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§ 1. Introduction

Let K be a field and 8(ϋO the Brauer group of K. It consists of the similarity

classes of finite central simple algebras over K.ί} For any field extension

F/K there is a natural mapping 5B(UL) -*S-8(F) which is obtained by assigning

to each central simple algebra A/K the tensor product A®F which is a central
K

simple algebra over F. The kernel of this map is the relative Brauer group

$${F/K), consisting of those i4εS(X) which are split by F.

If F/K is finite algebraic, the investigation of SB(F/K) is part of the general

theory of central simple algebras. In particular, if the ground field K is a

number field or a local number field,2) the relative Brauer group ί&(F/K) can

then explicitly be determined, using class field theory.

In this paper, we propose to investigate 33(F/ϋΓ) in the case where F/K is

a function field of one variable.3) Our results will give a complete description

of %(F/K) if K is a local number field.

For any transcendental field extension F/K, let p be a place of F/K such

that the image field Fp is algebraic over K.A) Any central simple algebra A/K

which is split by F is also split by Fp, as we have shown in an earlier

Received July 19, 1965.
2 ) For the general theory of central simple algebras see e.g. Deuring [6], chap. IV

and V, or Artin-Nesbitt-Thrall [2], chap. V-VΠI.
2> A field K is called a number field if it is a finite-dimensional extension of the

field Q of rational numbers. A field K is called a local number field if it is the comple-

tion of a number field k with respect to a non-trivial valuation of K. This is the case

if and only if K is either the field of real numbers or the field of complex numbers

(archimedean case), or if K is a finite-dimensional extension of the rational p-a.d\c field

Qp, for some prime number p.
3 ) A field extension F/K is called a function field of one variable, if F/K is finitely

generated, K is algebraically closed in F, and the degree of transcendency of F/K is 1.
4 ) For the general theory of places see e.g. Zariski Samuel [15], vol. II, chap. VI.
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paper.δ) That is, we have %(F/K)c:1$(Fp/K). Let us put

p ranging over the places of F/K such that Fp/K is algebraic. We then have

If F/K is a separable function field of one variable, we shall show in § 3 that the

factor group ^ μj pcY c a n ^e described by a certain cohomological invariant Xi F/K)

which is connected with the one-dimensional Galois cohomology of the idele class

group.

The interpretation of this result is as follows: As we have said above,

the investigation of *8(L/K) for an algebraic field extension L of K is part of

the classical theory of central simple algebras. Hence we may regard $(F/K),

which concerns only Brauer groups of algebraic extensions Fp/K, as essentially

known, in particular if the ground field is a number field or a local number

field. Hence the invariant X(F/K), which is explicitely defined in §3, will

describe the deviation of the group ϊ&(F/K) from the (known) group %(F/K).

In the special case where K is a local number field we shall see that X{F/

K) = 1. In the archimedean case, this will follow from the results of Witt

[12] while in the non-archimedean case we shall refer to the corresponding

results of Tate [11]. This then shows that %(F/K) = $(F/K). On the other

hand, the known structure of Φ(iO for local number fields permits to determine

33 (F/K) explicitly. We then will obtain the following result which constitutes

the main result of this paper:

THEOREM 1. Let F/K be a function field of one variable over a local number

field K Let d{F/K) be the smallest positive integer which is a degree of a divisor

of F/K

Then:

The group ίβ(F/K) is cyclic of order d(F/K); it consists of all At£%(K)

whose Schur index divides d(F/K).

As to global number fields K as ground fields, we shall show by examples

δ ) [9], page 428, prop. 8.
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SPLITTING OF ALGEBRAS BY FUNCTION FIELDS OF ONE VARIABLE 627

that the equality S${F/K) = S£(F/K) is not true in general. This case has still

to be investigated.

§ 2. The cohomological language

Let K/K be a finite Galois extension of K, with Galois group G = G(K/K).

As shown in the theory of crossed product algebras, we have

(1) nK/K) = H\G, Kx)6)

where K * denotes the multiplicative group of the field K. Here, H2{G, Kx)

denotes the second cohomology group of G in the multiplicative group of K.Ί)

If L/K is any field extension and Z = LK a field compositum of L with K,

then the subgroup

GL = G(K/LΠK)

of G can be regarded as the Galois group of L/L. The restriction from G to

GL together with the inclusion map ϋΓ x cZ* gives a cohomology map

(2) H2(G, Kx)-+H\GLf Σx).

