SPLITTING OF ALGEBRAS BY FUNCTION FIELDS OF ONE VARIABLE

PETER ROQUETTE

To the memory of TADASI NAKAYAMA

§1. Introduction

Let K be a field and $\mathfrak{B}(K)$ the Brauer group of K. It consists of the similarity classes of finite central simple algebras over $K^{,1}$. For any field extension F/K there is a natural mapping $\mathfrak{B}(K) \to \mathfrak{B}(F)$ which is obtained by assigning to each central simple algebra A/K the tensor product $A \bigotimes_{\kappa} F$ which is a central simple algebra over F. The kernel of this map is the relative Brauer group $\mathfrak{B}(F/K)$, consisting of those $A \in \mathfrak{B}(K)$ which are split by F.

If F/K is finite algebraic, the investigation of $\mathfrak{B}(F/K)$ is part of the general theory of central simple algebras. In particular, if the ground field K is a number field or a local number field,²⁾ the relative Brauer group $\mathfrak{B}(F/K)$ can then explicitly be determined, using class field theory.

In this paper, we propose to investigate $\mathfrak{B}(F/K)$ in the case where F/K is a function field of one variable.³⁾ Our results will give a complete description of $\mathfrak{B}(F/K)$ if K is a local number field.

For any transcendental field extension F/K, let \mathfrak{P} be a place of F/K such that the image field $F\mathfrak{P}$ is algebraic over K.⁴⁾ Any central simple algebra A/K which is split by F is also split by $F\mathfrak{P}$, as we have shown in an earlier

Received July 19, 1965.

¹⁾ For the general theory of central simple algebras see e.g. Deuring [6], chap. IV and V, or Artin-Nesbitt-Thrall [2], chap. V-VIII.

²⁾ A field K is called a number field if it is a finite-dimensional extension of the field \mathbf{Q} of rational numbers. A field K is called a local number field if it is the completion of a number field k with respect to a non-trivial valuation of K. This is the case if and only if K is either the field of real numbers or the field of complex numbers (archimedean case), or if K is a finite-dimensional extension of the rational *p*-adic field \mathbf{Q}_p , for some prime number *p*.

³⁾ A field extension F/K is called a function field of one variable, if F/K is finitely generated, K is algebraically closed in F, and the degree of transcendency of F/K is 1.

⁴⁾ For the general theory of places see e.g. Zariski-Samuel [15], vol. II, chap. VI.

paper.⁵⁾ That is, we have $\mathfrak{B}(F/K) \subset \mathfrak{B}(F\mathfrak{p}/K)$. Let us put

$$\widetilde{\mathfrak{B}}(F/K) = \bigcap_{\mathfrak{p}} \mathfrak{B}(F\mathfrak{p}/K),$$

 \mathfrak{p} ranging over the places of F/K such that $F\mathfrak{p}/K$ is algebraic. We then have

$$\mathfrak{B}(F/K) \subset \mathfrak{\widetilde{B}}(F/K).$$

If F/K is a separable function field of one variable, we shall show in §3 that the factor group $\frac{\mathfrak{P}(F/K)}{\mathfrak{P}(F/K)}$ can be described by a certain cohomological invariant X(F/K) which is connected with the one-dimensional Galois cohomology of the idèle class group.

The interpretation of this result is as follows: As we have said above, the investigation of $\mathfrak{B}(L/K)$ for an algebraic field extension L of K is part of the classical theory of central simple algebras. Hence we may regard $\mathfrak{B}(F/K)$, which concerns only Brauer groups of algebraic extensions $F\mathfrak{p}/K$, as essentially known, in particular if the ground field is a number field or a local number field. Hence the invariant X(F/K), which is explicitly defined in §3, will describe the deviation of the group $\mathfrak{B}(F/K)$ from the (known) group $\mathfrak{B}(F/K)$.

In the special case where K is a local number field we shall see that X(F/K) = 1. In the archimedean case, this will follow from the results of Witt [12] while in the non-archimedean case we shall refer to the corresponding results of Tate [11]. This then shows that $\mathfrak{P}(F/K) = \mathfrak{P}(F/K)$. On the other hand, the known structure of $\mathfrak{P}(K)$ for local number fields permits to determine $\mathfrak{P}(F/K)$ explicitly. We then will obtain the following result which constitutes the main result of this paper:

THEOREM 1. Let F/K be a function field of one variable over a local number field K. Let d(F/K) be the smallest positive integer which is a degree of a divisor of F/K.

Then:

The group $\mathfrak{B}(F/K)$ is cyclic of order d(F/K); it consists of all $A \in \mathfrak{B}(K)$ whose Schur index divides d(F/K).

As to global number fields K as ground fields, we shall show by examples

⁵⁾ [9], page 428, prop. 8.

that the equality $\mathfrak{B}(F/K) = \mathfrak{\widetilde{B}}(F/K)$ is not true in general. This case has still to be investigated.

§2. The cohomological language

Let \overline{K}/K be a finite Galois extension of K, with Galois group $G = G(\overline{K}/K)$. As shown in the theory of crossed product algebras, we have

(1)
$$\mathfrak{B}(\overline{K}/K) = H^2(G, \overline{K}^{\times})^6$$

where \overline{K}^{\times} denotes the multiplicative group of the field K. Here, $H^2(G, \overline{K}^{\times})$ denotes the second cohomology group of G in the multiplicative group of \overline{K} .

