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De Sitter-like spacetimes

This chapter discusses the global existence and stability of de Sitter-like

spacetimes, that is, vacuum spacetimes with a de Sitter-like value of the

cosmological constant. This class of spacetimes admits a conformal extension

with a spacelike conformal boundary; see Theorem 10.1. The construction of

de Sitter-like spacetimes provides, arguably, the simplest application of the

conformal field equations to the analysis of global properties of spacetimes. The

original discussion of the analysis presented in this chapter was given in Friedrich

(1986b). The results of this seminal analysis were subsequently generalised to the

case of Einstein equations coupled to the Yang-Mills field in Friedrich (1991).

The methods used in the proof of the stability of the de Sitter spacetime can be

adapted to analyse the future non-linear stability of Friedman-Robertson-Walker

cosmologies with a perfect fluid satisfying the equation of state of radiation; see

Lübbe and Valiente Kroon (2013b).

The global existence and stability theorem proven in this chapter can be

formulated as follows:

Theorem (global existence and stability of de Sitter-like spacetimes).

Small enough perturbations of initial data for the de Sitter spacetime give rise

to solutions of the vacuum Einstein field equations which exist globally towards

the past and the future. The solutions have the same global structure as the de

Sitter spacetime. Thus, perturbations of the de Sitter spacetime are asymptotically

simple.

Intuitively, the last statement in the theorem can be read as saying that the

resulting spacetimes have a Penrose diagram similar to the one of the de Sitter

spacetime; see Figure 15.1. Accordingly, these spacetimes provide non-trivial (i.e.

dynamic) examples of asymptotically simple spacetimes. A detailed formulation

of the above result is given in the main text of the chapter; see Theorem 15.1.

To illustrate the comparative advantages of the hyperbolic reduction proce-

dures discussed in Chapter 13, two versions of the proof are provided. The

first one makes use of gauge source functions and follows the original proofs
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408 De Sitter-like spacetimes

Figure 15.1 Penrose diagram of a de Sitter-like spacetime.

in Friedrich (1986b, 1991). The second proof makes use of conformal Gaussian

systems and is based on the analysis given in Lübbe and Valiente Kroon (2009).

In both approaches, and as a consequence of the use of the conformal field

equations, it is possible to formulate initial value problems for the perturbed de

Sitter-like spacetime not only on a standard initial hypersurface at a fiduciary

finite time, but also on a hypersurface corresponding to the conformal boundary

of the spacetime.

The basic strategy used in this chapter to analyse the global existence of

solutions to the Einstein field equations had been previously used in Choquet-

Bruhat and Christodoulou (1981) to establish the global existence of solutions

to the Yang-Mills equations.

15.1 The de Sitter spacetime as a solution to the conformal

field equations

The basic conformal properties of the de Sitter spacetime have already been

discussed in Section 6.3. In this section the de Sitter spacetime is recast as a

solution to the conformal field equations. This is a first step in the construction

of an existence and global stability result.

15.1.1 Basic representation in the Einstein cosmos

For simplicity of the exposition, the cosmological constant will be assumed to

take the value λ = −3 so that the conformal factor realising the embedding of

the de Sitter spacetime (given in standard coordinates) into the Einstein static

universe is given by

Ξ̊ ≡ ΞdS = cos τ, (15.1)

where τ , the affine parameter of the geodesics introduced in Equation (6.9), is

used as a time coordinate. Here, and in the rest of the chapter, the symbol ˚

is used to indicate that the associated object is treated as a background field.
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15.1 The de Sitter spacetime as a solution to the conformal field equations 409

As a consequence of the conformal embedding, the geometry of the conformal

de Sitter spacetime is given by the corresponding expressions for the Einstein

static universe as discussed in Section 6.1.3. The various conformal fields on the

Einstein cylinder (R× S3, gE ), with

gE = dτ ⊗ dτ − h̄,

will be expressed in terms of an orthonormal frame {̊ea} such that

e̊0 = ∂τ , e̊i = ci, (15.2)

where {ci} denotes the globally defined frame on S3 discussed in Section 6.1.2;

see Equations (6.2a)–(6.2c).

In what follows, the manifold ME ≡ R× S3 will be described locally in terms

of Gaussian coordinates (τ, xα) where (xα) are some local coordinates on S3

which are extended to coordinates on a subset U ⊂ ME by requiring them to

remain constant along the geodesics parametrised by τ . As a consequence of the

gE -orthonormality of the vector fields {∂τ , ci}, it follows that

e̊a = δa
bcb ≡ e̊a

bcb. (15.3)

Using the structure equations – see Section 2.7.3 – on S3, it can be verified that

the connection coefficients γ̊i
j
k of the Levi-Civita connection D of the standard

metric of S3, h̄, with respect to the spatial frame {ci} are given by

γ̊i
j
k = −εi

j
k, (15.4)

where εijk denotes the components of the volume form on S3; see Section 6.1.2.

Now, observing that e̊0 = ∂τ is a Killing vector of the Einstein cylinder, it follows

that the connection coefficients associated to the frame {̊ea} are given by

Γ̊a
b
c = ε0a

b
c. (15.5)

The sign difference between Equations (15.4) and (15.5) arises from the fact that

the Riemannian metric implied by gE on S3 is negative definite.

Using the expressions (6.8a) and (6.8b) for the Schouten tensor of the Einstein

cylinder, it follows that, in terms of the frame {̊ea} described above, one has

L̊ab = δa
0δb

0 − 1

2
ηab, (15.6a)

d̊abcd = 0. (15.6b)

For later use, it is also observed that the components of the trace-free Ricci

tensor are given by

Φ̊ab = δa
0δb

0 − 1

4
ηab.
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410 De Sitter-like spacetimes

Finally, a further computation yields that

Σ̊ = − sin τ, Σ̊i = 0, (15.7a)

s̊ = −1

4
cos τ. (15.7b)

Spinorial expressions

To compute the spinorial counterpart of the fields discussed in the previous

section let τAA′
denote the spinorial counterpart of the vector

√
2∂τ so that one

has the normalisation τAA′τAA′
= 2.

The spinorial counterpart of the frame coefficients e̊a
b = δa

b – compare

Equation (15.3) – is given by

e̊AA′b = σAA′b,

where σAA′b denotes the Infeld-van der Waerden symbols; see Section 3.1.9. In

general, the coefficients e̊AA′a can be decomposed as

e̊AA′a =
1

2
τAA′ e̊a − τQA′ e̊(AQ)

a,

with

e̊a ≡ τAA′
e̊AA′a, e̊AB

a ≡ τB
A′

e̊AA′a.

By construction it follows that

e̊0 = 1, e̊(AB)
0 = 0,

e̊i = 0, e̊(AB)
i = σAB

i,

with σAB
i the spatial Infeld-van der Waerden symbols; see Section 4.2.2.

The spinorial counterpart of the trace-free Ricci tensor is given by

Φ̊AA′BB′ =
1

2
τAA′τBB′ − 1

4
εABεA′B′ ,

so that its space spinor version Φ̊ABCD = τB
A′

τD
C′

Φ̊AA′CC′ is given by

Φ̊ABCD =
1

2
εABεCD − 1

4
εACεBD.

From this last expression is can be verified that the irreducible components of

Φ̊ABCD are given by

Φ̊(ABCD) = 0, Φ̊AB = 0, Φ̊ = −3

4
;

compare the expressions in Equation (13.32). The rescaled Weyl spinor is trivially

given by

φ̊ABCD = 0.
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15.1 The de Sitter spacetime as a solution to the conformal field equations 411

Let Γ̊AA′BB′
CC′ denote the spinorial counterpart of the connection coef-

ficients Γ̊a
b
c. Using the spinorial expression of the spacetime volume form,

Equation (3.25), one finds that

Γ̊AA′BB′
CC′ =

1√
2
τDD′

εDD′AA′BB′
CC′ ,

=
i√
2

(
τC

B′
εC′A′δA

B − τBC′εCAδA′B
′)
.