On the other hand, the map 33(iO -»$KL) described in § 1 induces a map

(3)

In the theory of crossed products it is shown that the two maps (2) and (3)

coincide after the identification (1) and the corresponding identification for

Σ/L.S) The kernel of (3) consists of those algebras over K, which are split

by K and L. That is, this kernel is ®(K/K) Π S(L/iO.

Hence:

(4) <8>(K/K)n%(L/K) = kernel H\G, Kx)->H2(GLf Z x ) .

If L = F is.a separable function field of one variable, then jFhas a separable

place p hence we may choose K so as to contain Fp. As said in § 1, ^8{F/K)

asS(F\)/K) c:$(K/K). On the other hand, F is linearly disjoint to K over K

and hence GF-G can be regarded as the Galois group of F-F K over F.

6 ) See e.g. the books mentioned in 1K For another approach see Serre [10], chap.

X, § 5-6.
7 ) For the general cohomology theory we refer to [10] chap. VII, or Cartan-Eilenberg

[3], or Artin [1].
8> Deuring [6], page 61, Satz 1.
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Hence:

PROPOSITION 1. Let F/K be a separable function field of one variable. Then

there exists a finite Galois extension K/K such that *$>{F/K) czϊβ(K/K). If this

is so, then

SB(F/K) = kernel H2(G, KX)->H2(G, F x ) .

Next we shall give a co homo logical interpretation of %(F/K).

Let p be a place of F/K and Fp its image field. Let Fp K be a field com-

positum of Fp and K over K and denote by G$ the group of K over Fp Π ZΓ.

From (4) we obtain:

(5) ?β(K/K)C)%(Fp/K) = kernel H2(G, K*)-+H*(GP, (Fp-KV).

Let now p range over all places of F/K and

H2(G, K*)-+UH\GP, (Fp-K)x)
ί

be the map which in each component of the direct product induces the map

mentioned in (5). Its kernel is the intersection of the kernels in (5). Hence

(6) %(K/K) Π $iF/K) = kernel H2(G, Kx) -*ΠH2(GP, (Fp K)*)

If we choose K such that it contains Fp for some p, which is possible if F/K

is separable, then SS>(F/K) is contained in %5(K/K) and hence we may replace

the intersection on the left hand side of (6) by $(F/K).

On the right hand side of (6), the image group is a direct product of

cohomology groups with respect to various subgroups Gp of G. However, this

group can be interpreted as a cohomology group of G in a certain group

W = W(F/K), as follows.

For a given prime p, the field compositum Fp K is in general not uniquely

determined. There may be several inequivalent field composita of Fp with K

over K. Let p range over the primes of F/K which lie above p (we then

write p\p.). It is well known that the inequivalent field composita of Fp with

K correspond 1 — 1 to the p\p. For any p\p, the image field Fp contains Fp,

which is if-isomorphic to Fp under the map

ap-*άp (a^F).

We have
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and this is the field compositum belonging to 5.9)

We now form the direct product Π Fp. Since the Fp are all the inequivalent
_ PIP

field composita of Fp and K, we have a natural isomorphism

(7) Fp®K = ΠFp
K PIP

which is obtained by mapping K diagonally into YίFp (K is contained in each
_ _ p i p

Fp) and by mapping

Pip

The Galois group G acts naturally on Fp®K (on the right factor) and hence

on the direct product on the right hand side of (7), thereby permuting the

factors Fp transitively. If p\p is fixed and G$ denotes the subgroup of G

leaving the elements of Fp fixed, then we may write

(8) Fp®K= Π (Fp)σ.

K σεff mod GZ

Let Wp be the group of units of the algebra Fp®K. We obtain

(9) WP= Π (F'5)xσ.
σ mod Gjj.

Shapiros lemma from cohomology theory i ω now shows that

(10) H*(G, Wp) = Hi{Gh (Fp)*) (i>0).

This isomorphism is obtained by the restriction of G to the subgroup Gp, followed

by the projection Wp-+(Fp)x.

Observe that on the right hand side in (10) we have one fixed compositum

Fp = Fp K of Fp and K. This may take the place of what we have denoted

by Fp K in (5). The diagonal imbedding K x-+Wp followed by the projection

Wp^(Fp)x is precisely the natural injection Kx -+(Fp)* = {Fp K)x. Hence

we obtain from (5) and (10) (for t = 2) that

(11) mE/K) Π S(Fρ//Π = kernel H2(G9 K
x) -> H\G, W*).