If L/K is any field extension and $\overline{L} = L\overline{K}$ a field compositum of L with \overline{K} , then the subgroup

$$G_L = G(\overline{K}/L \cap \overline{K})$$

of G can be regarded as the Galois group of L/L. The restriction from G to G_L together with the inclusion map $\overline{K}^{\times} \subset L^{\times}$ gives a cohomology map

(2)
$$H^2(G, \overline{K}^{\times}) \to H^2(G_L, \overline{L}^{\times}).$$

On the other hand, the map $\mathfrak{B}(K) \to \mathfrak{B}(L)$ described in §1 induces a map

(3)
$$\mathfrak{B}(\overline{K}/K) \to \mathfrak{B}(\overline{L}/L).$$

In the theory of crossed products it is shown that the two maps (2) and (3) coincide after the identification (1) and the corresponding identification for L/L.⁸⁾ The kernel of (3) consists of those algebras over K, which are split by \overline{K} and L. That is, this kernel is $\mathfrak{B}(\overline{K}/K) \cap \mathfrak{B}(L/K)$. Hence:

(4)
$$\mathfrak{B}(\overline{K}/K) \cap \mathfrak{B}(L/K) = \text{kernel } H^2(G, \overline{K}^{\times}) \to H^2(G_L, \overline{L}^{\times}).$$

If L = F is a separable function field of one variable, then F has a separable place \mathfrak{p} ; hence we may choose \overline{K} so as to contain $F\mathfrak{p}$. As said in § 1, $\mathfrak{B}(F/K) \subset \mathfrak{B}(\overline{K}/K) \subset \mathfrak{B}(\overline{K}/K)$. On the other hand, F is linearly disjoint to \overline{K} over Kand hence $G_F = G$ can be regarded as the Galois group of $\overline{F} = F \cdot \overline{K}$ over F.

 $^{^{6)}}$ See e.g. the books mentioned in $^{1)}$. For another approach see Serre [10], chap. X, § 5-6.

⁷⁾ For the general cohomology theory we refer to [10] chap. VII, or Cartan-Eilenberg [3], or Artin [1].

⁸⁾ Deuring [6], page 61, Satz 1.

Hence :

PROPOSITION 1. Let F/K be a separable function field of one variable. Then there exists a finite Galois extension \overline{K}/K such that $\mathfrak{B}(F/K) \subset \mathfrak{B}(\overline{K}/K)$. If this is so, then

$$\mathfrak{B}(F/K) = \text{kernel } H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{F}^{\times}).$$

Next we shall give a cohomological interpretation of $\mathfrak{B}(F/K)$.

Let \mathfrak{p} be a place of F/K and $F\mathfrak{p}$ its image field. Let $F\mathfrak{p}\cdot\overline{K}$ be a field compositum of $F\mathfrak{p}$ and \overline{K} over K and denote by $G\mathfrak{p}$ the group of \overline{K} over $F\mathfrak{p}\cap\overline{K}$. From (4) we obtain:

(5)
$$\mathfrak{B}(\overline{K}/K) \cap \mathfrak{B}(F\mathfrak{p}/\overline{K}) = \text{kernel } H^2(G, \overline{K}^{\times}) \to H^2(G_{\mathfrak{p}}, (F\mathfrak{p}\cdot\overline{K})^{\times}).$$

Let now \mathfrak{p} range over all places of F/K and

$$H^2(G, \overline{K}^{\times}) \to \prod_{\mathfrak{p}} H^2(G_{\mathfrak{p}}, (F\mathfrak{p} \cdot \overline{K})^{\times})$$

be the map which in each component of the direct product induces the map mentioned in (5). Its kernel is the intersection of the kernels in (5). Hence

(6)
$$\mathfrak{B}(\overline{K}/K) \cap \mathfrak{\widetilde{B}}(F/K) = \text{kernel } H^2(G, \overline{K}^{\times}) \to \prod_{\mathfrak{p}} H^2(G_{\mathfrak{p}}, (F\mathfrak{p} \cdot \overline{K})^{\times})$$

If we choose \overline{K} such that it contains $F\mathfrak{P}$ for some \mathfrak{P} , which is possible if F/K is separable, then $\mathfrak{B}(F/K)$ is contained in $\mathfrak{B}(\overline{K}/K)$ and hence we may replace the intersection on the left hand side of (6) by $\mathfrak{B}(F/K)$.

On the right hand side of (6), the image group is a direct product of cohomology groups with respect to various subgroups G_p of G. However, this group can be interpreted as a cohomology group of G in a certain group $\overline{W} = \overline{W}(\overline{F}/\overline{K})$, as follows.

For a given prime \mathfrak{p} , the field compositum $F\mathfrak{p}\cdot\overline{K}$ is in general not uniquely determined. There may be several inequivalent field composita of $F\mathfrak{p}$ with \overline{K} over K. Let $\overline{\mathfrak{p}}$ range over the primes of $\overline{F}/\overline{K}$ which lie above \mathfrak{p} (we then write $\overline{\mathfrak{p}}|\mathfrak{p}$.). It is well known that the inequivalent field composita of $F\mathfrak{p}$ with \overline{K} correspond 1-1 to the $\overline{\mathfrak{p}}|\mathfrak{p}$. For any $\overline{\mathfrak{p}}|\mathfrak{p}$, the image field $\overline{F}\,\overline{\mathfrak{p}}$ contains $F\bar{\mathfrak{p}}$, which is K-isomorphic to $F\mathfrak{p}$ under the map

$$a\mathfrak{p} \to a\overline{\mathfrak{p}} \qquad (a \in F).$$

We have

$$\overline{F}\overline{\mathfrak{p}}=F\overline{\mathfrak{p}}\cdot\overline{K},$$

and this is the field compositum belonging to $\overline{\mathfrak{p}}.^{\mathfrak{9}}$

We now form the direct product $\prod_{\overline{\mathfrak{p}}|\mathfrak{p}} \overline{F\mathfrak{p}}$. Since the $\overline{F\mathfrak{p}}$ are all the inequivalent field composita of $F\mathfrak{p}$ and \overline{K} , we have a natural isomorphism