The reduced spin connection coefficients can be obtained from the expression

Γ̊AA′BC = 1
2 Γ̊AA′BQ′

CQ′ . One obtains

Γ̊AA′BC =
i√
2
εA(BτC)A′ .

The space spinor version of the above expression is given by

Γ̊ABCD = τB
A′

Γ̊AA′CD = − i√
2
hABCD,

where it is recalled that hABCD ≡ −εA(CεD)B. It can be verified that Γ̊†
ABCD =

−Γ̊ABCD; that is, the spin connection coefficients are the components of an

imaginary spinor. From here it follows that

ξ̊ABCD = −ihABCD, χ̊ABCD = 0.

Gauge source functions

The gauge source functions associated to the considered conformal representation

of the de Sitter spacetime can be computed from the expressions given in the

previous section.

Treating the frame component e̊a
b as the component of a covariant tensor one

finds that

∇̊be̊b
a = ηcbe̊c(δb

a)− ηcbΓ̊c
e
bδe

a

= −ηcbΓ̊c
a
b = −ηcbε0c

a
b = 0.

It follows that the coordinate gauge source function is given by

F̊a(x) = ∇̊AA′
e̊AA′a = 0.

Similarly, treating the connection coefficients as the components of a (1, 2)-

tensor one has

ηda∇̊dΓ̊a
b
c = ηdaed(̊Γa

b
c) + ηdaΓ̊d

b
eΓ̊a

e
c − ηdaΓ̊d

e
aΓ̊e

b
c − ηdaΓ̊d

e
cΓ̊a

b
e

= ηdaε0d
b
eε0a

e
c − ηdaε0d

e
cε0a

b
e − ηdaε0d

e
aε0e

b
c = 0.
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412 De Sitter-like spacetimes

It follows that the frame gauge source functions for the present representation

of the de Sitter spacetime are given by

F̊BC(x) = ∇̊AA′
Γ̊AA′BC = 0.

Finally, the conformal gauge source function is given by the value of the Ricci

scalar. That is, one has

R̊(x) = −6.

Summary

The results from the previous analysis are summarised in the following:

Lemma 15.1 (de Sitter spacetime as a solution to the conformal

Einstein field equations) The fields

(Ξ̊, Σ̊, Σ̊i, e̊a
b, Γ̊a

b
c, L̊ab, d̊

a
bcd)

as given by Equations (15.1)–(15.5), (15.6a), (15.6b), (15.7a) and (15.7b) or,

respectively, their spinorial counterparts

(Ξ̊, Σ̊, Σ̊AA′ , e̊AA′b, Γ̊AA′BC , Φ̊AA′BB′ , φ̊ABCD)

defined over the Einstein cylinder R × S3 constitute a solution to the standard

frame vacuum conformal Einstein field Equations (8.32a) and (8.32b) and,

respectively, the spinorial vacuum conformal Einstein field Equations (8.38a)

and (8.38b). The gauge source functions associated to this solution are given by

F̊a(x) = 0, F̊AB(x) = 0, R̊(x) = −6.

15.1.2 Representation using conformal Gaussian systems

In Section 6.1.3 it has been shown that an alternative conformal representation

of the de Sitter spacetime is given by the conformal metric

ḡE = dτ̄ ⊗ dτ̄ −
(
1 +

τ̄2

4

)2

h̄,

where τ̄ is an affine parameter of the g̃dS-conformal geodesics as in Equation

(6.32); that is, ẋ = ∂ τ̄ . The associated covector is given by

βdS(τ̄) = − 2τ̄

4− τ̄2
dτ̄ .

This covector is exact, thus indicating that the Weyl connection ∇̂ = ∇̃+S(βdS)

is, in fact, a Levi-Civita connection. Now, the metric ḡE is related to the physical

de Sitter metric g̃dS via

ḡE = Θ2
dS g̃dS , ΘdS = 1− τ̄2

4
,
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15.1 The de Sitter spacetime as a solution to the conformal field equations 413

so that a calculation shows that

βdS = Θ−1
dSdΘdS .

That is, the Weyl connection associated to the congruence of conformal geodesics

(6.32) coincides with the Levi-Civita connection ∇̄ of the metric ḡE . Recalling

that gE and ḡE are related to each other by ḡE = Θ̄2gE with

Θ̄ ≡ 1 +
τ̄2

4
,

one finds that an adapted ḡE -orthonormal frame {ēa} is given by

ē0 = ∂ τ̄ = Θ̄−1∂τ , ēi = Θ̄−1ci.

This frame can be verified to be Weyl propagated. It follows that the frame

coefficients ēi
b, with ēi = ēi

bcb, are given by

ēi
b =

4

4 + τ̄2
δi

b. (15.8)

In terms of the above, the components of the covector d̄ = ΘdSβdS with respect

to the frame {ēa} are given by

d̄0 = Θ̇dS = − τ̄

2
, d̄i = 0.

The computation of the connection coefficients Γ̄a
b
c requires a certain amount

of care. Recalling that the connections ∇̂ = ∇̄ and ∇ are related to each other

via ∇̂−∇ = S(Ῡ) with Ῡ ≡ Θ̄−1dΘ̄, it follows by definition that

Γ̄a
b
c = ω̄b

cēa
a∇̄aēc

c

= ω̄b
cēa

a∇aēc
c + ω̄b

cēa
aēc

dSad
ecΥe,

where Ῡa ≡ 〈Ῡ, ēa〉. Using that ēa
a = Θ̄−1ea

a one computes

ω̄b
cēa

a∇aēc
c = −Θ̄−1ωb

cea
aec

c∇aΘ̄ + Θ̄−1ωb
cea

a∇aec
c

= −Ῡaδc
b + Θ̄−1Γa

b
c

and

Θ̄−1ω̄b
cēa

aēc
dSad

ec∇eΘ̄ = Ῡaδc
b + Ῡcδa

b − ηacῩ
b.

Accordingly, one concludes that

Γ̄a
b
c = Θ̄−1Γa

b
c +
(
Υcδa

b − ηacΥ
b
)
.

Using

Υa =
2τ̄

4 + τ̄2
δa

0,
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414 De Sitter-like spacetimes

it can be verified that Γ̄0
b
c = 0, as one would expect from the Weyl connection

associated to a congruence of conformal geodesics. Moreover,

f̄a =
1

4
Γ̂a

b
b = 0. (15.9)

A direct computation shows that

R[ḡE ] = − 36

4 + τ̄2
,

Schouten[ḡE ] =
1

2

(
1 +

1

4
τ̄2
)
h̄,

Weyl[ḡE ] = 0,

where the last expression follows simply by the conformal invariance of the Weyl

tensor. The components of the Schouten tensor with respect to the frame {ēa}
are given by

L̄0a = 0, L̄ij =
2

4 + τ̄2
δij . (15.10)

Furthermore, one has that

d̄abcd = 0. (15.11)

Spinorial expressions

In what follows, let τ̄AA′
denote the spinorial counterpart of the vector

√
2∂ τ̄ .

One has the normalisation τ̄AA′ τ̄AA′
= 2. Denoting the spinorial counterpart of

the frame coefficients by ēAA′a and making use of the standard space spinor

decomposition

ēAA′a =
1

2
τ̄AA′ ēa − τ̄QA′ ē(AQ)

a,

one obtains

ē0 = 1, ē(AB)
0 = 0, (15.12a)

ēi = 0, ē(AB)
i =

4

4 + τ̄2
σAB

i. (15.12b)

Now, let L̄AA′BB′ denote the spinorial counterpart of the components of the

Schouten tensor L̄ab. Setting L̄ABCD ≡ τ̄B
A′

τ̄D
C′

L̄AA′CC′ one finds

Θ̄CD = 0, Θ̄ABCD = − 2

4 + τ̄2
hABCD,

with Θ̄CD ≡ L̄Q
Q

CD and Θ̄ABCD ≡ L̄(AB)(CD). For the rescaled Weyl spinor

one has that

φ̄ABCD = 0.
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15.1 The de Sitter spacetime as a solution to the conformal field equations 415

To obtain a spinorial expression for the connection coefficients one observes

that the spinorial counterpart of ζa
b
c ≡ δc

0δa
b − ηacδ0

b is given by

ζAA′BB′
CC′ =

1√
2

(
δA

BδA′B
′
τ̄CC′ − εACεA′C′ τ̄BB′)

,

so that the associated reduced coefficients are

ζAA′BC ≡ 1

2
ζAA′BQ′

CQ′

=
1

2
√
2

(
δA

B τ̄CA′ + εAC τ̄BA′
)
.