9) Chevalley [5], page 92, theorem 3.
10> [10], page 125, exercice,
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Now let us put all places p of F/K together:

G acts on W componentwise on each Wp. We have

(12) #'(G, W) = ΠiΓ(G, ϊfp) (ί>0)

and we obtain

PROPOSITION 2. Let FIK be a separable function field of one variable. Then

there is a finite Galois extension K/K such that %{F/K)c%{K/K). If this is so,

we have

${F/K) = kernel H\G, K*)-+H\Gy W),

where

P

(p ranging over the places of F/K), and G acts on W naturally as described above.

§ 3. The kernel theorem

Let F/K be a function field of one variable and K/K a finite Galois extension

with group G. According to propositions 1 and 2, we shall study in this § 3

the maps

H\G, KX)-*H2(G, F x )

and

H\G, K*)-*H2(G, W)

described in § 2 and we shall compare their kernels.

We introduce the following notations:

D the divisor group of F/K

H the group of principal divisors in D

CD = D/H the divisor class group

/ the idele group of F/K

CJ =J/F* the group of idele classes

U the group of idele units in /

CU = UFX/FX= UIKy the idele unit classes.

As to the definitions, D is defined to be the free abelian multiplicative
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group generated by the prime divisors (places) p of F/K. Hence every divisor

α e= D is a product

p

with uniquely determined integers a(p) such that a(p) = 0 for all but a finite

number of p.

Let w# be the additive normalized valuation of F belonging to p. The

principal divisor for a&Fx is

ϋΓ is defined to be the image of the map a->{a) from Fx into D. The kernel

of this map is Kx, so that the sequence

is exact.

/ is defined to consist of all functions j>->α(p), defined on the primes p of

F/K, with values a(p) in the multiplicative group of Fp, the p-adic completion

of F with respect to p.

These functions a have to satisfy the finiteness condition that wp(a(p)) #0

for all but a finite number of p.n) There is a mapping J-+D obtained by as-

signing to each CC<ΞJ its divisor (a) = Π ρ ^ ( α ι p ) l .

This mapping is epimorphic; its kernel is called U, so that the sequence

is exact.

There is a mapping Fx -»/ obtained by assigning to each a^Fx the idele

<*« given by αrα(p)=β, for all p (diagonal imbedding). This mapping is

monomorphic and we identify Fx with its image in /. This identification is

coherent with the mappings Fx ->D and /->Dt i.e. we have (a) = (aa). In other

words, the diagram

I I

is commutative.

n> By continuity, the valuation wp of F extends uniquely to a valuation of the com-
pletion Fp, and this extension is again denoted by wp.

https://doi.org/10.1017/S0027763000026441 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026441


632 PETER ROQUETTE

From the above definitions and discussions it follows that the diagram

1 1 1

1 1 1

in which the arrows denote the natural maps in question, is commutative with

exact rows and columns.

For the function field F/K we have a similar diagram whose corresponding

groups will be denoted by D, H, CD, J, etc:

1 1 1
A £ JL

ι-»κ*-+u-*cu-»ι

1 1 1

As said in §2, the Galois group G= G{K/K) can be regarded as the Galois

group of F/Fy since F and K are linearly disjoint over K. Hence G acts on

F x . Also, G acts on all the other groups of our diagram, as follows.

G acts on the primes p of F: If w$ is the additive normalized valuation

of F belonging to p then pσ is defined by

Wpσ{aa) = wp(a) (βeί 1 , * e G).

The map a : F -»F is continuous if F as the domain of this map is topologized

by w$, and it is topologized by w$σ if considered as the range of a. Hence a

extends, by continuity, uniquely to a map a F$-*Fpσ of the corresponding

completions. According to these maps, G acts on J, namely:

By definition, it is clear that the maps
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(diagonal imbedding) and

(divisor map) are G-permissible. Hence all the other maps of our diagram,

being based on the two maps mentioned above, are G-permissible, G acting on

the groups of the diagram in the natural way. In other words our diagram

is G-permissible.

In particular, for each group M of our diagram we can form the cohomology

groups H\G} M), and for each exact row or column l->Mι-+M2 ̂ Ma->l of

our diagram we obtain a cohomological connecting map HιiG, ~Mz) ->Hι^1(G,

Mi).

From the lower horizontal sequence of the diagram we thus obtain a

cohomology map

H'\CD)-*Hi+1(H).

From the left vertical sequence we obtain also

Hi+1(H)-+Hi+\K*)

which combined with the map above yields a map

hi:Hi(CD)-*Hi+2{Kx).

