SPLITTING OF ALGEBRAS BY FUNCTION FIELDS OF ONE VARIABLE

PETER ROQUETTE

To the memory of Tadasi Nakayama

§ 1. Introduction

Let K be a field and $\mathfrak{B}(K)$ the Brauer group of K. It consists of the similarity classes of finite central simple algebras over $K .{ }^{1)}$ For any field extension F / K there is a natural mapping $\mathfrak{B}(K) \rightarrow \mathfrak{B}(F)$ which is obtained by assigning to each central simple algebra A / K the tensor product $A \underset{K}{\otimes} F$ which is a central simple algebra over F. The kernel of this map is the relative Brauer group $\mathfrak{B}(F / K)$, consisting of those $A \in \mathfrak{B}(K)$ which are split by F.

If F / K is finite algebraic, the investigation of $\mathcal{B}(F / K)$ is part of the general theory of central simple algebras. In particular, if the ground field K is a number field or a local number field, ${ }^{2)}$ the relative Brauer group $\mathfrak{B}(F / K)$ can then explicitly be determined, using class field theory.

In this paper, we propose to investigate $\mathfrak{B}(F / K)$ in the case where F / K is a function field of one variable. ${ }^{3)}$ Our results will give a complete description of $\mathfrak{B}(F / K)$ if K is a local number field.

For any transcendental field extension F / K, let \mathfrak{p} be a place of F / K such that the image field $F p$ is algebraic over $K .{ }^{4)}$ Any central simple algebra A / K which is split by F is also split by F p, as we have shown in an earlier

[^0]paper. ${ }^{5)}$ That is, we have $\mathfrak{B}(F / K) \subset \mathfrak{B}(F \mathfrak{p} / K)$. Let us put
$$
\widetilde{\mathfrak{B}}(F / K)=\bigcap_{\mathfrak{p}} \mathfrak{B}(F \mathfrak{p} / K),
$$
\mathfrak{p} ranging over the places of F / K such that $F \mathfrak{p} / K$ is algebraic. We then have
$$
\mathfrak{B}(F / K) \subset \mathfrak{B}(F / K) .
$$

If F / K is a separable function field of one variable, we shall show in § 3 that the factor group $\frac{\widetilde{\mathfrak{B}}(F / K)}{\mathfrak{B}(F-K)}$ can be described by a certain cohomological invariant $X(F / K)$ which is connected with the one-dimensional Galois cohomology of the idèle class group.

The interpretation of this result is as follows: As we have said above, the investigation of $\mathfrak{B}(L / K)$ for an algebraic field extension L of K is part of the classical theory of central simple algebras. Hence we may regard $\mathfrak{\mathcal { F }}(F / K)$, which concerns only Brauer groups of algebraic extensions $F \mathfrak{p} / K$, as essentially known, in particular if the ground field is a number field or a local number field. Hence the invariant $X(F / K)$, which is explicitely defined in $\S 3$, will describe the deviation of the group $\mathfrak{B}(F / K)$ from the (known) group $\mathfrak{B}(F / K)$.

In the special case where K is a local number field we shall see that $X(F /$ $K)=1$. In the archimedean case, this will follow from the results of Witt [12] while in the non-archimedean case we shall refer to the corresponding results of Tate [11]. This then shows that $\mathfrak{R}(F / K)=\tilde{\mathfrak{B}}(F / K)$. On the other hand, the known structure of $\mathfrak{B}(K)$ for local number fields permits to determine $\mathfrak{B}(F / K)$ explicitly. We then will obtain the following result which constitutes the main result of this paper:

Theorem 1. Let F / K be a function field of one variable over a local number field K. Let $d(F / K)$ be the smallest positive integer which is a degree of a divisor of F / K.

Then:
The group $\mathfrak{B}(F / K)$ is cyclic of order $d(F / K)$; it consists of all $A \in \mathfrak{B}(K)$ whose Schur index divides $d(F / K)$.

As to global number fields K as ground fields, we shall show by examples

[^1]that the equality $\mathfrak{B}(F / K)=\mathfrak{B}(F / K)$ is not true in general. This case has still to be investigated.