(7)
$$F\mathfrak{p} \bigotimes_{K} \overline{K} = \prod_{\overline{\mathfrak{p}}|\mathfrak{p}} \overline{F}\mathfrak{p}$$

which is obtained by mapping \overline{K} diagonally into $\prod_{\overline{\mathfrak{p}}|\mathfrak{p}} \overline{F}_{\overline{\mathfrak{p}}}$ (\overline{K} is contained in each $\overline{F}_{\overline{\mathfrak{p}}}$) and by mapping

$$a\mathfrak{p} \to \prod_{\overline{\mathfrak{p}} \mid \mathfrak{p}} a\overline{\mathfrak{p}} \qquad (a \in F).$$

The Galois group G acts naturally on $F\mathfrak{p}\otimes \overline{K}$ (on the right factor) and hence on the direct product on the right hand side of (7), thereby permuting the factors $\overline{F}\mathfrak{p}$ transitively. If $\mathfrak{p}|\mathfrak{p}$ is fixed and $G_{\mathfrak{p}}$ denotes the subgroup of G leaving the elements of $\overline{F}\mathfrak{p}$ fixed, then we may write

(8)
$$F\mathfrak{p} \bigotimes_{K} \overline{K} = \prod_{\sigma \in G \mod G_{\overline{\mathfrak{p}}}} (\overline{F} \overline{\mathfrak{p}})^{\sigma}.$$

Let $\overline{W}_{\mathfrak{p}}$ be the group of units of the algebra $F\mathfrak{p}\otimes\overline{K}$. We obtain

(9)
$$\overline{W}_{\mathfrak{p}} = \prod_{\sigma \bmod G_{\overline{\mathfrak{p}}}} (\overline{F}\overline{\mathfrak{p}})^{\times \sigma}.$$

Shapiros lemma from cohomology theory¹⁰ now shows that

(10)
$$H^{i}(G, \overline{W}_{\mathfrak{p}}) = H^{i}(G_{\overline{\mathfrak{p}}}, (\overline{F}_{\overline{\mathfrak{p}}})^{\times}) \quad (i \ge 0).$$

This isomorphism is obtained by the restriction of G to the subgroup $G_{\overline{p}}$, followed by the projection $\overline{W}_{p} \rightarrow (\overline{F}\overline{p})^{\times}$.

Observe that on the right hand side in (10) we have one fixed compositum $\overline{F}\overline{\mathfrak{p}} = F\overline{\mathfrak{p}}\cdot\overline{K}$ of $F\mathfrak{p}$ and \overline{K} . This may take the place of what we have denoted by $F\mathfrak{p}\cdot\overline{K}$ in (5). The diagonal imbedding $\overline{K}^{\times} \to \overline{W}\mathfrak{p}$ followed by the projection $\overline{W}\mathfrak{p} \to (\overline{F}\overline{\mathfrak{p}})^{\times}$ is precisely the natural injection $\overline{K}^{\times} \to (\overline{F}\overline{\mathfrak{p}})^{\times} = (F\overline{\mathfrak{p}}\cdot\overline{K})^{\times}$. Hence we obtain from (5) and (10) (for i=2) that

(11)
$$\widetilde{\mathfrak{B}}(\overline{K}/K) \cap \mathfrak{B}(F\mathfrak{p}/K) = \text{kernel } H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{W}_{\mathfrak{p}}).$$

⁹⁾ Chevalley [5], page 92, theorem 3.

¹⁰) [10], page 125, exercice,

Now let us put all places p of F/K together:

$$\overline{W} = \prod_{\mathfrak{p}} \overline{W}_{\mathfrak{p}} = \prod_{\overline{\mathfrak{p}}} (\overline{F}\overline{\mathfrak{p}})^{\times}$$

G acts on \overline{W} componentwise on each $\overline{W}_{\mathfrak{p}}$. We have

(12)
$$H^{i}(G, \overline{W}) = \prod_{\mathfrak{p}} H^{i}(G, \overline{W}_{\mathfrak{p}}) \qquad (i \ge 0)$$

and we obtain:

PROPOSITION 2. Let F/K be a separable function field of one variable. Then there is a finite Galois extension \overline{K}/K such that $\mathfrak{B}(F/K) \subset \mathfrak{B}(\overline{K}/K)$. If this is so, we have

$$\widetilde{\mathfrak{B}}(F/K) = \text{kernel } H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{W}),$$

where

$$\overline{W} = \prod_{\overline{\mathfrak{p}}} (\overline{F}\overline{\mathfrak{p}})^{\times}$$

 $(\bar{\mathfrak{p}} \text{ ranging over the places of } \overline{F}/\overline{K})$, and G acts on \overline{W} naturally as described above.

§3. The kernel theorem

Let F/K be a function field of one variable and \overline{K}/K a finite Galois extension with group G. According to propositions 1 and 2, we shall study in this § 3 the maps

 $H^2(G, \overline{K}^{\times}) \rightarrow H^2(G, \overline{F}^{\times})$

and

$$H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{W})$$

described in §2 and we shall compare their kernels.

We introduce the following notations:

- D the divisor group of F/K
- H the group of principal divisors in D

CD = D/H the divisor class group

J the idèle group of F/K

 $CJ = J/F^{\times}$ the group of idèle classes

U the group of idèle units in J

 $CU = UF^{\times}/F^{\times} = U/K^{\times}$ the idèle unit classes.

As to the definitions, D is defined to be the free abelian multiplicative

group generated by the prime divisors (places) p of F/K. Hence every divisor $a \in D$ is a product

$$\mathfrak{a}=\prod_{\mathfrak{p}}\mathfrak{p}^{a(\mathfrak{p})}$$

with uniquely determined integers a(p) such that a(p) = 0 for all but a finite number of p.