Similarly, using first the right vertical sequence and then the upper horizontal

sequence of the diagram we obtain another map

g* : H\CB)-*Hi+HKx).

It is known from general cohomology theorym that both maps ti and g% differ only

by a sign; in particular, both maps have the same kernel and the same image.

Let us investigate these maps in the case i - 0.

Investigation of h°:

By definition, h° is obtained by considering the left lower corner of the

diagram, namely:

12> Cartan-Eilenberg [3], page 56, prop. 2.1.
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1

K*

1

This portion of our diagram gives the two maps

H*(CD)-»H\Ή)

and

H\H)-»H\K*)

the composite of which is k°.

We begin by observing that

(13) H\F*)=l

and

(14) H\D)=1.

The first of these formulae is well known as the celebrated 'Hubert theorem

90 \ The second follows from the fact that ~D is the free abelian group generated

by the primes p of F/K which are only permuted under G.13)

From (13) it follows, using the exactness of the column of our diagram

portion, that

H\H)->H2(K><) is monomorphic.

Similarly, from (14) it follows that

H*(CD}-»H1(H) is epimorphic.

Putting both statements together we obtain

(15) image (*0) = image Hι(H)-+H*{K*)

On the other hand,

image Hι(H) -+H2{KX) = kernel H\KX) - H\FX)

gee e.g. [9], page 437,
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so that we finally obtain

(16) image {h°) = kernel H\KX) -*H*(F*).

Investigation of g°:

Now we have to consider the right upper corner of our diagram:

1

CJ
_i_
CD

I
1

g° is the composite of the two maps

H°(CD)-»H\CU)

and

First we have, in analogy to (13), the formula

(17) HU

Proof. Let Up be the group of 5-adic units in the p-adic completion F$ of

F. By definition, U is the direct product

p

Each place p induces an epimorphic map

These maps define an epimorphic map

U-+W

where W is the direct product of the (Fp)x as in §2. By comparing the

definitions of the actions of G on U (as part of / ) and on W (see §2) we see

that this map is G- permissible.

Let V be the kernel, so that
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is exact. We shall show in a moment that

(18) H*(G, F) =

This shows that U-+W induces an isomorphism

(19) H*{G, ϊϊ) = H\Gy W)

Using (12) and (10) we obtain

H{(G, U \ x

p

where p ranges over the places of F/K and p denotes always a fixed extension

of D to F/K. For i= 1, the right hand side of (19) is 1, using Huberts theorem

90 for each field Fp. Hence (17).

Proof of (18). Let Fp be the kernel of the map Up->(Fp)x

t consisting of

the elements c e F p with ap=\. Then V=ΏVp. Put Vp= ΠFp. Then
_ — p pip

F = ΠFp is a G-permissible direct product. Hence
p

H\G, F)=ΠiT(G, Fp).
P

From Shapiros lemma101 we infer that

p being a fixed extension of p. Hence we have to show that H\G$, Vp) = 1

for z>l. Changing notation, this amounts to show the following

LEMMA. Let F be a complete field with respect to a non-archimedean, discrete

valuation w$ with corresponding prime p. Let V be the multiplicative subgroup of

elements a e F with ap - 1 (i.e. Wp( a — 1) > 0). If G is a finite group of continuous

automorphisms of F whose induced action on the image field Fp is faithful, then

H\G9 F) = l

This lemma is well known from local class field theory. For the proof see

e.g. Witt [14], page 154, no. 2 or Serre [10], page 193, lemma 2.

Let us return to our original notation. We now have proved (17) which

is, for the map g°9 the analogue to (13). The analogue to (14) would be H\Gf

QJ) = 1. This is not true in general (although we shall see later that it is true

in the case where K is a, local number field). We therefore introduce the

group
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(20) X=X(F/K) = kernel H\G, CJ) ~>H\Gy CD).

From the exactness of the column of our diagram portion we infer that

(21) X= image H\G, CU) ->H\G, CJ)

= HHG, CU)/Y

where

Y = image H\G, CD) ->HHG, Cϋ).

From (17) it follows that

H\G, CU)-*H\G, Kx) is monomorphic.

Its image is the kernel of H2(G, KX)-+H2(G, U). Hence

H\G% CU) ^.kernel H\G, Kx) -*H\G, U).

In this isomorphism, the image Y of H*(G,UD) ->H1{G,UU) corresponds to

the image of g° (by definition of g°). Hence we obtain from (21) :

(22) The image of g° is contained in the kernel of H2 (G, KX)-*H2{G, U) and

the corresponding factor group is isomorphic to X.