§ 2. The cohomological language

Let \bar{K} / K be a finite Galois extension of K, with Galois group $G=G(\bar{K} / K)$. As shown in the theory of crossed product algebras, we have

$$
\begin{equation*}
\mathfrak{B}(\bar{K} / K)=H^{2}\left(G, \bar{K}^{\times}\right)^{6)} \tag{1}
\end{equation*}
$$

where \bar{K}^{\times}denotes the multiplicative group of the field K. Here, $H^{2}\left(G, \bar{K}^{\times}\right)$ denotes the second cohomology group of G in the multiplicative group of \bar{K}. ${ }^{7 \prime}$

If L / K is any field extension and $\bar{L}=L \bar{K}$ a field compositum of L with \bar{K}, then the subgroup

$$
G_{L}=G(\bar{K} / L \cap \bar{K})
$$

of G can be regarded as the Galois group of \bar{L} / L. The restriction from G to G_{L} together with the inclusion map $\bar{K}^{\times} \subset \mathscr{L}^{\times}$gives a cohomology map

$$
\begin{equation*}
H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}\left(G_{L}, \bar{L}^{\times}\right) . \tag{2}
\end{equation*}
$$

On the other hand, the map $\mathfrak{B}(K) \rightarrow \mathfrak{B}(L)$ described in $\S 1$ induces a map

$$
\begin{equation*}
\mathfrak{B}(\bar{K} / K) \rightarrow \mathfrak{B}(\bar{L} / L) . \tag{3}
\end{equation*}
$$

In the theory of crossed products it is shown that the two maps (2) and (3) coincide after the identification (1) and the corresponding identification for $\mathcal{L} / L^{8}{ }^{8} \quad$ The kernel of (3) consists of those algebras over K, which are split by \bar{K} and L. That is, this kernel is $\mathfrak{B}(\bar{K} / K) \cap \mathfrak{B}(L / K)$.
Hence :

$$
\begin{equation*}
\mathfrak{B}(\bar{K} / K) \cap \mathfrak{B}(L / K)=\text { kernel } H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}\left(G_{L}, \bar{L}^{\times}\right) . \tag{4}
\end{equation*}
$$

If $L=F$ is a separable function field of one variable, then F has a separable place \mathfrak{p}; hence we may choose \bar{K} so as to contain $F \mathfrak{p}$. As said in § 1, $\mathfrak{B}(F / K)$ $\subset \mathfrak{B}(F \mathfrak{p} / K) \subset \mathfrak{B}(\bar{K} / K)$. On the other hand, F is linearly disjoint to \bar{K} over K and hence $G_{r}=G$ can be regarded as the Galois group of $\bar{F}=F \cdot \bar{K}$ over F.

[^2]Hence :
Proposition 1. Let F / K be a separable function field of one variable. Then there exists a finite Galois extension \bar{K} / K such that $\mathfrak{B}(F / K) \subset \mathfrak{B}(\bar{K} / K)$. If this is so, then

$$
\mathfrak{B}(F / K)=\text { kernel } H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}\left(G, \bar{F}^{\times}\right) .
$$

Next we shall give a cohomological interpretation of $\widetilde{\mathfrak{B}}(F / K)$.
Let \mathfrak{p} be a place of F / K and $F p$ its image field. Let $F p \cdot \bar{K}$ be a field compositum of $F p$ and \bar{K} over K and denote by G_{p} the group of \bar{K} over $F p \cap \bar{K}$. From (4) we obtain:

$$
\begin{equation*}
\mathfrak{B}(\bar{K} / K) \cap \mathfrak{B}(F \mathfrak{p} / \bar{K})=\text { kernel } H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}\left(G_{\mathfrak{p}},(F \mathfrak{p} \cdot \bar{K})^{\times}\right) . \tag{5}
\end{equation*}
$$

Let now p range over all places of F / K and

$$
H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow \prod_{\mathfrak{p}} H^{\mathfrak{p}}\left(G_{\mathfrak{p}},(F \mathfrak{p} \cdot \bar{K})^{\times}\right)
$$

be the map which in each component of the direct product induces the map mentioned in (5). Its kernel is the intersection of the kernels in (5). Hence

$$
\begin{equation*}
\mathfrak{B}(\bar{K} / K) \cap \widetilde{\mathfrak{B}}(F / K)=\text { kernel } H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow \prod_{\mathfrak{p}} H^{2}\left(G_{\mathfrak{p}},(F \mathfrak{p} \cdot \bar{K})^{\times}\right) \tag{6}
\end{equation*}
$$

If we choose \bar{K} such that it contains $F \mathfrak{p}$ for some \mathfrak{p}, which is possible if F / K is separable, then $\mathfrak{B}(F / K)$ is contained in $\mathfrak{B}(\bar{K} / K)$ and hence we may replace the intersection on the left hand side of (6) by $\mathfrak{F}(F / K)$.