The space spinor version ζABCD ≡ τ̄B
A′

ζAA′CD takes the form

ζABCD = − 1√
2
hABCD.

From the expressions computed in the previous paragraph it follows that

Γ̄ABCD = − 2(τ̄ + 2i)√
2(1 + 4τ̄2)

hABCD

and, consequently,

ξ̄ABCD = − 4i

4 + τ̄2
hABCD, (15.13a)

χ̄ABCD =
2τ̄

4 + τ̄2
hABCD, (15.13b)

fAB = 0. (15.13c)

To keep track of the behaviour of the conformal Gaussian gauge system,

one considers separation fields measuring the deviation of the congruence of

conformal geodesics. The separation fields are governed by Equations (13.67a)

and (13.67b). Assume, without loss of generality, a separation vector field z that

is spatial on the fiduciary hypersurface S� described by the condition τ̄ = 0, so

that

zAA′� = −τQA′z(AQ)� .

Using Equations (15.13b) and (15.13c) one can integrate Equations (13.67a) and

(13.67b) to find

z = 0, z(AB) =

(
1 +

1

4
τ̄2
)
z(AB)�. (15.14)

Observe that z(AB) �= 0 for all τ̄ . Thus, the congruence of conformal geodesics

remains non-singular. This observation is key to ensure the non-singular

behaviour of the gauge in the perturbed spacetime.
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416 De Sitter-like spacetimes

Summary

The results of the analysis of the last two sections are summarised in the

following:

Lemma 15.2 (de Sitter spacetime as a solution to the extended

conformal Einstein field equations) The fields

(Θ̄ , d̄a, ēa
b, Γ̄a

b
c, L̄ab, d̄

a
bcd)

as given by Equations (15.8)–(15.11) or, equivalently, their spinorial counterparts

(Θ̄, d̄AA′ , ēAA′b, Γ̄AA′BC , L̄AA′BB′ , φ̄ABCD)

defined over R×S3 constitute a solution to the extended conformal Einstein field

Equations (8.46) and the associated gauge constraints (8.48) and, respectively,

the spinorial vacuum conformal Einstein field Equations (8.54a) and (8.54b) and

(8.55).

15.2 Perturbations of initial data for the de Sitter spacetime

This section clarifies the notion of perturbations of initial data for the de Sitter

spacetime. In what follows, let S denote a three-dimensional manifold with

the topology of S3. On S one considers a solution to the vacuum conformal

Hamiltonian and momentum constraint equations (S,h,K,Ω,Σ) with a de

Sitter-like value of the cosmological constant, that is, Equations (11.15a) and

(11.15b) with � = 0 and jk = 0.

Remark. For conceptual clarity it is often convenient to distinguish between the

3-manifold S and its embedding, S�, in the spacetime arising as the development

of the initial data set (S,h,K,Ω,Σ).

15.2.1 Initial data on a standard initial hypersurface

Using the procedure described in Section 11.4.3, the tensor fields h and K can

be used to construct a solution to the vacuum conformal constraint Equations

(11.35a)–(11.35j). As the 3-manifold S is assumed to be compact, one can,

without loss of generality, assume that Ω = 1 and Σ = 0.

As S ≈ S3, there exists a diffeomorphism ψ : S → S3 which can be used to

pull back coordinates x = (xα) in S3 to S. In this way one obtains a system of

coordinates x′ ≡ x ◦ψ on S and can write x′ = (x′α). The diffeomorphism ψ can

be used to push forward the vector fields {ci} on T (S3) to vector fields {ψ−1
∗ ci}

on T (S) and to pull back their dual covectors {αi} on T ∗(S3) to covectors {ψ∗α
i}

on T ∗(S). For simplicity of the presentation, in a slight abuse of notation, the

vectors and covectors {ψ−1
∗ ci} and {ψ∗α

i} will be written (except for the next

subsection) as {ci} and {αi}, respectively.
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15.2 Perturbations of initial data for the de Sitter spacetime 417

Gauge fixing

The construction described in the previous paragraph depends strongly on the

particular choice of the diffeomorphism ψ. This gauge freedom can be fixed

by considerations similar to those used in the discussion of the coordinate gauge

source functions of Section 13.2.1.

Given an h-orthonormal frame {ei} on S, one can write ei = ei
j(ψ−1

∗ cj) and

use the frame coefficients ei
j to introduce a spatial coordinate gauge source

function F i(x′) via the relation

Djej
i = F i(x′),

where D denotes the Levi-Civita covariant derivative of h. Writing

ψ∗α
i = (ψ∗α

i)αdx
′α

and noticing that ei
j = 〈ψ∗α

j , ei〉 one finds that Djej
i = Dβ(ψ∗α

i)β .

Expressing the coordinates x in S3 in terms of the coordinates x′ on S in the

form xα = xα(x′) one finds, by a calculation similar to the one discussed in

Section 13.2.1, that the diffeomorphism ψ : S → S3 is a harmonic map. That

is, one has that

DβDβx
α = 0,

if

hαβ �Dγα
i
δ
∂xγ

∂x′α
∂xδ

∂x′β = F i(x′),

where �D denotes the Levi-Civita connection of the metric h̄ on S3 and αi =

αi
αdx

α. Finally, if one lets x′α = x′α(x) be the identity map so that x′ = x, one

concludes that

F i(x) = δjkγ̊j
i
k = 0,

where the last equality follows from (15.4). This construction and the resulting

spatial gauge source function fixes the gauge freedom in the diffeomorphism ψ;

see Figure 15.2.

Figure 15.2 Construction of coordinates on a compact three-dimensional
manifold describing perturbations of standard de Sitter initial data. The
identification of the 3-manifolds S and S3 is realised through a harmonic map;
see main text for further details.
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418 De Sitter-like spacetimes

Parametrising the perturbation data

While the frame {ci} is orthonormal with respect to the standard metric h̄ of

S3, in general, this will not be the case with respect to the 3-metric h on S.
Now, let {ei} denote an h-orthonormal frame over T (S) and let {ωi} denote its

corresponding cobasis. In what follows, it will be assumed that one can write

ei = ci + ĕi, (15.15)

for some vectors {ĕi}. This is essentially equivalent to saying that one has

introduced coordinates x = (xα) on S such that

h = h̄+ h̆.

It is important to emphasise that the above statement depends on the gauge.

From the split in Equation (15.15), it follows that the solution to the conformal

constraint equations implied by (Ω = 1,Σ = 0,h,K) on S can be written as

ea
b = δa

b + ĕa
b,

γi
j
k = εi

j
k + γ̆i

j
k, χij = K̆ij ,

Lij = δij + L̆ij , Li = δi
0 + L̆i,

dij = d̆ij , d∗ij = d̆∗ij ,

where the components of the various fields are expressed as components with

respect to the frame {ei} as given in (15.15) and one has

ĕa
b = 0, γ̆i

j
k = 0, L̆ij = 0, L̆i = 0, d̆ij = 0, d̆∗ij = 0,

if and only if

ĕi = 0, K = 0.