Let $w_{\mathfrak{p}}$ be the additive normalized valuation of F belonging to \mathfrak{p} . The principal divisor for $a \in F^{\times}$ is

$$(a) = \prod_{\mathfrak{p}} \mathfrak{p}^{w\mathfrak{p}(a)}.$$

H is defined to be the image of the map $a \rightarrow (a)$ from F^{\times} into *D*. The kernel of this map is K^{\times} , so that the sequence

$$1 \to K^{\times} \to F^{\times} \to H \to 1$$

is exact.

J is defined to consist of all functions $\mathfrak{p} \to \alpha(\mathfrak{p})$, defined on the primes \mathfrak{p} of F/K, with values $\alpha(\mathfrak{p})$ in the multiplicative group of $F_{\mathfrak{p}}$, the \mathfrak{p} -adic completion of *F* with respect to \mathfrak{p} .

These functions α have to satisfy the finiteness condition that $w_{\mathfrak{p}}(\alpha(\mathfrak{p})) \neq 0$ for all but a finite number of \mathfrak{p} .¹¹⁾ There is a mapping $J \rightarrow D$ obtained by assigning to each $\alpha \in J$ its divisor $(\alpha) = \prod \mathfrak{p}^{w_{\mathfrak{p}}(\alpha(\mathfrak{p}))}$.

This mapping is epimorphic; its kernel is called U, so that the sequence

$$1 \rightarrow U \rightarrow J \rightarrow D \rightarrow 1$$

is exact.

There is a mapping $F^{\times} \to J$ obtained by assigning to each $a \in F^{\times}$ the idèle α_a given by $\alpha_a(\mathfrak{p}) = a$, for all \mathfrak{p} (diagonal imbedding). This mapping is monomorphic and we identify F^{\times} with its image in J. This identification is coherent with the mappings $F^{\times} \to D$ and $J \to D$, i.e. we have $(a) = (\alpha_a)$. In other words, the diagram

$$F^{\times} \longrightarrow J$$
$$\downarrow \qquad \downarrow$$
$$H \longrightarrow D$$

is commutative.

¹¹⁾ By continuity, the valuation w_p of F extends uniquely to a valuation of the completion F_p , and this extension is again denoted by w_p .

From the above definitions and discussions it follows that the diagram

$$1 \quad 1 \quad 1$$

$$\downarrow \quad \downarrow \quad \downarrow$$

$$1 \rightarrow K^{\times} \rightarrow U \rightarrow CU \rightarrow 1$$

$$\downarrow \quad \downarrow \quad \downarrow$$

$$1 \rightarrow F^{\times} \rightarrow J \rightarrow CJ \rightarrow 1$$

$$\downarrow \quad \downarrow \quad \downarrow$$

$$1 \rightarrow H \rightarrow D \rightarrow CD \rightarrow 1$$

$$\downarrow \quad \downarrow \quad \downarrow$$

$$1 \quad 1 \quad 1$$

in which the arrows denote the natural maps in question, is commutative with exact rows and columns.

For the function field $\overline{F}/\overline{K}$ we have a similar diagram whose corresponding groups will be denoted by \overline{D} , \overline{H} , \overline{CD} , \overline{J} , etc:

$$1 \quad 1 \quad 1$$

$$1 \rightarrow \overline{K}^{\times} \rightarrow \overline{U} \rightarrow \overline{CU} \rightarrow 1$$

$$1 \rightarrow \overline{F}^{\times} \rightarrow \overline{J} \rightarrow \overline{CJ} \rightarrow 1$$

$$1 \rightarrow \overline{H} \rightarrow \overline{D} \rightarrow \overline{CD} \rightarrow 1$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$1 \quad 1 \quad 1$$

As said in §2, the Galois group $G = G(\overline{K}/K)$ can be regarded as the Galois group of \overline{F}/F , since F and \overline{K} are linearly disjoint over K. Hence G acts on \overline{F}^{\times} . Also, G acts on all the other groups of our diagram, as follows.

G acts on the primes \overline{p} of \overline{F} : If $w_{\overline{p}}$ is the additive normalized valuation of \overline{F} belonging to \overline{p} then \overline{p}^{σ} is defined by

$$w_{\bar{\mathfrak{p}}^{\sigma}}(a^{\sigma}) = w_{\bar{\mathfrak{p}}}(a) \qquad (a \in F, \ \sigma \in G).$$

The map $\sigma: \overline{F} \to \overline{F}$ is continuous if \overline{F} as the domain of this map is topologized by $w_{\overline{p}}$, and it is topologized by $w_{\overline{p}^{\sigma}}$ if considered as the range of σ . Hence σ extends, by continuity, uniquely to a map $\sigma: \overline{F}_{\overline{p}} \to \overline{F}_{\overline{p}^{\sigma}}$ of the corresponding completions. According to these maps, G acts on \overline{J} , namely:

$$\alpha^{\sigma}(\overline{\mathfrak{p}}^{\sigma}) = \alpha(\overline{\mathfrak{p}})^{\sigma} \qquad (\alpha \in \overline{J}, \ \sigma \in G).$$

By definition, it is clear that the maps

 $\overline{F}^{\times} \rightarrow \overline{J}$

(diagonal imbedding) and

 $J \rightarrow \overline{D}$

(divisor map) are G-permissible. Hence all the other maps of our diagram, being based on the two maps mentioned above, are G-permissible, G acting on the groups of the diagram in the natural way. In other words: our diagram is G-permissible.

In particular, for each group \overline{M} of our diagram we can form the cohomology groups $H^i(G, \overline{M})$, and for each exact row or column $1 \to \overline{M}_1 \to \overline{M}_2 \to \overline{M}_3 \to 1$ of our diagram we obtain a cohomological connecting map $H^i(G, \overline{M}_3) \to H^{i+1}(G, \overline{M}_1)$.