On the right hand side of (6), the image group is a direct product of cohomology groups with respect to various subgroups $G_{\mathfrak{p}}$ of G. However, this group can be interpreted as a cohomology group of G in a certain group $\bar{W}=\bar{W}(\bar{F} / \bar{K})$, as follows.

For a given prime \mathfrak{p}, the field compositum $F \mathfrak{p} \cdot \bar{K}$ is in general not uniquely determined. There may be several inequivalent field composita of $F \mathfrak{p}$ with \bar{K} over K. Let $\overline{\mathfrak{p}}$ range over the primes of \bar{F} / \bar{K} which lie above \mathfrak{p} (we then write $\bar{p} \mid p$.$) . It is well known that the inequivalent field composita of F \mathfrak{p}$ with \bar{K} correspond $1-1$ to the $\bar{p} \mid \mathfrak{p}$. For any $\bar{p} \mid \mathfrak{p}$, the image field $\bar{F} \bar{p}$ contains $F \overline{\mathfrak{p}}$, which is K-isomorphic to $F p$ under the map

$$
a \mathfrak{p} \rightarrow a \overline{\mathrm{p}} \quad(a \in F)
$$

We have

$$
\overline{F \bar{p}}=F \bar{p} \cdot \bar{K},
$$

and this is the field compositum belonging to $\overline{\mathfrak{D}} .{ }^{9)}$
We now form the direct product $\prod_{\bar{p} \mid p} \bar{F} \bar{p}$. Since the $\bar{F} \bar{p}$ are all the inequivalent field composita of $F p$ and \bar{K}, we have a natural isomorphism

$$
\begin{equation*}
F \mathfrak{p} \underset{K}{\otimes} \bar{K}=\prod_{\overline{\mathfrak{p}} \mathfrak{p}} \bar{F} \overline{\mathfrak{p}} \tag{7}
\end{equation*}
$$

which is obtained by mapping \bar{K} diagonally into $\prod_{\overline{\mathfrak{p}} \mid \mathfrak{p}} \bar{F} \overline{\mathfrak{p}}$ (\bar{K} is contained in each $\bar{F} \bar{F}$) and by mapping

$$
a \mathfrak{p} \rightarrow \prod_{\overline{\mathfrak{p} \mid p}} a \overline{\mathfrak{p}} \quad(a \in F) .
$$

The Galois group G acts naturally on $F \mathfrak{p} \otimes \bar{K}$ (on the right factor) and hence on the direct product on the right hand side of (7), thereby permuting the factors $\bar{F} \bar{p}$ transitively. If $\bar{p} \mid p$ is fixed and $G_{\bar{p}}$ denotes the subgroup of G leaving the elements of $\bar{F} \overline{\mathfrak{F}}$ fixed, then we may write

$$
\begin{equation*}
F p \otimes_{K} \bar{K}=\prod_{\sigma \in G \bmod \sigma_{\bar{p}}}(\bar{F} \overline{\mathfrak{p}})^{\sigma} . \tag{8}
\end{equation*}
$$

Let $\bar{W}_{\mathfrak{p}}$ be the group of units of the algebra $F \mathfrak{p} \otimes \bar{K}$. We obtain

$$
\begin{equation*}
\bar{W}_{\mathfrak{p}}=\prod_{\sigma \bmod G_{\overline{\mathfrak{p}}}}(\bar{F} \overline{\mathfrak{p}})^{\times \sigma} \tag{9}
\end{equation*}
$$

Shapiros lemma from cohomology theory ${ }^{10}$ now shows that

$$
\begin{equation*}
H^{i}\left(G, \bar{W}_{\mathfrak{p}}\right)=H^{i}\left(G_{\overline{\mathfrak{p}}},(\bar{F} \overline{\mathfrak{p}})^{\times}\right) \quad(i \geq 0) . \tag{10}
\end{equation*}
$$

This isomorphism is obtained by the restriction of G to the subgroup $G_{\bar{p}}$, followed by the projection $\bar{W}_{\mathfrak{p}} \rightarrow(\bar{F} \overline{\mathfrak{p}})^{\times}$.