Accordingly, the fields topped with a ˘ together withKij describe the deviation

of a solution to the conformal constraint equations from data for the exact de

Sitter spacetime. It is important to observe that as

ĕa
b, γ̆i

j
k, K̆ij , L̆ij , L̆i, d̆ij , d̆∗ij

are scalars, by virtue of the diffeomorphism ψ : S → S3, they can be considered

as fields over S3. As such, for m ≥ 0, one defines the Sobolev norms

‖ ĕa
b ‖S,m≡

∑
a,b

‖ ĕa
b ‖S3,m, ‖ γ̆i

j
k ‖S,m≡

∑
i, j,k

‖ γ̆i
j
k ‖S3,m,

and, similarly, for the other fields – the sums in the previous expressions are

carried out over the independent components of the particular field under

consideration. In terms of these norms, it will be said that the initial data for
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the conformal field equations are ε-close in the norm ‖ ‖S,m to initial data

for the de Sitter spacetime if

‖ ĕa
b ‖S,m + ‖ γ̆i

j
k ‖S,m + ‖ K̆ij ‖S,m + ‖ L̆ij ‖S,m

+ ‖ L̆i ‖S,m + ‖ d̆ij ‖S,m + ‖ d̆∗ij ‖S,m< ε. (15.16)

This notion of closeness to initial data is gauge dependent. Nevertheless, it is the

appropriate one to exploit the existence and stability theorems of Chapter 12.

15.2.2 Initial data on the conformal boundary

An important property of de Sitter-like spacetimes is that the individual

components of the conformal boundary can serve as Cauchy hypersurfaces

of the unphysical spacetimes. Accordingly, it is possible to formulate for these

spacetimes an asymptotic initial value problem where initial data are

prescribed on a 3-manifold corresponding to, say, I −.

The solutions to the conformal constraint equations at the conformal boundary

have been discussed in Section 11.4.4. In particular, it has been shown that one

needs to prescribe on I − a 3-metric h, a symmetric trace-free and divergence-

free tensor corresponding to the initial value of the electric part of the rescaled

Weyl tensor and a function κ. From these free data it is possible to compute the

values of the remaining conformal fields. In the particular case of the exact de

Sitter spacetime it can be verified that the asymptotic free data are given by

h � h̄, dij � 0, κ � 0,

where components are expressed with respect to the h̄-orthonormal frame {ci}.
From the above one finds

ei
j � δi

j , γi
j
k � εi

j
k, Kij � 0, Li � 0, Lij � 1

2
δij , d∗ij � 0.

Perturbations of the above asymptotic initial data for the de Sitter spacetime

are discussed in a manner similar to that of perturbations of standard Cauchy

data. Accordingly, assuming that I − ≈ S3, one can make use of diffeomorphisms

ψ : I − → S3 to introduce coordinates on the conformal boundary and to

pull back the components of the various conformal fields to S3. Initial data

corresponding to perturbations of asymptotic de Sitter initial data will then be

described in terms of fields

h = h̄+ h̆, dij = d̆ij , κ̆,

where d̆ij are the components of a symmetric, h-trace-free and h-divergence-

free tensor expressed in terms of the components of the h-orthonormal frame

{ei} = {ci + ĕi}. Mimicking the standard Cauchy case, the perturbation of

asymptotic data for the de Sitter spacetime will be said to be ε-close to exact

asymptotic de Sitter data in the ‖ ‖m-norm if the various conformal fields

on I − satisfy an inequality of the form of (15.16). In principle, it is possible to
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express this smallness requirement in terms of a smallness condition on the basic

perturbation data ĕi
j , d̆ij and κ̆; this idea will not be further pursued here.

15.3 Global existence and stability using gauge source functions

In this section a first proof of the global existence and stability of de Sitter-

like spacetimes is provided. This proof makes use of the hyperbolic reduction of

the spinorial conformal field equations using gauge source functions as discussed

in Section 13.2 and of the conformal representation of the de Sitter spacetime

discussed in Section 15.1.1. This approach can be readily generalised to include

trace-free matter. The discussion presented here follows the seminal work by

Friedrich (1986b, 1991).

15.3.1 Gauge considerations

The first step in the construction of de Sitter-like spacetimes consists of the fixing

of the gauge in the evolution equations. This gauge fixing allows one to relate,

in an unambiguous manner, fields in the background de Sitter spacetime with

fields in the perturbed spacetime; see Figure 15.3.

As the (unphysical) spacetime (M, g) to be constructed will be of the form

M ≈ [a, b]×S3 ⊂ R×S3 with a, b ∈ R, it is natural to make use of the coordinates

and frames in the background spacetime (R × S3, gE ) to coordinatise and

construct a suitable gauge in the perturbed spacetime. Following the discussion

of Section 13.2.1, coordinates x = (τ, xα) on the Einstein cylinder ME = R× S3

can be regarded as coordinates on a perturbed spacetime (M, g) if one identifies

the manifolds M and ME . This coordinatisation is equivalent to the coordinate

gauge source choice

Fa(x) = −ηbcΓ̊b
a
c = 0,

Figure 15.3 Schematic representation of the construction of coordinates on a
perturbation of the de Sitter spacetime (M, g) using coordinates on the exact

de Sitter spacetime (ME , gE ) and a diffeomorphism ϕ : M → M̊ as described
in the main text. The particular realisation of the diffeomorphism identifies
the manifolds M and ME in such a way that ϕ is a wave map.
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where the last equality follows from the discussion leading to Lemma 15.1. This

particular choice of coordinate gauge source function makes the identification

between M and ME a wave map; see Section 13.2.1.

By similar considerations, the vectors {̊ca} = {∂τ , c̊i} originally defined on

ME can be regarded as vectors on the perturbed spacetime (M, g) in terms of

which the g-orthonormal frame {ea} can be expanded by writing ea = ea
b̊cb.

In an analogous manner, the fields

ů = (Ξ̊, Σ̊, Σ̊AA′ , e̊AA′a, Γ̊AA′BC , Φ̊AA′BB′ , φ̊ABCD),

as given by Lemma 15.1, can be regarded as fields over M. It is important to

emphasise that all of the above fields (except for e̊AA′a) are, in fact, components

of tensors with respect to the background frame {̊ea} = {δab̊cb}.
The gauge fixing is completed by setting the frame gauge source function

FAB(x) and the conformal gauge source function R(x) equal to their values in

the background spacetime (R× S3, gE ). That is, one sets

FAB(x) = 0, R(x) = −6;

compare Lemma 15.1.

15.3.2 The evolution system

The hyperbolic reduction procedure discussed in Section 13.2 and summarised in

Proposition 13.1, leads to an evolution system which, in terms of local coordinates

x = (τ, xα) of an open domain U ⊂ R× S3, takes the form

∂τσ = G(Γ)σ +H(σ,υ), (15.17a)(
I+D0(e)

)
∂τυ +Dα(e)∂αυ = E(Γ)υ + F(σ,υ,φ), (15.17b)(

I+A0(e)
)
∂τφ+Aα(e)∂αφ = B(Γ)φ, (15.17c)

where σ encodes the conformal factor Θ and the independent components of its

concomitants; υ collects the independent components of the frame components,

the connection coefficients and the trace-free Ricci spinor and φ groups the

independent components of the rescaled Weyl spinor.

To apply the methods of the theory of hyperbolic partial differential equations

(PDEs) discussed in Chapter 12 it is convenient to split the various field

unknowns into a background part and a perturbation part. More precisely,

one sets

Ξ = Ξ̊ + Ξ̆, Σ = Σ̊ + Σ̆, ΣAB = Σ̆AB, s = s̊+ s̆, (15.18a)

e0 = e̊0 + ĕ0, eAB
0 = ĕAB

0, (15.18b)

ei = ĕi, eAB
i = e̊AB

i + ĕAB
i, (15.18c)

ΓAB = Γ̆AB, Γ(AB)CD = Γ̊(AB)CD + Γ̆(AB)CD, (15.18d)

Φ(ABCD) = Φ̆(ABCD), ΦAB = Φ̆(AB), Φ = Φ̊ + Φ̆, (15.18e)

φABCD = φ̆ABCD, (15.18f)
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where

Ξ̊, Σ̊, s̊, e̊0, e̊AB
i, Γ̊(AB)CD, Φ̊

are the non-vanishing components of the fields describing the background de

Sitter solution as discussed in Section 15.1.1, while

Ξ̆, Σ̆, Σ̆AB, s̆, ĕa, ĕAB
a, Γ̆AB, Γ̆(AB)CD, (15.19a)

Φ̆(ABCD), Φ̆(AB), Φ̆, φ̆ABCD (15.19b)

describe the perturbations away from the de Sitter solution. The split between

background and perturbations given by Equations (15.17a)–(15.17c) depends

strongly on the choice of gauge.