From the lower horizontal sequence of the diagram we thus obtain a cohomology map

$$H^{i}(\overline{CD}) \rightarrow H^{i+1}(\overline{H}).$$

From the left vertical sequence we obtain also

$$H^{i+1}(\overline{H}) \to H^{i+2}(\overline{K}^{\times})$$

which combined with the map above yields a map

$$h^i: H^i(\overline{CD}) \to H^{i+2}(\overline{K}^{\times}).$$

Similarly, using first the right vertical sequence and then the upper horizontal sequence of the diagram we obtain another map

$$g^i$$
: $H^i(\overline{CD}) \to H^{i+2}(\overline{K}^{\times})$.

It is known from general cohomology theory¹²⁾ that both maps h^i and g^i differ only by a sign; in particular, both maps have the same kernel and the same image.

Let us investigate these maps in the case i = 0.

Investigation of h^0 :

By definition, h^0 is obtained by considering the left lower corner of the diagram, namely:

¹²⁾ Cartan-Eilenberg [3], page 56, prop. 2.1.

$$1 \\ \downarrow \\ \overline{K}^{\times} \\ \downarrow \\ \overline{F}^{\times} \\ 1 \rightarrow \overline{H} \rightarrow \overline{D} \rightarrow \overline{CD} \rightarrow 1 \\ \downarrow \\ 1$$

This portion of our diagram gives the two maps

$$H^0(\overline{CD}) \to H^1(\overline{H})$$

and

 $H^1(\overline{H}) \to H^2(\overline{K}^{\times})$

the composite of which is h^0 .

We begin by observing that

(13) $H^1(\overline{F}^{\times}) = 1$

and

(14)
$$H^1(\overline{D}) = 1.$$

The first of these formulae is well known as the celebrated 'Hilbert theorem 90'. The second follows from the fact that \overline{D} is the free abelian group generated by the primes \overline{p} of $\overline{F}/\overline{K}$ which are only permuted under $G.^{13}$.

From (13) it follows, using the exactness of the column of our diagram portion, that

 $H^1(\overline{H}) \to H^2(\overline{K}^{\times})$ is monomorphic.

Similarly, from (14) it follows that

 $H^{0}(\overline{CD}) \rightarrow H^{1}(\overline{H})$ is epimorphic.

Putting both statements together we obtain

(15) image
$$(h_0) = \text{image } H^1(\overline{H}) \to H^2(\overline{K}^{\times})$$
$$= H^1(\overline{H}).$$

On the other hand,

image
$$H^1(\overline{H}) \to H^2(\overline{K}^{\times}) = \text{kernel } H^2(\overline{K}^{\times}) \to H^2(\overline{F}^{\times})$$

18) See e.g. [9], page 437,

so that we finally obtain

(16) image
$$(h^0) = \text{kernel } H^2(\overline{K}^{\times}) \to H^2(\overline{F}^{\times}).$$

Investigation of g° :

Now we have to consider the right upper corner of our diagram:

$$1 \rightarrow \overline{K}^{\times} \rightarrow \overline{U} \rightarrow \overline{CU} \rightarrow 1$$

$$\downarrow \\ \overline{CJ} \\ \downarrow \\ \overline{CD} \\ \downarrow \\ 1$$

 g° is the composite of the two maps

$$H^0(\overline{CD}) \to H^1(\overline{CU})$$

and

$$H^1(\overline{CU}) \to H^2(\overline{K}^{\times}).$$

First we have, in analogy to (13), the formula

(17)
$$H^1(\overline{U}) = 1.$$

Proof. Let $\overline{U}_{\overline{p}}$ be the group of \overline{p} -adic units in the \overline{p} -adic completion $\overline{F}_{\overline{p}}$ of \overline{F} . By definition, \overline{U} is the direct product

$$\overline{U} = \prod_{\overline{\mathfrak{p}}} \overline{U}_{\overline{\mathfrak{p}}}$$

Each place \overline{p} induces an epimorphic map

$$\overline{U}_{\overline{\mathfrak{p}}} \to (\overline{F}_{\overline{\mathfrak{p}}})^{\times}.$$

These maps define an epimorphic map

 $\overline{U} \rightarrow \overline{W}$

where \overline{W} is the direct product of the $(\overline{F}\overline{p})^{\times}$ as in §2. By comparing the definitions of the actions of G on \overline{U} (as part of J) and on \overline{W} (see §2) we see that this map is G-permissible.

Let \overline{V} be the kernel, so that

$$1 \to \overline{V} \to \overline{U} \to \overline{W} \to 1$$

https://doi.org/10.1017/S0027763000026441 Published online by Cambridge University Press

is exact. We shall show in a moment that (18) $H^i(G, \overline{V}) = 1$ $(i \ge 1)$.

This shows that $\overline{U} \rightarrow \overline{W}$ induces an isomorphism

(19) $H^{i}(G, \overline{U}) = H^{i}(G, \overline{W}) \quad (i \ge 1).$

Using (12) and (10) we obtain

$$H^{i}(G, \ \overline{U}) = \prod_{\mathfrak{p}} H^{i}(G_{\overline{\mathfrak{p}}}, (\overline{F}\overline{\mathfrak{p}})^{\times}) \qquad (i \ge 1)$$

where \mathfrak{P} ranges over the places of F/K and $\overline{\mathfrak{P}}$ denotes always a *fixed* extension of \mathfrak{v} to $\overline{F}/\overline{K}$. For i = 1, the right hand side of (19) is 1, using Hilberts theorem 90 for each field $\overline{F}\mathfrak{P}$. Hence (17).