Observe that on the right hand side in (10) we have one fixed compositum $\bar{F} \overline{\mathfrak{p}}=F \overline{\mathfrak{p}} \cdot \bar{K}$ of $F \mathfrak{p}$ and \bar{K}. This may take the place of what we have denoted by $F \mathfrak{p} \cdot \bar{K}$ in (5). The diagonal imbedding $\bar{K}^{\times} \rightarrow \bar{W}_{\mathfrak{p}}$ followed by the projection $\bar{W}_{\mathfrak{p}} \rightarrow(\bar{F} \overline{\mathfrak{p}})^{\times}$is precisely the natural injection $\bar{K}^{\times} \rightarrow(\bar{F} \overline{\mathfrak{p}})^{\times}=(F \bar{p} \cdot \bar{K})^{\times}$. Hence we obtain from (5) and (10) (for $i=2$) that

$$
\begin{equation*}
\widetilde{\mathfrak{B}}(\bar{K} / K) \cap \mathfrak{B}(F \mathfrak{p} / K)=\text { kernel } H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}\left(G, \bar{W}_{\mathfrak{p}}\right) . \tag{11}
\end{equation*}
$$

9) Chevalley [5], page 92, theorem 3.
${ }^{10)}$ [10], page 125, exercice.

Now let us put all places \mathfrak{p} of F / K together:

$$
\bar{W}=\prod_{p} \bar{W}_{\mathfrak{p}}=\prod_{\bar{p}}(\bar{F} \overline{\mathfrak{p}})^{\times}
$$

G acts on \bar{W} componentwise on each \bar{W}_{p}. We have

$$
\begin{equation*}
H^{i}(G, \bar{W})=\prod_{\mathfrak{p}} H^{i}\left(G, \bar{W}_{\mathfrak{p}}\right) \quad(i \geqq 0) \tag{12}
\end{equation*}
$$

and we obtain:
Proposition 2. Let F / K be a separable function field of one variable. Then there is a finite Galois extension \bar{K} / K such that $\mathfrak{B}(F / K) \subset \mathfrak{B}(\bar{K} / K)$. If this is so, we have

$$
\widetilde{\mathcal{B}}(F / K)=\text { kernel } H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{W}),
$$

where

$$
\bar{W}=\prod_{\bar{p}}(\bar{F} \bar{p})^{\times}
$$

(\bar{p} ranging over the places of \bar{F} / \bar{K}), and G acts on \bar{W} naturally as described above.

§ 3. The kernel theorem

Let F / K be a function field of one variable and \bar{K} / K a finite Galois extension with group G. According to propositions 1 and 2, we shall study in this § 3 the maps

$$
H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}\left(G, \bar{F}^{\times}\right)
$$

and

$$
H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{W})
$$

described in $\S 2$ and we shall compare their kernels.
We introduce the following notations:
D the divisor group of F / K
H the group of principal divisors in D
$C D=D / H$ the divisor class group
J the idèle group of F / K
$C J=J / F^{\times}$the group of idèle classes
U the group of idèle units in J
$C U=U F^{\times} / F^{\times}=U / K^{\times}$the idèle unit classes.
As to the definitions, D is defined to be the free abelian multiplicative
group generated by the prime divisors (places) \mathfrak{p} of F / K. Hence every divisor $a \in D$ is a product

$$
\mathfrak{a}=\prod_{\mathfrak{p}} p^{a(p)}
$$

with uniquely determined integers $a(p)$ such that $a(p)=0$ for all but a finite number of \mathfrak{p}.

Let $w_{\mathfrak{p}}$ be the additive normalized valuation of F belonging to \mathfrak{p}. The principal divisor for $a \in F^{\times}$is

$$
(a)=\prod_{\mathfrak{p}} p^{w_{\mathfrak{p}}(a)} .
$$

H is defined to be the image of the map $a \rightarrow(a)$ from F^{\times}into D. The kernel of this map is K^{\times}, so that the sequence

$$
1 \rightarrow K^{\times} \rightarrow F^{\times} \rightarrow H \rightarrow 1
$$

is exact.
J is defined to consist of all functions $p \rightarrow \alpha(p)$, defined on the primes p of F / K, with values $\alpha(\mathfrak{p})$ in the multiplicative group of $F_{\mathfrak{p}}$, the \mathfrak{p}-adic completion of F with respect to \mathfrak{p}.