By construction, the background fields are a solution to the conformal

evolution Equations (15.17a)–(15.17c). Consequently, one has

∂τ σ̊ = G(Γ̊)σ̊ +H(σ̊, υ̊),(
I+D0(̊e)

)
∂τ υ̊ +Dα(̊e)∂αυ̊ = E(Γ̊)υ̊.

Accordingly, substituting now the ansatz (15.18a)–(15.18f) in the evolution

system (15.17a)–(15.17c), one obtains equations for the independent components

of the perturbation fields (15.19a) and (15.19b):

∂τ σ̆ = G(Γ̊)σ̆ +G(Γ̆)σ̊ +G(Γ̆)σ̆

+H(σ̊, ῠ) +H(σ̆, υ̊) +H(σ̆, ῠ), (15.20a)(
I+D0(̊e+ ĕ)

)
∂τ ῠ +Dα(̊e+ ĕ)∂αῠ = E(Γ̆)υ̊ +E(Γ̊)ῠ +E(Γ̆)ῠ + F(σ̊, υ̊, φ̆)

+ F(σ̊, ῠ, φ̆) + F(σ̆, υ̊, φ̆) + F(σ̆, ῠ, φ̆)

−
(
I+D0(ĕ)

)
∂τ υ̊, (15.20b)(

I+A0(̊e+ ĕ)
)
∂τ φ̆+Aα(̊e+ ĕ)∂αφ̆ = B(Γ̊+ Γ̆)φ̆. (15.20c)

In view of the properties of the original conformal evolution Equation (15.17a)–

(15.17c) the above equations constitute a symmetric hyperbolic evolution system

for the components of ŭ = (σ̆, ῠ, φ̆). Accordingly, the theory of hyperbolic PDEs,

as discussed in Chapter 12, can be applied in domains of the form [0, τ•]×S3 with

τ• > 0, to guarantee the existence of solutions and to assert Cauchy stability.

In particular, as the background solution (σ̊, υ̊, φ̊) is well defined on the whole

of R × S3 one obtains the following existence, uniqueness and Cauchy stability

result:

Proposition 15.1 (existence of solutions to the standard conformal

evolution equations) Let u� = ů� + ŭ� denote de Sitter-like initial data for

the conformal field equations prescribed on a 3-manifold S ≈ S3. Given m ≥ 4

and τ• > 3
4π, then:

https://doi.org/10.1017/9781009291347.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.020


15.3 Global existence and stability using gauge source functions 423

(i) There exists ε > 0 such that if

‖ ŭ� ‖m< ε,

then there exists a Cm−2 unique solution to the conformal evolution

Equations (15.20a)–(15.20c) defined on [0, τ•]× S3.

(ii) Given a sequence of initial data u
(n)
� = ů

(n)
� + ŭ

(n)
� such that

‖ ŭ
(n)
� ‖m< ε and ‖ ŭ

(n)
� ‖m→ 0 as n → ∞,

then for the corresponding solutions ŭ(n) ∈ Cm−2([0, τ•]× S3) one has that

‖ ŭ(n) ‖m→ 0 uniformly in τ ∈ [0, τ•] as n → ∞.

Proof The above proposition is a direct consequence of Theorem 12.4. To apply

this theorem it is necessary to ensure that both

I+A0(̊e� + ĕ�) and I+D0(̊e� + ĕ�) (15.21)

are both positive definite away from zero in a uniform manner over S3. An explicit

calculation shows that

I+A0(̊e�) and I+D0(̊e�)

are positive definite away from zero. Thus, by setting ε sufficiently small,

condition (15.21) can be guaranteed. By further reducing ε, if necessary, one

can ensure that all solutions with ‖ ŭ� ‖m< ε have a minimum existence time

τ• > 3
4π. Taking into account the above, point (i) follows from points (i)–(iii) of

Theorem 12.4 while point (ii) follows from point (iv) in the same theorem.

Remark 1. The purpose of point (i) in Proposition 15.1 is to guarantee a

minimum existence time of solutions to the evolution system (15.20a)–(15.20c)

containing the conformal boundary of the perturbed solution.

Remark 2. Point (ii) in Proposition 15.1 is a statement of Cauchy stability.

It ensures that data sufficiently close to data for the de Sitter spacetime give

rise to solutions with an existence time similar to that of the background

solution. Moreover, within the established existence time, the solutions are

suitably close to the background solution. Observe, however, that this result

makes no statement about whether a particular solution converges in time to the

background solution. Thus, one has obtained only an orbital stability result

for the conformal evolution Equations (15.20a)–(15.20c).

The solutions ŭ provided by Proposition 15.1 give rise, in turn, to a solution

to the conformal field equations. More precisely, one has:

Proposition 15.2 (propagation of the constraints for the standard

conformal evolution system) Given a solution u� = ů�+ ŭ to the conformal
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evolution Equations (15.20a)–(15.20c) on [0, τ•] × S3 such that the conformal

constraint equations are satisfied on S�, then

Za = 0, Zab = 0, Σa
c
b = 0, Ξc

dab = 0,

Δcdb = 0, Λbcd = 0,

on [0, τ•]× S3.

Proof From the discussion in Chapters 11 and 13 it follows that if the conformal

constraint equations and the conformal evolution equations are satisfied on the

initial hypersurface S�, then one obtains

Za|S�
= 0, Zab|S�

= 0, Σa
c
b|S�

= 0, Ξc
dab|S�

= 0,

Δcdb|S�
= 0, Λbcd|S�

= 0.

Now, from Proposition 13.2 it follows that the above zero quantities satisfy a

symmetric hyperbolic subsidiary evolution system. As the initial data for this

evolution system vanish and the evolution system is homogeneous in the zero

quantities, it follows from Corollary 12.1 that the zero quantities must vanish on

[0, τ•)× S3 so that the result follows.

Locating the conformal boundary

The existence of solutions to the evolution Equations (15.20a)–(15.20c) for a

minimum existence interval [0, τ•) ⊃ [0, 3
4π) provides room enough for the

development of the conformal boundary. That this does indeed happen is crucial

for the interpretation of the solution to the conformal evolution equations as a

global solution to the Einstein field equations. This property is ensured by the

following:

Lemma 15.3 (structure of the conformal boundary) Given a solution ŭ,

as given by Proposition 15.1, with ‖ ŭ� ‖m< ε sufficiently small, there exists a

function τ+ = τ+(x), x ∈ S3 such that 0 < τ+(x) < τ• and

Ξ > 0 on M̃ ≡
{
(τ, x) ∈ R3 | 0 ≤ τ < τ+(x)

}
,

Ξ = 0 and ΣaΣ
a = −1

3
λ < 0 on I + ≡

{
(τ+(x), x) ∈ R× S3

}
.

Remark. The above lemma ensures the existence, at least for sufficiently small

perturbations, of a complete spacelike component of the conformal boundary.

Observe also that the function τ+(x) provided by Lemma 15.3 defines a

diffeomorphism between S3 and I +. Consequently I + ≈ S3.

Proof The key observation to prove this result is that Ξ̊|τ=3π/4 < 0. Using

Proposition 15.1 (ii), for sufficiently small ε > 0 one has (Ξ̊ + Ξ̆)|τ=3π/4 < 0. As

(Ξ̊+Ξ̆)|τ=0 > 0 there must exist a τ+ for which Ξ = 0. By reducing ε further – if
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necessary – one has that τ is unique, and, hence, the function τ+(x) is well

defined. Now, from the conformal Equation (8.28e) it follows that

∇aΞ∇aΞ = −1

3
λ > 0, if Ξ = 0.

Accordingly, τ = τ+(x) defines a regular spacelike hypersurface I +.