Proof of (18). Let $\overline{V}_{\overline{p}}$ be the kernel of the map $\overline{U}_{\overline{p}} \to (\overline{F}_{\overline{p}})^{\times}$, consisting of the elements $a \in \overline{F}_{\overline{p}}$ with $a\overline{p} = 1$. Then $\overline{V} = \prod_{\overline{p}} V_{\overline{p}}$. Put $\overline{V}_{\overline{p}} = \prod_{\overline{p}|\overline{p}} \overline{V}_{\overline{p}}$. Then $\overline{V} = \prod_{\overline{p}} \overline{V}_{\overline{p}}$ is a *G*-permissible direct product. Hence

$$H^{i}(G, \overline{V}) = \prod_{\mathfrak{p}} H^{i}(G, \overline{V}_{\mathfrak{p}}).$$

From Shapiros lemma¹⁰⁾ we infer that

$$H^{i}(G, \overline{V}_{\mathfrak{p}}) = H^{i}(G_{\overline{\mathfrak{p}}}, \overline{V}_{\overline{\mathfrak{p}}}),$$

 $\overline{\mathfrak{p}}$ being a fixed extension of \mathfrak{p} . Hence we have to show that $H^i(G_{\overline{\mathfrak{p}}}, \overline{V}_{\overline{\mathfrak{p}}}) = 1$ for $i \ge 1$. Changing notation, this amounts to show the following

LEMMA. Let F be a complete field with respect to a non-archimedean, discrete valuation w_p with corresponding prime p. Let V be the multiplicative subgroup of elements $a \in F$ with ap = 1 (i.e. $w_p(a-1) > 0$). If G is a finite group of continuous automorphisms of F whose induced action on the image field Fp is faithful, then

$$H^{i}(G, V) = 1$$
 $(i \ge 1).$

This lemma is well known from local class field theory. For the proof see e.g. Witt [14], page 154, no. 2 or Serre [10], page 193, lemma 2.

Let us return to our original notation. We now have proved (17) which is, for the map g^0 , the analogue to (13). The analogue to (14) would be $H^1(G, \overline{CJ}) = 1$. This is not true in general (although we shall see later that it is true in the case where K is a local number field). We therefore introduce the group

637

(20)
$$X = X(\overline{F}/\overline{K}) = \text{kernel } H^1(G, \overline{CJ}) \to H^1(G, \overline{CD}).$$

From the exactness of the column of our diagram portion we infer that

(21)
$$X = \text{image } H^1(G, \overline{CU}) \to H^1(G, \overline{CJ})$$
$$= H^1(G, \overline{CU})/Y$$

where

 $Y = \text{image } H^0(G, \overline{CD}) \rightarrow H^1(G, \overline{CU}).$

From (17) it follows that

$$H^1(G, \overline{CU}) \rightarrow H^2(G, \overline{K}^{\times})$$
 is monomorphic.

Its image is the kernel of $H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{U})$. Hence

$$H^1(G, \overline{C}\overline{U}) \approx \text{kernel } H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{U}).$$

In this isomorphism, the image Y of $H^0(G, \overline{CD}) \to H^1(G, \overline{CU})$ corresponds to the image of g^0 (by definition of g^0). Hence we obtain from (21):

(22) The image of g^0 is contained in the kernel of $H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{U})$ and the corresponding factor group is isomorphic to X.

Finally, we claim:

(23) kernel
$$H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{U}) = \text{kernel } H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{W}).$$

Proof. As shown in (19), the map $\overline{U} \to \overline{W}$ induces an isomorphism of cohomology groups. Hence the map $\overline{K}^{\times} \to \overline{U} \to \overline{W}$ induces a map $H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{W})$ which has the same kernel as $H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{U})$. Q.e.d.

Observe that the map $\overline{K}^{\times} \to \overline{U} \to \overline{W}$ is the diagonal imbedding of \overline{K}^{\times} in \overline{W} which we have considered in §2.

Now remember that the maps h^0 and g^0 have the same image, as mentioned above. Comparing (16), (22) and (23) we obtain therefore the following 'kernel theorem':

THEOREM 2. Let F/K be a function field of one variable and \overline{K}/K a finite Galois extension with Galois group G. Then the kernel of $H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{F}^{\times})$ is contained in the kernel of $H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{W})$ and the corresponding factor group is isomorphic to X, where X is defined to be the kernel of $H^1(G, \overline{CJ}) \to H^1(G, \overline{CD})$.

In particular, if $H^1(G, \overline{CJ}) = 1$ then X = 1 and therefore kernel $H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{F}^{\times}) = \text{kernel } H^2(G, \overline{K}^{\times}) \to H^2(G, \overline{W}).$

Using propositions 1 and 2 of §2 we obtain as an immediate consequence:

THEOREM 3. Let F/K be a separable function field of one variable. Then the factor group $\mathfrak{B}(F/K)$ modulo $\mathfrak{B}(F/K)$ can be cohomologically described as the group X of theorem 2, where \overline{K}/K has to be chosen such that $\mathfrak{B}(F/K) \subset \mathfrak{L}(\overline{K}/K)$.

(As mentioned in §2, the latter inclusion is true if \overline{K} contains the image field $F\mathfrak{p}$ of a separable place \mathfrak{p} of F/K.)

In particular, if the Galois cohomology of the idèle classes \overline{CJ} vanishes in dimension 1, then $\mathfrak{B}(F/K) = \mathfrak{B}(F/K)$.

§4. Proof of theorem 1

Now let F/K be a function field of one variable over a local number field K. If the valuation of K is non-archimedean, then there is a theorem of Tate which says that the Galois cohomology of the idèle classes vanishes in dimension 1.¹⁴ Hence $\mathfrak{B}(F/K) = \mathfrak{B}(F/K)$.