These functions α have to satisfy the finiteness condition that $w_{p}(\alpha(p)) \neq 0$ for all but a finite number of $\mathfrak{p}^{11)}$ There is a mapping $J \rightarrow D$ obtained by assigning to each $\alpha \in J$ its divisor $(\alpha)=\prod_{\mathfrak{p}} p^{w_{\mathcal{p}}(\alpha(p) \prime}$.

This mapping is epimorphic; its kernel is called U, so that the sequence

$$
1 \rightarrow U \rightarrow J \rightarrow D \rightarrow 1
$$

is exact.
There is a mapping $F^{\times} \rightarrow J$ obtained by assigning to each $a \in F^{\times}$the idèle α_{a} given by $\alpha_{a}(\mathfrak{p})=a$, for all \mathfrak{p} (diagonal imbedding). This mapping is monomorphic and we identify F^{\times}with its image in J. This identification is coherent with the mappings $F^{\times} \rightarrow D$ and $J \rightarrow D$, i.e. we have $(a)=\left(\alpha_{a}\right)$. In other words, the diagram

is commutative.

[^3]From the above definitions and discussions it follows that the diagram

$$
\begin{aligned}
& \stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}{\downarrow} \xrightarrow{\downarrow} \stackrel{\downarrow}{C J} \rightarrow 1 \\
& \begin{array}{ccc}
\stackrel{\downarrow}{H} \\
\downarrow & \stackrel{\downarrow}{D} & \stackrel{\downarrow}{D} \rightarrow \underset{C}{\downarrow} D \rightarrow 1 \\
1 & \downarrow & \downarrow \\
& 1 & 1
\end{array}
\end{aligned}
$$

in which the arrows denote the natural maps in question, is commutative with exact rows and columns.

For the function field \bar{F} / \bar{K} we have a similar diagram whose corresponding groups will be denoted by $\bar{D}, \bar{H}, \overline{C D}, \bar{J}$, etc:

$$
\begin{aligned}
& 1 \rightarrow \stackrel{\downarrow}{\bar{F}^{\times}} \rightarrow \stackrel{\downarrow}{\downarrow} \rightarrow \stackrel{\downarrow}{C J} \rightarrow 1
\end{aligned}
$$

As said in $\S 2$, the Galois group $G=G(\bar{K} / K)$ can be regarded as the Galois group of \bar{F} / F, since F and \bar{K} are linearly disjoint over K. Hence G acts on \bar{F}^{\times}. Also, G acts on all the other groups of our diagram, as follows.
G acts on the primes \bar{p} of \bar{F} : If $w_{\bar{p}}$ is the additive normalized valuation of \bar{F} belonging to $\overline{\mathfrak{p}}$ then \bar{p}^{σ} is defined by

$$
w_{\overline{\rho_{\sigma}}}\left(a^{\sigma}\right)=w_{\overline{\mathfrak{p}}}(a) \quad(a \in F, \sigma \in G) .
$$

The map $\sigma: \bar{F} \rightarrow \bar{F}$ is continuous if \bar{F} as the domain of this map is topologized by $w_{\overline{\mathfrak{F}}}$, and it is topologized by $w_{\bar{户} \sigma}$ if considered as the range of σ. Hence σ extends, by continuity, uniquely to a map $\sigma: \bar{F}_{\overline{\mathfrak{p}}} \rightarrow \bar{F}_{\bar{p} \sigma}$ of the corresponding completions. According to these maps, G acts on \bar{J}, namely :

$$
\alpha^{\sigma}\left(\bar{p}^{\sigma}\right)=\alpha(\overline{\mathfrak{p}})^{\boldsymbol{q}} \quad(\alpha \in \bar{J}, \sigma \in G) .
$$

By definition, it is clear that the maps

$$
\bar{F}^{\times} \rightarrow \bar{J}
$$

(diagonal imbedding) and

$$
\bar{J} \rightarrow \bar{D}
$$

(divisor map) are G-permissible. Hence all the other maps of our diagram, being based on the two maps mentioned above, are G-permissible, G acting on the groups of the diagram in the natural way. In other words: our diagram is G-permissible.