The last step in the present analysis is to show that the obtained solutions to

the conformal evolution Equations (15.20a)–(15.20c) give rise to a global solution

to the vacuum Einstein field equations. One has the following:

Theorem 15.1 (global existence and stability of de Sitter-like space-

times: gauge source functions version) Given m ≥ 4, a solution u� =

ů� + ŭ� to the conformal constraint equations with de Sitter-like cosmological

constant such that ‖ ŭ� ‖m< ε for ε > 0 suitably small gives rise to a unique

Cm−2 solution to the conformal Einstein field equations on

M ≡ M̃ ∪ I +

with M̃ and I + as defined in Lemma 15.3. This solution implies, in turn, a

solution (M̃, g̃), to the Einstein field equations with de Sitter-like cosmological

constant for which I + represents conformal infinity.

Remark. The above theorem together with Propositions 15.1 and 15.2 and

Lemma 15.3 constitute a technical version of the main theorem of this chapter.

As the component of the conformal boundary obtained by this procedure is a

spacelike hypersurface with the topology of S3, one concludes that the solution

(M̃, g̃) to the Einstein field equations has the same global structure as the exact

de Sitter spacetime; see Figure 15.4.

Proof From Proposition 8.2; it follows that a solution to the conformal Einstein

field equations implies the existence of a metric g̃ satisfying the Einstein field

Figure 15.4 Penrose diagram of a perturbation of the de Sitter spacetime
given by Theorem 15.1. The spacetime is obtained as a result of an initial
value problem on the Cauchy hypersurface S�.
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equations wherever Ξ �= 0. The statement about the interpretation of the

conformal boundary follows from Lemma 15.3.

15.4 Global existence and stability using conformal Gaussian systems

This section provides an alternative proof of the main theorem of this chapter

using the extended conformal Einstein field equations expressed in terms of a

conformal Gaussian system. This alternative proof allows one to contrast the

strengths and weaknesses of the two different hyperbolic reduction methods

discussed in Chapter 13. As will be seen in the following, the use of properties

of conformal geodesics greatly simplifies the analysis of the conformal boundary

of the spacetime. Generalising this approach to include matter fields is, however,

more complicated than if one were to use gauge source functions.

The details of the construction of a conformal Gaussian system for the

extended conformal field equations have already been discussed in Section 13.4.1.

To apply this general discussion to the analysis of perturbations of the de Sitter

spacetime, one needs to specify the particular form of the conformal factor Θ

and the covector d associated to the congruence of conformal geodesics. This is

done in the following subsection.

15.4.1 A priori analysis of the structure of the conformal boundary

of perturbations of the de Sitter spacetime

One of the advantages of the formulation of the conformal evolution equations in

terms of conformal Gaussian systems is that it provides an a priori knowledge of

the location and structure of the conformal boundary; that is, one has an explicit

description of the locus of its points, even before knowing that a solution actually

exists. This a priori knowledge provides valuable insight into the nature of the

underlying initial value problem.

In what follows, let (M̃, g̃) denote a vacuum spacetime with de Sitter-like

cosmological constant. It will be assumed that (M̃, g̃) can be covered with a non-

intersecting congruence of conformal geodesics (x(τ̄), β̃(τ̄)) with affine parameter

τ̄ and that the data for the congruence is prescribed on a fiduciary spacelike

hypersurface S� described by the condition τ̄ = 0. From Proposition 5.1 it follows

that, associated to this congruence of conformal geodesics, one has a canonical

conformal factor Θ of the form

Θ = Θ� + Θ̇�τ̄ +
1

2
Θ̈�τ̄

2, (15.22)

with the constraints

Θ̇� = 〈d�, ẋ�〉, Θ�Θ̈� =
1

2
g�(d�,d�) +

1

6
λ, (15.23)

where the coefficients Θ�, Θ̇� and Θ̈� are constant along a given conformal

geodesic. The conformal factor Θ allows one to obtain a conformal extension
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(M̄, ḡ) of the physical spacetime (M̃, g̃) with ḡ ≡ Θ2g̃. The specific details

of the conformal factor Θ depend on the location of the hypersurface S� with

respect to the conformal boundary and give rise to two different initial value

problems.

Standard Cauchy problem

First, consider a situation where the initial hypersurface S� does not coincide

with the conformal boundary. As one is interested in the construction of

spacetimes whose spatial sections have the topology of S3 it is natural to set,

without loss of generality, that

Θ� = 1, Θ̇� = 0,

so that no further distortion is introduced in the 3-manifold and the congruence

of conformal geodesics is symmetric with respect to the initial hypersurface.

Moreover, one can set

β̃� = 0,

so that d� = Θ�β̃� = 0 and the general expression for the conformal factor

reduces to

Θ = 1 +
1

12
λτ̄2.

Now, using Proposition 5.1 one finds that the components da of the covector

d respect to a Weyl propagated frame {ea} along the congruence of conformal

geodesics and such that e0 = ẋ are given by

d0 = Θ̇, di = 0.

A direct computation shows that the conformal factor Θ vanishes for

τ̄± = ±
√

12

|λ| .

The above expression gives the location of the conformal boundary. Accordingly,

it is natural to define

I ± ≡ {τ̄±} × S,

and one has I ± ≈ S3. Finally, recalling the constraint d = Θf + dΘ and

assuming that f is regular at I ± one finds

g(dΘ,dΘ) = ηabdadb = Θ̇2 > 0 at I ±.

Thus, if the conformal boundary exists and is regular, it must be a spacelike

hypersurface.
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Asymptotic Cauchy problem at I −

The conformal field equations allow the formulation of an alternative initial value

problem in which initial data are prescribed on a spacelike hypersurface S ≈ S3

representing one of the components of the conformal boundary, say, I − – an

asymptotic initial value problem. In this spirit, it is natural to prescribe the

initial data for the congruence of conformal geodesics directly at the conformal

boundary. This is made possible by the conformal invariance of the conformal

geodesic equations.

By assumption, on an asymptotic initial value problem one has that Θ = 0 on

I −. Thus, one necessarily has that Θ� = 0 and the conformal factor takes the

form

Θ = Θ̇�τ̄ +
1

2
Θ̈�τ̄

2.

The second expression in Equation (15.23) implies that g�(d�,d�) = −λ/3 > 0

so that d� must be timelike. Now, taking into account the further constraint

d = Θf + dΘ and requiring ẋ� to be normal to I −, it follows that

d0� = Θ̇� =

√
|λ|
3
, di� = 0,

where the positive root has been chosen so that Θ is positive in the future of

I −. Accordingly, off I − one has

d0 = Θ̇ =

(√
|λ|
3

+ Θ̈�τ̄

)
, di = 0.

So far, the coefficient Θ̈� has remained unspecified. Accordingly, it will be

considered as free data. These data are, in fact, related to value of the Friedrich

scalar

s ≡ 1

4
∇a∇aΘ+

1

24
RΘ

on I −. On the one hand, a calculation gives

s � 1

4

(
eaΣ

a + Γa
a
bΣ

b
)

� 1

4

(
Θ̈� + Θ̇�Γa

a
0

)
,

where the last equality follows from the fact that Σi vanishes at I −. On the

other hand, the solution to the conformal constraints at the conformal boundary,

as discussed in Section 11.4.4, shows that s� � Θ̇�κ where κ is a scalar field over

I −; compare Equation (11.40). A further calculation using a frame adapted to

I − readily yields

Γa
a
0 � Γi

i
0 � χi

i � κδi
i � 3κ.
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One thus concludes that

Θ̈� = κΘ̇�.

In practice, it is convenient to set κ to be constant on I −. The choice κ = 0

gives a representation in which I − is a hypersurface with vanishing extrinsic

curvature; see Equation (11.41). This representation does not involve a second

component of the conformal boundary.

To have a second component of the conformal boundary one hence needs κ �= 0.

Adopting the simple choice Θ̈� = −1/2, the conformal factor vanishes at

τ̄− = 0, τ̄+ = 4

√
|λ|
3
.

In this conformal representation, the two components of the conformal boundary

of the de Sitter-like spacetime (M̃, g̃) are given by the sets

I − = {0} × S, I + =

{
4

√
|λ|
3

}
× S.