Now let the valuation of K be archimedean. Then K is either the field of complex numbers, or the field of real numbers. In the first case K is algebraically closed and hence $\mathfrak{B}(F/K) = \mathfrak{B}(F/K) = 1$. In the second case, assume first that F/K has a real place \mathfrak{p} . Then $F\mathfrak{p} = K$, $\mathfrak{B}(F/K) \subset \mathfrak{B}(K/K) = 1$, hence $\mathfrak{B}(F/K) = \mathfrak{B}(F/K) = 1$. Secondly, if all places \mathfrak{p} of F/K are complex, then $F\mathfrak{p} = \overline{K}$ is the field of complex numbers for all \mathfrak{p} . Hence $\mathfrak{B}(F/K) = \mathfrak{B}(\overline{K}/K) = \mathfrak{B}(\overline{K}/K) = \mathfrak{B}(K)$ is of order two, the only non-trivial element of $\mathfrak{B}(K)$ corresponding to the quaternion algebra over K. On the other hand, Witt has shown that if F/K has no real places, then -1 is a sum of two squares in F, hence -1 is a norm of $F\overline{K}/F$, i.e. the quaternion algebra and is therefore equal to $\mathfrak{B}(K)$.

Hence, in any case, $\mathfrak{B}(F/K) = \mathfrak{B}(F/K)$.¹⁶⁾

¹⁴⁾ Tate [11], page 156-02, line 2-5.

¹⁵⁾ Witt [12], page 7 Satz 2.

¹⁶⁾ Using Witts results, it can be shown that Tates relation $H^1(G, \overline{CJ}) = 1$ holds also if K is real and \overline{K} complex. For, if one interprets Witts statement I' ([12], page 5) cohomologically, it says that the map $H^2(G, \overline{F}^{\times}) \to H^2(G, \overline{J})$ is injective. On the other hand, from our diagram in §3 we obtain an exact sequence $H^1(G, \overline{J}) \to H^1(G, \overline{CJ}) \to H^2(G, \overline{F}^{\times}) \to H^2(G, \overline{J})$ and we have $H^1(G, \overline{J}) = 1$ from Hilberts theorem 90 for the completions $\overline{F_{\overline{P}}}$. Hence $H^1(G, \overline{CJ}) = 1$.

In order to complete the proof of theorem 1 we have to describe the group $\mathfrak{B}(F/K)$.

Consider first the non-archimedean case. As is well known from local class field theory, the Brauer group $\mathfrak{B}(K)$ is isomorphic to the additive group \mathbf{Q}/\mathbf{Z} of rational numbers modulo integers.¹⁷⁾ The isomorphism

$$\mathfrak{B}(K) \approx \mathbf{Q}/\mathbf{Z}$$

is obtained by assigning to each central simple algebra A/K its Hasse invariant $\operatorname{inv}_{\kappa}(A)$. If L/K is a finite algebraic extension field, then $\operatorname{inv}_{L}(A \bigotimes L) = (L:K) \cdot \operatorname{inv}_{\kappa}(A)$. In particular, L splits A if and only if (L:K) is a multiple of the order of A in $\mathfrak{B}(K)$. In other words $\mathfrak{B}(L/K)$ consists of all those $A \in \mathfrak{B}(K)$ for which $A^{(L:K)} = 1$. The group structure of \mathbf{Q}/\mathbf{Z} implies moreover that $\mathfrak{B}(L/K)$ is cyclic of order (L:K).

In particular, $\mathfrak{V}(F\mathfrak{p}/K)$ is cyclic of order $(F\mathfrak{p} : K) = \deg(\mathfrak{p})$, and $\mathfrak{V}(F\mathfrak{p}/K)$ consists of all elements $A \in \mathfrak{V}(K)$ with $A^{\deg(\mathfrak{p})} = 1$. Taking the intersection for all \mathfrak{p} , we see that if

$$0 < d(F/K) = \gcd_{\mathfrak{p}} \deg(\mathfrak{p})$$

then $\mathfrak{B}(F/K)$ is cyclic of order d(F/K) and consists of all elements $A \in \mathfrak{B}(K)$ with $A^{d(F/K)} = 1$.

If $\mathfrak{a} = \prod_{\mathfrak{p}} \mathfrak{p}^{a(\mathfrak{p})}$ is a divisor of F/K then $\deg(\mathfrak{a}) = \sum_{\mathfrak{p}} a(\mathfrak{p}) \cdot \deg(\mathfrak{p})$ is a linear combination of the degrees $\deg(\mathfrak{p})$, hence a multiple of d(F/K), and conversely. Hence d(F/K) can be characterized as the least positive degrees of divisors of F/K.

This proves theorem 3 in the non-archimedean case, if one uses the fact (proved by studying the Hasse invariant as above) that the Schur index of any $A \in \mathfrak{B}(K)$ is equal to its order in $\mathfrak{B}(K)$.

In the archimedean real case, we have

$$\mathfrak{B}(K) \approx \frac{1}{2} \mathbf{Z}/\mathbf{Z}.$$

If one defines the Hasse invariant of the quaternion algebra to be $\frac{1}{2}$ modulo **Z**, then the above considerations carry over verbally in order to prove theorem 1.

¹⁷) See e.g. Deuring [6], page 112, Satz 3.

In the archimedean complex case, there is nothing to prove.

§ 5. Some additional remarks

(a) Examples of function fields F/K over a number field K for which $\mathfrak{B}(F/K) \neq \mathfrak{\tilde{B}}(F/K)$:

Let K be a number field and F/K be a function field of one variable which is of genus 0 but not rational. It has been shown by Witt [13] that F = F(A)is a generic splitting field of a certain quaternion algebra A over K which is uniquely determined by F. Then $\mathfrak{B}(F/K)$ is of order 2, the only non-trivial element of $\mathfrak{B}(F/K)$ being A; this follows also from our general theory of generic splitting fields¹⁸⁾. Let q range over the primes of K including the primes at infinity. Let M be the set of primes q at which A is ramified, i.e. for which the q-adic Hasse invariant $inv_q(A) \equiv \frac{1}{2} \mod \mathbb{Z}$. According to the Hasse sum formula $\sum_{q} \operatorname{inv}_{q}(A) \equiv 0 \mod \mathbf{Z}^{(9)}$ the number *m* of primes $q \in M$ is even. To every non-empty subset $N \subseteq M$ which consists of an even number of primes q there exists one and only one quaternion algebra A(N) with the primes in N as its ramification primes.¹⁹⁾ In particular, A = A(M). These quaternion algebras generate a subgroup of $\mathfrak{B}(K)$ of order 2^{m-1} . We claim that this subgroup coincides with $\mathfrak{B}(F/K)$. Let \mathfrak{P} be a prime of F/K. Then $F\mathfrak{p}$ splits A, hence the q-adic completion $(F\mathfrak{p})_{\mathfrak{q}}$ splits $A_{\mathfrak{q}} = A \bigotimes K_{\mathfrak{q}}$ for every q. Hence $((F\mathfrak{p})_{\mathfrak{q}} : K_{\mathfrak{q}}) \equiv 0 \mod 2$ for $\mathfrak{q} \in M$. In particular, this holds for $\mathfrak{q} \in N$. Hence $(F\mathfrak{p})_{\mathfrak{q}}$ splits $A(N)_{\mathfrak{q}}$. Since this is true for all \mathfrak{q} , it follows²⁰ that $F\mathfrak{p}$ splits A(N). Hence $A(N) \in \mathfrak{B}(F/K)$ for all N. Conversely, let $B \in \mathfrak{B}(F/K)$, $B \neq 1$. Let L/K be a finite algebraic splitting field of A. Since F = F(A) is a generic splitting field for A, there is a place p of F/K such that $Fp \subseteq L^{21}$ Since $F\mathfrak{p}$ splits B it follows that L splits B. Hence every finite algebraic splitting field L of A is also a splitting field for B. According to the existence theorem of Grunwald²²⁾ there exists a finite algebraic extension field L/K such that $(L_q:K_q)=2$ for $q \in M$ and $L_{q_0}=K_{q_0}$ if $q_0 \notin M$ is arbitrarily chosen. This field L splits A by construction and hence B.

¹⁸⁾ [9], page 414, theorem 5.

¹⁹) Deuring [6], page 119, Satz 9.

²⁰⁾ Deuring [6], page 117, Satz 1.

²¹⁾ [9] page 413, theorem 2.

²²⁾ Hasse [7], page 40, Ganz schwacher Existenzsatz.

641

It follows $\operatorname{inv}_{\mathfrak{q}}(B) \equiv 0 \mod \frac{1}{2}$ for $\mathfrak{q} \in M$ and $\operatorname{inv}_{\mathfrak{q}_0}(B) = 1$. Since $\mathfrak{q}_0 \notin M$ is arbitrary, we see that B is unramified outside of M. For $\mathfrak{q} \in M$, the invariant $\operatorname{inv}_{\mathfrak{q}}(B)$ is either 0 or $\frac{1}{2} \mod \mathbb{Z}$. Hence B = A(N) is a quaternion algebra belonging to some subset $N \subset M$.

We have now shown that $\mathfrak{B}(F/K)$ is of order 2 while $\mathfrak{\tilde{B}}(F/K)$ is of order 2^{m-1} . If we choose A such that the number m of ramification points of A is m > 2, which is possible¹⁹⁾, then for the field F = F(A) we have $\mathfrak{B}(F/K) \neq \mathfrak{\tilde{B}}(F/K)$.

(b) Examples of function fields F/K over a number field K such that $d(F/K) \neq 1$ and $\mathfrak{B}(F/K) = 1$.

Let K be a number field and F/K a function field of one variable and genus 1 with the property that d(F/K) > 1 but $d(F_q/K_q) = 1$ for all primes q of K, where $F_q = FK_q$ is the constant extension of F/K with respect to the completion K_q of q.²³⁾ If $A \in \mathfrak{B}(F/K)$, then for every q the completion A_q is split by F_q/K_q . Since $d(F_q/K_q) = 1$ it follows from theorem 1 that A_q splits too. Hence $\operatorname{inv}_q(A)$ $\equiv 0 \mod \mathbb{Z}$ for all q, i.e. A = 1.¹⁹⁾

References

- [1] Artin, Kohomologietheorie endlicher Gruppen; Vorlesungsausarbeitung Hamburg, (1957).
- [2] Artin-Nesbitt-Thrall, Rings with minimum condition, Ann Arbor (1944).
- [3] Cartan-Eilenberg, Homological Algebra, Princeton, (1956).
- [4] Cassels, Arithmetic on Curves of genus one. VI. The Tate-Šafarevič group can be arbitrarily large, Journal für die reine und angewandte Mathematik, vol. 214/215 (1964), 65-70.
- [5] Chevalley, Introduction to the theory of functions of one variable, New York, (1951).
- [6] Deuring, Algebren, Berlin, (1935).
- [7] Hasse, Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, Journal für die reine und angewandte Mathematik, vol. 188 (1950), 40-64.
- [8] Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen; Journal für die reine und angewandte Mathematik vol. 184 (1942), 12-18.
- [9] Roquette, On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras; Mathematische Annalen, vol. 150 (1963), 411-439.

²³⁾ The existence of such function fields has been proved by Reichardt [8]. See also Cassels [4], page 65, theorem.

- [10] Serre, Corps locaux, Paris, (1962).
- [11] Tate, WC-groups over p-adic fields; Séminaire Bourbaki no. 156, Paris, (1957).
- [12] Witt, Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper. Journal für die reine und angewandte Mathematik, vol. 171 (1934), 4-11.
- [13] Witt, Über ein Gegenbeispiel zum Normensatz, Mathematische Zeitschrift, vol. 39 (1935), 492-467.
- [14] Witt, Schiefkörper über diskret bewerteten Körpern. Journal für die reine und angewandte Mathematik, vol. 176 (1937), 153-156.
- [15] Zariski-Samuel, Commutative Algebra, vol. II, Princeton, (1960).

Tübingen University

Germany