In particular, for each group \bar{M} of our diagram we can form the cohomology groups $H^{i}(G, \bar{M})$, and for each exact row or column $1 \rightarrow \bar{M}_{1} \rightarrow \bar{M}_{2} \rightarrow \bar{M}_{3} \rightarrow 1$ of our diagram we obtain a cohomological connecting map $H^{i}\left(G, \bar{M}_{3}\right) \rightarrow H^{i+1}(G$, \bar{M}_{1}).

From the lower horizontal sequence of the diagram we thus obtain a cohomology map

$$
H^{i}(\overline{C D}) \rightarrow H^{i+1}(\bar{H}) .
$$

From the left vertical sequence we obtain also

$$
H^{i+1}(\bar{H}) \rightarrow H^{i+2}\left(\bar{K}^{\times}\right)
$$

which combined with the map above yields a map

$$
h^{i}: H^{i}(\overline{C D}) \rightarrow H^{i+2}\left(\bar{K}^{\times}\right) .
$$

Similarly, using first the right vertical sequence and then the upper horizontal sequence of the diagram we obtain another map

$$
g^{i}: H^{i}(\overline{C D}) \rightarrow H^{i+2}\left(\bar{K}^{\times}\right) .
$$

It is known from general cohomology theory ${ }^{(12)}$ that both maps h^{i} and g^{i} differ only by a sign; in particular, both maps have the same kernel and the same image.

Let us investigate these maps in the case $i=0$.
Investigation of h^{0} :
By definition, h^{0} is obtained by considering the left lower corner of the diagram, namely:

[^4]
$\frac{\downarrow}{\bar{K}^{\times}}$
$\stackrel{\downarrow}{F^{\times}}$
$1 \rightarrow \stackrel{\downarrow}{\bar{H}} \rightarrow \bar{D} \rightarrow \overline{C D} \rightarrow 1$
This portion of our diagram gives the two maps
$$
H^{0}(\overline{C D}) \rightarrow H^{1}(\bar{H})
$$
and
$$
H^{1}(\bar{H}) \rightarrow H^{2}\left(\bar{K}^{\times}\right)
$$
the composite of which is h^{0}.
We begin by observing that
\[

$$
\begin{equation*}
H^{1}\left(\bar{F}^{\times}\right)=1 \tag{13}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
H^{1}(\bar{D})=1 \tag{14}
\end{equation*}
$$

The first of these formulae is well known as the celebrated 'Hilbert theorem 90^{\prime}. The second follows from the fact that \bar{D} is the free abelian group generated by the primes $\overline{\mathfrak{p}}$ of \bar{F} / \bar{K} which are only permuted under $G{ }^{13)}$

From (13) it follows, using the exactness of the column of our diagram portion, that

$$
H^{1}(\bar{H}) \rightarrow H^{2}\left(\bar{K}^{\times}\right) \text {is monomorphic. }
$$

Similarly, from (14) it follows that

$$
H^{0}(\overline{C D}) \rightarrow H^{1}(\bar{H}) \text { is epimorphic. }
$$

Putting both statements together we obtain

$$
\text { image } \begin{align*}
\left(h_{0}\right) & =\text { image } H^{1}(\bar{H}) \rightarrow H^{2}\left(\bar{K}^{\times}\right) \tag{15}\\
& =H^{1}(\bar{H})
\end{align*}
$$

On the other hand,

$$
\text { image } H^{1}(\bar{H}) \rightarrow H^{2}\left(\bar{K}^{\times}\right)=\text {kernel } H^{2}\left(\bar{K}^{\times}\right) \rightarrow H^{2}\left(\bar{F}^{\times}\right)
$$

${ }^{13)}$ See e.g. [9], page 437,
so that we finally obtain

$$
\begin{equation*}
\text { image }\left(h^{0}\right)=\text { kernel } H^{2}\left(\bar{K}^{\times}\right) \rightarrow H^{2}\left(\bar{F}^{\times}\right) . \tag{16}
\end{equation*}
$$

