second conjugate spaces", Bull. Austral. Math. Soc. 12 (1975), 407-416.
- [9] В.Л. Шмульян [V.L. Šmulian], "О некоторых геометрических свойствах единичной сферы нространства типа (В) " [On some geometrical properties of the unit sphere in the space of type (В)], Mat. Sb. N.S. 48 (1938), 90-94.
- [10] V.L. Šmulian, "Sur la dérivabilité de la norme dans l'espace de Banach", C.R. (Dokl.) Acad. Sci. URRS 27 (1940), 643-648.
- [11] Francis Sullivan, "Some geometric properties of higher duals of Banach spaces", Proc. Conf. Radon-Nikodym Prop. Kent. State. (to appear).

Department of Mathematics, University of Newcastle, Newcastle, New South Wales.

74