J. Austral. Math. Soc. 21 (Series A) (1976), 334-336.

CHARACTERIZATIONS OF MAXIMAL TOPOLOGIES

JAMES E. JOSEPH

(Received 31 January 1975; revised 3 April 1975)

Abstract

New characterizations of maximal topologies are given for a class of topologies including the compact, Lindelöf and m-compact topologies.

In what follows, let λ represent a property of topological spaces. If a space (X, T) has property λ , we will say that T is a λ -topology on X and call the space a λ -space. For certain choices of λ , characterizations have been given for maximal elements in the set of λ -topologies ordered by inclusion. For example, the following has been proved where λ is replaced by either of the words, "compact," "Lindelöf," or "countably compact," Joseph (1969), Raha (1973), Smythe and Wilkins (1963).

THEOREM. The following statements are equivalent for a space (X, T).

1) T is a maximal λ -topology on X.

2) The set of λ -subspaces of X = the set of closed subsets of X.

3) Any continuous bijection from a λ -space to X is a homeomorphism.

Recently, the following result has been obtained, Joseph (to appear):

THEOREM. The following statements are equivalent to the statements in the above theorem with λ replaced by "compact."

4) Any continuous surjection from a compact space to X is a closed quotient map.

5) Any function with a compact graph from X to a space is continuous.

6) Any function with a compact graph from a space to X is closed when T is a compact topology.

We note that the following statements are true of a λ -space (X, T) with λ replaced throughout by either "compact," "Lindelöf," "countably compact,"

334

or "*m*-compact" for an infinite cardinal, *m*. These properties are readily verified by arguments paralleling those in Raha (1973).

(*) 1) A closed subspace of X is a λ -space.

2) A continuous image of X is a λ -space.

3) For each λ -subspace, A of X, the supremum, Q(T, A), of T and $\{X, X - A, \emptyset\}$ is a λ -space.

In this paper, we prove the following:

THEOREM. If λ is a property of topological spaces such that any λ -space satisfies the properties listed in (*) the following statements are equivalent for a space (X, T).

1) T is a maximal λ -topology on the set X.

2) The set of λ -subspaces of X = the set of closed subsets of X.

3) Any continuous surjection from a λ -space to X is a closed quotient map.

4) Any continuous bijection from a λ -space to X is a homeomorphism.

5) Any function with a λ -graph from X is continuous.

6) Any function with a λ -graph into X is closed when T is a λ -topology on

Х.

PROOF. Let π_x and π_y be the projections of $X \times Y$ onto X and Y respectively. To show that 1) implies 2) we need show only that each λ -subspace of X is closed. This is clear since for each λ -subspace, A, of X, $T \subseteq Q(T, A)$ and Q(T, A) is a λ -topology on X forcing T = Q(T, A). Assuming 2), let Y be a λ -space and let $g: Y \rightarrow X$ be a continuous surjection. If A is closed in Y, then A is a λ -subspace of Y, so g(A) is a λ -subspace of X and thus is closed in X. Now, let T^* be any topology on X for which g is continuous and $T \subset T^*$. Then X = g(Y), so (X, T^*) is a λ -space. Let A be T^{*}-closed in X. Then A is a T^{*}- λ -subspace of X, so A is a T- λ -subspace of X since the identity function from (X, T^*) to (X, T) is continuous. So, A is T-closed, $T = T^*$, and g is a quotient map. It is immediate that 3) implies 4). To show that 5) follows from 4), let Y be a space and suppose $g: X \to Y$ has a λ -graph, G(g). The restriction, π_{\star}^{\star} , of π_{\star} to G(g) is a continuous bijection and thus is a homeomorphism. Since $g = \pi_y \circ \pi_x^{*-1}$, g is continuous. To prove that 5) implies 6) let g: $Y \to X$ be a function with G(g) a λ -subset of $Y \times X$ and let $A \subset Y$ be closed. Then for the restriction, π^* , we have $\pi^{*-1}(A)$ is closed in G(g) and thus is a λ -subspace of $Y \times X$. Then $g(A) = \pi_x(\pi_y^{*-1}(A))$ is a λ -subspace in X. Since X is a λ -space, the identity function, *i*, from (X, T) to (X, Q(T, g(A))) has a λ -graph because the function, h, from (X, T) to $X \times X$ defined by h(x) = (x, x) is continuous $(T \subset Q(T, g(A)), Q(T, g(A))) \subset$ Q(T, g(A)) and h(X) = G(i); so i is continuous. Thus g(A) is T-closed since g(A) is Q(T, g(A))-closed. Finally, to verify that 6) implies 1), let T^* be a λ -topology on X and suppose $T \subset T^*$. The identity function from (X, T^*) to

(X, T) renders T a λ -topology and, with the same reasoning as above, has a λ -graph; and is thus closed. Therefore, $T = T^*$. This completes the proof.

The theorem is true when λ is replaced throughout by either of the words "compact," "Lindelöf," or "*m*-compact" for any infinite cardinal *m*.

Using the result of the theorem for *m*-compactness and the known fact that *m*-compact subsets are closed in a Hausdorff topological space with an open base of cardinality $\leq m$ at each point, we may prove the following generalizations of corollaries 5 and 6 in Raha (1973).

COROLLARY 1. If T is an m-compact Hausdorff topology which contains an open base of cardinality $\leq m$ at each point, then T is maximal m-compact.

COROLLARY 2. If T is an m-compact Hausdorff topology which contains an open base of cardinality $\leq m$ at each point, then T is a minimal element in the set of Hausdorff topologies which contain an open base of cardinality $\leq m$ at each point.

PROOF. Any topology which is contained in T would be m-compact; if in addition, the topology is Hausdorff and contains an open base of cardinality $\leq m$ at each point, the topology must be maximal m-compact. Since T is m-compact, this topology must be T. This completes the proof.

References

- J. Joseph (1969), 'Continuous functions and spaces in which compact sets are closed', Amer. Math. Monthly 76, 1125-1126.
- J. Joseph (to appear), 'Compact graphs and spaces in which compact sets are closed', Math. Mag.
- A. B. Raha (1973), 'Maximal topologies', J. Austral. Math. Soc. 15, 279-290.

N. Smythe and C. A. Wilkins (1963), 'Minimal Hausdorff and maximal compact spaces', J. Austral. Math. Soc. 3, 167-171.

The Federal City College Washington, D. C. U.S.A.