Investigation of g^{0} :
Now we have to consider the right upper corner of our diagram:

g^{0} is the composite of the two maps

$$
H^{0}(\overline{C D}) \rightarrow H^{1}(\overline{C U})
$$

and

$$
H^{1}(\overline{C U}) \rightarrow H^{2}\left(\bar{K}^{\times}\right) .
$$

First we have, in analogy to (13), the formula

$$
\begin{equation*}
H^{1}(\bar{U})=1 \tag{17}
\end{equation*}
$$

Proof. Let $\bar{U}_{\bar{p}}$ be the group of \bar{p}-adic units in the \bar{p}-adic completion $\bar{F}_{\bar{p}}$ of \bar{F}. By definition, \bar{U} is the direct product

$$
\bar{U}=\prod_{\overline{\mathfrak{p}}} \bar{U}_{\overline{\mathfrak{p}}} .
$$

Each place \bar{p} induces an epimorphic map

$$
\bar{U}_{\overline{\mathfrak{p}}} \rightarrow(\bar{F} \overline{\mathfrak{p}})^{\times} .
$$

These maps define an epimorphic map

$$
\bar{U} \rightarrow \bar{W}
$$

where \bar{W} is the direct product of the $(\bar{F} \overline{\bar{p}})^{\times}$as in $\S 2$. By comparing the definitions of the actions of G on \bar{U} (as part of J) and on \bar{W} (see §2) we see that this map is G-permissible.
Let \bar{V} be the kernel, so that

$$
1 \rightarrow \bar{V} \rightarrow \bar{U} \rightarrow \bar{W} \rightarrow 1
$$

is exact. We shall show in a moment that

$$
\begin{equation*}
H^{i}(G, \bar{V})=1 \quad(i \geqq 1) \tag{18}
\end{equation*}
$$

This shows that $\bar{U} \rightarrow \bar{W}$ induces an isomorphism

$$
\begin{equation*}
H^{i}(G, \bar{U})=H^{i}(G, \bar{W}) \quad(i \geqq 1) \tag{19}
\end{equation*}
$$

Using (12) and (10) we obtain

$$
H^{i}(G, \bar{U})=\prod_{\mathfrak{p}} H^{i}\left(G_{\bar{p}},(\bar{F} \bar{p})^{\times}\right) \quad(i \geqq 1)
$$

where \mathfrak{p} ranges over the places of F / K and \bar{p} denotes always a fixed extension of \mathfrak{v} to \bar{F} / \bar{K}. For $i=1$, the right hand side of (19) is 1 , using Hilberts theorem 90 for each field $\bar{F} \bar{p}$. Hence (17).

Proof of (18). Let $\bar{V}_{\bar{p}}$ be the kernel of the map $\bar{U}_{\bar{p}} \rightarrow(\bar{F} \bar{p})^{\times}$, consisting of the elements $a \in \bar{F}_{\overline{\mathfrak{p}}}$ with $a \overline{\mathfrak{p}}=1$. Then $\bar{V}=\prod_{\bar{p}} V_{\bar{p}}$. Put $\bar{V}_{\mathfrak{p}}=\prod_{\bar{p} \mid p} \bar{V}_{\bar{p}}$. Then $\bar{V}=\prod_{\mathfrak{p}} \bar{V}_{\mathfrak{p}}$ is a G-permissible direct product. Hence

$$
H^{i}(G, \bar{V})=\prod_{\mathfrak{p}} H^{i}\left(G, \bar{V}_{\mathfrak{p}}\right)
$$

From Shapiros lemma ${ }^{10)}$ we infer that

$$
H^{i}\left(G, \bar{V}_{\mathfrak{p}}\right)=H^{i}\left(G_{\overline{\mathfrak{p}}}, \bar{V}_{\overline{\mathfrak{p}}}\right)
$$

\bar{p} being a fixed extension of \mathfrak{p}. Hence we have to show that $H^{i}\left(G_{\bar{p}}, \bar{V}_{\bar{p}}\right)=1$ for $i \geqq 1$. Changing notation, this amounts to show the following

Lemma. Let F be a complete field with respect to a non-archimedean, discrete valuation w_{p} with corresponding prime \mathfrak{p}. Let V be the multiplicative subgroup of elements $a \in F$ with $a p=1$ (i.e. $w_{p}(a-1)>0$). If G is a finite group of continuous automorphisms of F whose induced action on the image field $F \mathfrak{p}$ is faithful, then

$$
H^{i}(G, V)=1 \quad(i \geqq 1)
$$

This lemma is well known from local class field theory. For the proof see e.g. Witt [14], page 154 , no. 2 or Serre [10], page 193, lemma 2.