More generally, keeping Θ̈� unspecified, one finds that the location of I + is

determined by the free data Θ̈�. Finally, on I + one has

g(dΘ,dΘ) = ηabdadb = −λ

3
> 0,

so that both I ±, if they exist, are spacelike hypersurfaces.

Remark. In what follows, the analysis of both the standard and the asymptotic

initial value problems will be simplified by making use of the choice λ = −3 for

the cosmological constant.

15.4.2 The extended conformal evolution system

Once the conformal factor Θ and the covector d associated to the conformal

Gaussian system have been specified, one can proceed to the formulation of an

initial value problem. In Proposition 13.3 it has been shown that the extended

conformal Einstein field equations expressed in terms of a conformal Gaussian

system imply a symmetric hyperbolic evolution system of the form

∂τ̄ υ̂ = Kυ̂ +Q(Γ̂)υ̂ + L(x)φ, (15.24a)(
I+A0(e)

)
∂τ̄φ+Aα(e)∂αφ = B(Γ̂)φ, (15.24b)

for û = (υ̂,φ) where υ̂ encodes the independent components of the frame, the

connection coefficients and the Schouten tensor, while φ contains the components

of the rescaled Weyl spinor.
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Mimicking the analysis of Section 15.3, one considers solutions of the form

eAB
0 = ĕAB

0, eAB
α = ēAB

α + ĕAB
α,

ξABCD = ξ̄ABCD + ξ̆ABCD, χABCD = χ̄ABCD + χ̆ABCD, fAB = f̆AB,

ΘABCD = Θ̄ABCD + Θ̆ABCD, φABCD = φ̆ABCD,

where

ēAB
μ, ξ̄ABCD, χ̄ABCD, Θ̄ABCD

are the values of the exact de Sitter solution expressed in a conformal Gaussian

system as discussed in Section 15.1.2; see, in particular, Proposition 15.2.

Accordingly, one can write

υ̂ = ῡ + ῠ, φ = φ̆, (15.25a)

e = ē+ ĕ, Γ̂ = Γ̄+ Γ̆. (15.25b)

On the initial hypersurface S� one has

υ̂� = ῡ� + ῠ�, φ = φ̆�,

where ů� = (ῡ�,0) is the exact de Sitter data discussed in Section 15.2 and

ŭ� = (ῠ�, φ̆�).

As the conformal factor Θ and the covector d are universal – that is, they

possess the same form for either the exact de Sitter data or the perturbations

thereof – one has

∂τ̄ ῡ = Kῡ +Q(Γ̄)ῡ.

Substituting the ansatz (15.25a) and (15.25b) into Equations (15.24a) and

(15.24b) yields the following evolution equations for ŭ = (ῠ, φ̆):

∂τ̄ ῠ = Kῠ +Q(Γ̄+ Γ̆)ῠ +Q(Γ̆)ῡ + L(x)φ̆, (15.26a)(
I+A0(ē+ ĕ)

)
∂τ̄ φ̆+Aα(ē+ ĕ)∂αφ̆ = B(Γ̄+ Γ̆)φ̆. (15.26b)

The above equations are already in a form where the theory of hyperbolic

PDEs, as discussed in Chapter 12, can be applied. In particular, existence and

Cauchy stability of Equations (15.26a) and (15.26b) are given by Theorem 12.4.

The natural domains for solutions to these equations are of the form

Mτ̄• ≡ [0, τ̄•]× S, S ≈ S3,

for some τ̄• > 0. The analogue of Propositions 15.1 and 15.2 for the conformal

evolution system (15.26a) and (15.26b) is given by:

Proposition 15.3 (existence of de Sitter-like solutions to the extended

conformal evolution equations and propagation of the constraints) Let

û� = ū� + ŭ� denote de Sitter-like (standard or asymptotic) initial data for the

conformal field equations prescribed on a 3-manifold S ≈ S3. Given m ≥ 4:
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(i) There exists ε > 0 such that if

‖ ŭ� ‖m< ε,

then there exists a Cm−2 unique solution ŭ to the conformal evolution

equations (15.26a) and (15.26b) defined on (− 5
2 ,

5
2 ) × S3 for the standard

Cauchy problem and on [0, 9
2 )× S3 for the asymptotic Cauchy problem.

(ii) If

Σ̂a
c
b

∣∣
S�

= 0, Ξ̂c
dab

∣∣
S�

= 0, Δ̂abc

∣∣
S�

= 0, Λabc

∣∣
S�

= 0,

and

δa
∣∣
S�

= 0, γab
∣∣
S�

= 0, ςab
∣∣
S�

= 0,

then the solution ŭ to the conformal evolution equations given by (i) implies,

by reducing ε if necessary, a Cm−2 solution û = ū + ŭ to the extended

conformal field equations on (− 5
2 ,

5
2 )× S3 and, respectively, on [0, 9

2 )× S3.

(iii) Given a sequence of initial data û
(n)
� = ū

(n)
� + ŭ

(n)
� such that

‖ ŭ
(n)
� ‖m< ε, and ‖ ŭ

(n)
� ‖m→ 0 as n → ∞,

then for the corresponding solutions ŭ(n) ∈ Cm−2
(
(− 5

2 ,
5
2 ) × S3

)
and,

respectively, Cm−2([0, 9
2 ) × S3), one has ‖ ŭ(n) ‖m→ 0 uniformly in

τ̄ ∈ (− 5
2 ,

5
2 ) and, respectively τ̄ ∈ [0, 9

2 ), as n → ∞.

Proof The proof of points (i) and (iii) of the above proposition is, again, a direct

application of Theorem 12.4 along the lines of Proposition 15.1. The proof of

point (ii) concerning the existence of an actual solution of the extended conformal

field equations follows from the homogeneity of the subsidiary evolution system as

given in Proposition 13.4 together with Corollary 12.1 by an argument identical

to that used in Proposition 15.2.

Remark. By an argument similar to the one leading to Proposition 15.3, using

the expression (15.14) for a separation vector in the background de Sitter

spacetime, it can be shown that if ε is sufficiently small, then the separation

fields for the perturbed spacetime remain non-zero in (− 5
2 ,

5
2 ) and, respectively,

[0, 9
2 ). Thus, the conformal Gaussian system used in the hyperbolic reduction

remains well behaved throughout.

Constructing solutions to the Einstein field equations

The discussion of this section can be summarised in the following two technical

versions of the main theorem of this chapter:
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Theorem 15.2 (global existence and stability of de Sitter-like space-

times: conformal Gaussian systems version) Given m ≥ 4, a solution

u� = ū� + ŭ� to the conformal constraint equations with λ = −3 on a standard

Cauchy hypersurface S� ≈ S3 such that ‖ ŭ� ‖m< ε, for ε > 0 suitably small,

gives rise to a solution u to the conformal field equations on

M ≡ [−2, 2]× S3.

This solution implies, in turn, a solution (M̃, g̃) to the Einstein field equations

with cosmological constant λ = −3 where

M̃ ≡ (−2, 2)× S3,

for which

I ± ≡ {±2} × S3,

represent future and past conformal infinity, respectively.

In the case of asymptotic Cauchy data one obtains a similar statement:

Theorem 15.3 (global existence and stability for the asymptotic initial

value problem) Given m ≥ 4, a solution u� = ū� + ŭ� to the conformal

constraint equations with λ = −3 on a 3-manifold S ≈ S3 representing the past

component of the conformal boundary such that ‖ ŭ� ‖m< ε, for ε > 0 suitably

small, gives rise to a solution u to the conformal field equations on

M ≡ [0, 4]× S3.

This solution implies, in turn, a solution (M̃, g̃) to the Einstein field equations

with cosmological constant λ = −3 where

M̃ ≡ (0, 4)× S3,

for which

I − ≡ {0} × S3, I + ≡ {4} × S3,

represent future and past conformal infinity, respectively.

The proofs of Theorems 15.2 and 15.3 are identical to that of Theorem 15.1.

Penrose diagrams of the spacetimes thus obtained can be seen in Figure 15.5.