Finally, we claim:

(23) kernel H2{G, KX)-*H\G, U) - kernel H2(G, Kx) -*H2(G, W).

Proof As shown in (19), the map U-*W induces an isomorphism of

cohomology groups. Hence the map Kx -+U->W induces a map H2{G, Kx)->

H2iG, W) which has the same kernel as H2(G, KX)-+H2(G, U). Q.e.d.

Observe that the map K* ->U^>W is the diagonal imbedding of Kx in W

which we have considered in § 2.

Now remember that the maps h° and ^° have the same image, as mentioned

above. Comparing (16), (22) and (23) we obtain therefore the following'kernel

theorem' *•

THEOREM 2. Let F/'K be a function field of one variable and K/K a finite

Galois extension with Galois group G. Then the kernel of H2(G, Kx) ->H2(G, Fx)

is contained in the kernel of H2(G, KX)->H2{G, W) and the corresponding factor

group is isomorphic to X, where X is defined to be the kernel of iίHG, CJ) -* Hι{G,

CD).

In particular, if H^G, CJ) = 1 then X=l and therefore kernel H\G, Kx ) ->

H2{G, F*)= kernel H2(G, KX)->H2(G, W).
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Using propositions 1 and 2 of § 2 we obtain as an immediate consequence:

THEOREM 3. Let F/K be a separable function field of one variable. Then the

factor group %{F/K) modulo 35(F//D can be cohomologically described as the

group X of theorem 2, where K/K has to be chosen such that

(As mentioned in §2, the latter inclusion is true if K contains the image

field Fp of a separable place p of F/K.)

In particular, if the Galois cohomology of the idele classes C/ vanishes in

dimension 1, then §(F/K) ^

§ 4. Proof of theorem 1

Now let F/K be a function field of one variable over a local number field

K. If the valuation of K is non-archimedean, then there is a theorem of Tate

which says that the Galois cohomology of the idele classes vanishes in dimension

1.14) Hence $(F/K) = 33(F/K).

Now let the valuation of K be archimedean. Then K is either the field of

complex numbers, or the field of real numbers. In the first case K is alge-

braically closed and hence $(F/K) = ίbiF/K) = 1. In the second case, assume

first that F/K has a real place p. Then Fp = K, $iF/K)cz%{K/K) = 1, hence

fb(F/K) = %(F/K) = 1. Secondly, if all places p of F/K are complex, then Fp

= K is the field of complex numbers for all p. Hence $>iF/K) = S£(K/K) =

25(if) is of order two, the only non-trivial element of 53(K) corresponding to

the quaternion algebra over K On the other hand, Witt has shown that if

F/K has no real places, then - 1 is a sum of two squares in Ft hence - 1 is

a norm of FK/Ft i.e. the quaternion algebra splits over F.m This implies that

53(F/K) contains the quaternion algebra and is therefore equal to

Hence, in any case, $(F/K) = <$>(F/K).lζ)

14> Tate [11], page 156-02, line 2-5.
15) Witt [12], page 7 Satz 2.
16> Using Witts results, it can be shown that Tates relation H1(G, CJ) = 1 holds also

if K is real and K complex. For, if one interprets Witts statement Γ ([12], page 5)

cohomologically, it says that the map H2(G, Fx )->i/2(G,/) is injective. On the other

hand, from our diagram in § 3 we obtain an exact sequence H1(G, J)->H1{G, CJ)->H2(G,

F x)->/ί 2(G, /) and we have HX{G, J) = l from Huberts theorem 90 for the completions

Fp. Hence Hι(G> CJ) = 1.
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In order to complete the proof of theorem 1 we have to describe the group

Consider first the non-archimedean case. As is well known from local class

field theory, the Brauer group 3B(iΌ is isomorphic to the additive group Q/Z

of rational numbers modulo integers.17) The isomorphism

s u n * Q/z

is obtained by assigning to each central simple algebra A/Kits Hasse invariant

invκ(A). If L/K is a finite algebraic extension field, then invΛA®L) =
K

(L- K) invκ(A). In particular, L splits A if and only if (L:K) is a multiple of

the order of A in 33 (ϋΩ. In other words %(L/K) consists of all those A e 33 (HO

for which A{L:K) = 1. The group structure of Q/Z implies moreover that 33(L/ϋΓ)

is cyclic of order (L K).

In particular, f&(Fp/K) is cyclic of order (Fp : ϋΠ = deg(}>), and 33(FJ>/JK)

consists of all elements A e 33(10 with Adββ(p) = 1. Taking the intersection

for all J), we see that if

p

then %(F/K) is cyclic of order d{F/K) and consists of all elements Ae33<HO

with A * w = 1.

If a=>Hρaip) is a divisor of F/ϋΓ then deg(α) = Σa(p) degip) is a linear

combination of the degrees deg(p), hence a multiple of d(F/K), and conversely.

Hence d(F/K) can be characterized as the least positive degrees of divisors of

F/K.

This proves theorem 3 in the non-archimedean case, if one uses the fact

(proved by studying the Hasse invariant as above) that the Schur index of any

A(E?S(K) is equal to its order in 33(HΓ).

In the archimedean real case, we have

If one defines the Hasse invariant of the quaternion algebra to be -s- modulo

Z, then the above considerations carry over verbally in order to prove theorem

1.

17> See e.g. Deuring [6], page 112, Satz 3.
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In the archimedean complex case, there is nothing to prove.

§ 5. Some additional remarks

(a) Examples of function fields F/K over a number field K for which S£

Let K be a number field and F/K be a function field of one variable which

is of genus 0 but not rational. It has been shown by Witt [13] that F^FiA)

is a generic splitting field of a certain quaternion algebra A over K which is

uniquely determined by F. Then ϊβ(F/K) is of order 2, the only non-trivial

element of $S(F/K) being A this follows also from our general theory of

generic splitting fields18). Let q range over the primes of K including the

primes at infinity. Let M be the set of primes q at which A is ramified, i.e.

for which the q-adic Hasse invariant invq(̂ L) = -~- mod Z. According to the

Hasse sum formula Σinvq(A) ΞO mod Z19) the number m of primes qeTkf is

even. To every non-empty subset N^M which consists of an even number of

primes q there exists one and only one quaternion algebra A(N) with the

primes in N as its ramification primes.19) In particular, A = A(M). These

quaternion algebras generate a subgroup of 33(iD of order 2fΠ"1. We claim

that this subgroup coincides with $>{F/K). Let p be a prime of F/K Then

Fp splits A, hence the q-adic completion (Fp)q splits Aq = A®Kq for every q.

Hence ((Fp)q : Kq) =0 mod 2 for q^M. In particular, this holds for q^N.

Hence (Fp)q splits A(N)q. Since this is true for all q, it follows20) that Fp

splits AiN). Hence A(N) e %(F/K) for all N. Conversely, let £EΞ SlF/ϋΓ),

B*l. Let L/K be a finite algebraic splitting field of A. Since F= FKA) is a

generic splitting field for A, there is a place p of F/if such that Fρ^L.21) Since

Fp splits £ it follows that L splits £. Hence every finite algebraic splitting

field L of A is also a splitting field for #. According to the existence theorem

of Grunwald22) there exists a finite algebraic extension field L/K such that

(L q: Kq) = 2 for q e Λf and Lq0 = i£q0 if qoίM is arbitrarily chosen. This field L

splits A by construction and hence B.

18) [9], page 414, theorem 5.
19> Deuring [6], page 119, Satz 9.
2 0 ) Deuring [6], page 117, Satz 1.
2 1 ) [9] page 413, theorem 2.
22> Hasse [7], page 40, Ganz schwacher Existenzsatz.
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It follows invqli?) == 0 mod γ for q e M and invqo(i?) = 1. Since qo^M is

arbitrary, we see that B is unramified outside of M. For q e M, the invariant

invq(Z?) is either 0 or ^ mod Z. Hence B=A(N) is a quaternion algebra

belonging to some subset

We have now shown that *d(F/K) is of order 2 while 3(F/iD is of order

2m~1. If we choose A such that the number m of ramification points of A is

2, which is possible19), then for the field F=F(A) we have iQ(F/K)

(b) Examples of function fields F/K over a number field K such that d( F/K) # 1

and %(F/K) = 1.

Let if be a number field and F/K a function field of one variable and genus

1 with the property that dκF/K)>\ but d(Fq/Kq) = l for all primes q of K,

where Fq = FiΓα is the constant extension of F/K with respect to the completion

Kq of q.23) If A G 1B(F/K), then for every q the completion Aq is split by Fq/Kq.

Since d(Fq/Kq) = 1 it follows from theorem 1 that ^4q splits too. Hence invq(A)

s 0 mod Z for all q, i.e. ^ = 1.19)
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