Observe that in the gauge being considered, the Penrose diagrams for the exact

de Sitter spacetime and the perturbations are identical!
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Figure 15.5 Penrose diagrams of de Sitter-like spacetimes obtained from
Theorems 15.2 and 15.3: on the left is the spacetime obtained from a standard
Cauchy initial value problem; on the right is the spacetime obtained from the
asymptotic initial value problem.

15.4.3 Geodesic completeness and asymptotic analysis

The analysis of the existence and stability of de Sitter-like spacetimes developed

in Sections 15.3 and 15.4 can be refined to include geodesic completeness. As

the exact de Sitter spacetime is geodesically complete, it is to be expected that

suitably small perturbations thereof will also share this property. More precisely:

Proposition 15.4 (geodesic completeness of de Sitter-like spacetimes)

Suitably small perturbations (M̃, g̃) of the de Sitter spacetime are null and

timelike g̃-geodesically complete.

In particular, the above proposition together with the existence and stability

results obtained in the previous sections show that suitably small perturbations

of the de Sitter spacetime are asymptotically simple spacetimes.

It is convenient to divide the analysis of Proposition 15.4 into two cases.

Null geodesics

The key observation required to prove null geodesic completeness is the following:

given the conformal representation (R × S3, ḡE ) any null ḡE -geodesic starting

within the unphysical spacetime reaches the conformal boundary for a finite value

of its affine parameter.

In what follows, let (M̄, ḡ) be one of the de Sitter-like spacetimes obtained

from, say, a standard Cauchy initial value problem with data prescribed on a

hypersurface S�. Making use of a perturbative argument similar to the ones

employed in Propositions 15.1 and 15.3 and by reducing ε, if necessary, it can

be shown that given a point p ∈ S� and a fixed δ > 0, for all points q ∈ S� lying
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in an h-metric ball of radius δ centred at p, the future directed null ḡ-geodesics

starting at q will reach I + in a finite value of their affine parameter. As S� is a

compact hypersurface, it can be covered with a finite number of such h-metric

balls of radius δ, and, accordingly, there exist non-trivial perturbations of the

de Sitter spacetime for which all null ḡ-geodesics starting on S� reach I + in

a finite value of their affine parameter. Now, every ḡ-null geodesic is (up to a

reparametrisation) also a g̃-null geodesic. Moreover, making use of the discussion

in Chapters 7 and 10, one can find an affine parameter s of the g̃-null geodesic

such that s → ∞ as Θ → 0. Hence, one concludes null g̃-completeness.

Timelike geodesics

In the case of timelike geodesics, following Lemma 5.2 every timelike g̃-geodesic

is, up to a reparametrisation, a timelike ḡE -conformal geodesic. It can be

explicitly checked – starting, for example, from the general solution to the

conformal geodesic equations in the Minkowski spacetime as discussed in Section

6.2.3 – that every ḡE -conformal geodesic starting inside the region of the Einstein

cylinder associated to the conformal de Sitter spacetime reaches the conformal

boundary of the spacetime in a finite amount of its unphysical proper time

τ̄ . Using, as in the case of the null geodesics, a perturbative argument, this

property is seen to be preserved for suitably small perturbations of the de Sitter

spacetime. Of course, not every ḡ-conformal geodesic can be reparametrised to

a g̃-geodesic. This is the case only for those curves reaching the conformally

boundary orthogonally – as can be checked using Lemma 5.3. Finally, using the

properties of conformal geodesics in Einstein spaces as discussed in Section 5.5.6,

the physical proper time of g̃ satisfies τ̃ → ∞ as Θ → 0. This implies geodesic

completeness.

15.5 Extensions

The results of this chapter can be extended to the case of the Einstein equations

coupled with suitable trace-free matter; see Chapter 9.

For simplicity, the subsequent discussion will be restricted to the standard

conformal field equations. One of the main difficulties when attempting a direct

extension to include matter is the presence of the rescaled Cotton tensor Tcdb in

the Cotton and Bianchi equations. As discussed in Chapter 9 this tensor involves

derivatives of the matter fields. As the Cotton and the Bianchi equations are

interpreted as differential conditions on the components of the Schouten tensor

and the rescaled Weyl tensor, the inclusion of matter in the analysis brings

further terms into the principal part of the conformal evolution equations which,

in principle, destroy the symmetric hyperbolicity. In general, these derivatives

cannot be eliminated using the field equations for the matter model. Thus, one

introduces the derivatives of the matter variables as new unknowns into the

problem. Equations for these auxiliary variables can be obtained by applying
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a covariant derivative to the matter equation and commuting derivatives. This

procedure has been described, for the Maxwell field, in Section 9.2. For suitable

matter models – such as the Maxwell field, the conformally invariant scalar field

and radiation fluids – the resulting field equations for the auxiliary field admit

a symmetric hyperbolic reduction without the need of introducing further gauge

source functions.

The construction of suitable symmetric hyperbolic evolution equations for

the auxiliary fields needs to be supplemented with their associated subsidiary

evolution equations and a further subsidiary equation for the definition of the

auxiliary variable. This procedure is similar in spirit to the construction of

subsidiary equations for the geometric fields described in Sections 13.3 and 13.4.5.

The procedure briefly described in the previous paragraph has been imple-

mented by Friedrich (1991) for the Einstein-Yang-Mills system, using the

standard conformal field equations and a hyperbolic reduction involving gauge

source functions to obtain a generalisation of the existence and stability result

given in the main theorem of this chapter. The same basic ideas can be used to

obtain a future global existence and stability result for perturbations of radiation

perfect fluid Friedman-Robertson-Walker cosmological models; see Lübbe and

Valiente Kroon (2013b).

Matter and the extended conformal field equations

The implementation of the ideas discussed in the previous paragraphs to the

extended conformal field equations requires further consideration. The matter

field equations are usually expressed in terms of the Levi-Civita connection ∇ of

the unphysical metric g. However, the conformal field equations provide direct

access only to the Riemann tensor of the Weyl connection ∇̂. Equation (5.30a),

relating the Riemann tensors of the connections ∇ and ∇̂, involves the covariant

derivatives of the covector fa. Thus, further derivatives of the conformal fields

enter the principal part of the evolution system in a way which destroys the

symmetric hyperbolicity. The antisymmetric part of the derivative ∇̂[afb] can be

replaced by terms not containing derivatives using the equation

∇̂afb − ∇̂bfa = L̂ab − L̂ba;

compare Equation (8.45). However, a similar substitution is not possible for

the symmetric part ∇̂(afb). In order to obtain a suitable symmetric hyperbolic

system one needs to introduce ∇̂(afb) as an unknown of the system – or,

alternatively, the components Lab of the Schouten tensor of the unphysical Levi-

Civita connection ∇. In the case of the Einstein-Maxwell equations it is possible

to find suitable evolution equations for the auxiliary field ψAA′BC ≡ ∇AA′φBC

which do not contain the symmetrised derivative ∇̂(afb); see Lübbe and Valiente

Kroon (2012). This, however, is an exceptional situation.
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15.6 Further reading

The results discussed in this chapter were first obtained in Friedrich (1986b).

Similar results starting from asymptotic Cauchy data were first discussed in

Friedrich (1986a). These results have been extended to the case of the Einstein

equations coupled to a Yang-Mills field in Friedrich (1991). Alternative proofs,

which make use of the extended conformal field equations and conformal gauge

systems, in the vacuum and Einstein-Maxwell case, have been given in Lübbe

and Valiente Kroon (2009, 2012).

A different way of generalising the global existence and stability results

discussed in this chapter is to consider higher dimensions. In this case one

cannot make use of the conformal Einstein field equations of Chapter 8,

which are valid only for four-dimensional spacetimes. Alternative field equations

are required. Global existence and stability results for de Sitter-like vacuum

spacetimes of arbitrary dimension have been given in Anderson (2005a) and

Anderson and Chruściel (2005) using the conformal equations implied by the

Fefferman-Graham obstruction tensor.

The methods of this chapter can be adapted to analyse perturbations of

cosmological models with radiation perfect fluids and an asymptotic structure

similar to that of de Sitter spacetime. An example of this type of analysis can

be found in Lübbe and Valiente Kroon (2013b).
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