Let us return to our original notation. We now have proved (17) which is, for the map g^{0}, the analogue to (13). The analogue to (14) would be $H^{1}(G$, $\overline{C J})=1$. This is not true in general (although we shall see later that it is true in the case where K is a local number field). We therefore introduce the group

$$
\begin{equation*}
X=X(\bar{F} / \bar{K})=\text { kernel } H^{1}(G, \overline{C J}) \rightarrow H^{1}(G, \overline{C D}) . \tag{20}
\end{equation*}
$$

From the exactness of the column of our diagram portion we infer that

$$
\begin{align*}
X & =\text { image } H^{1}(G, \overline{C U}) \rightarrow H^{1}(G, \overline{C J}) \tag{21}\\
& =H^{1}(G, \overline{C U}) / Y
\end{align*}
$$

where

$$
Y=\text { image } H^{0}(G, \overline{C D}) \rightarrow H^{1}(G, \overline{C U}) .
$$

From (17) it follows that

$$
H^{1}(G, \overline{C U}) \rightarrow H^{2}\left(G, \bar{K}^{\times}\right) \text {is monomorphic. }
$$

Its image is the kernel of $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{U})$. Hence

$$
H^{1}(G, \bar{C} \bar{U}) \approx \text { kernel } H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{U}) .
$$

In this isomorphism, the image Y of $H^{0}(G, \overline{C D}) \rightarrow H^{1}(G, \overline{C U})$ corresponds to the image of g^{0} (by definition of g^{0}). Hence we obtain from (21):
(22) The image of g^{0} is contained in the kernel of $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{U})$ and the corresponding factor group is isomorphic to X.

Finally, we claim:
(23) kernel $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{U})=$ kernel $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{W})$.

Proof. As shown in (19), the map $\bar{U} \rightarrow \bar{W}$ induces an isomorphism of cohomology groups. Hence the map $\bar{K}^{\times} \rightarrow \bar{U} \rightarrow \bar{W}$ induces a map $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow$ $H^{2}(G, \bar{W})$ which has the same kernel as $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{U})$. Q.e.d.

Observe that the map $\bar{K}^{\times} \rightarrow \bar{U} \rightarrow \bar{W}$ is the diagonal imbedding of \bar{K}^{\times}in \bar{W} which we have considered in $\S 2$.

Now remember that the maps h^{0} and g^{0} have the same image, as mentioned above. Comparing (16), (22) and (23) we obtain therefore the following 'kernel theorem' :

Theorem 2. Let F / K be a function field of one variable and \bar{K} / K a finite Galois extension with Galois group G. Then the kernel of $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}\left(G, \bar{F}^{\times}\right)$ is contained in the kernel of $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{W})$ and the corresponding factor group is isomorphic to X, where X is defined to be the kernel of $H^{1}(G, \overline{C J}) \rightarrow H^{1}(G$, $\overline{C D})$.

In particular, if $H^{1}(G, \overline{C J})=1$ then $X=1$ and therefore kernel $H^{\prime}\left(G, \bar{K}^{\times}\right) \rightarrow$ $H^{2}\left(G, \bar{F}^{\times}\right)=$kernel $H^{2}\left(G, \bar{K}^{\times}\right) \rightarrow H^{2}(G, \bar{W})$.

Using propositions 1 and 2 of $\S 2$ we obtain as an immediate consequence:
Theorem 3. Let F / K be a separable function field of one variable. Then the factor group $\mathfrak{B}(F / K)$ modulo $\mathfrak{B}(F / K)$ can be cohomologically described as the group X of theorem 2, where \bar{K} / K has to be chosen such that $\mathfrak{B}(F / K) \subset \mathfrak{B}(\bar{K} / K)$.
(As mentioned in $\S 2$, the latter inclusion is true if \bar{K} contains the image field $F p$ of a separable place p of F / K.)

In particular, if the Galois cohomology of the idèle classes $\overline{C J}$ vanishes in dimension 1, then $\mathfrak{B}(F / K)=\mathfrak{B}(F / K)$.

§ 4. Proof of theorem 1

Now let F / K be a function field of one variable over a local number field K. If the valuation of K is non-archimedean, then there is a theorem of Tate which says that the Galois cohomology of the idèle classes vanishes in dimension 1. ${ }^{14)}$ Hence $\mathfrak{F}(F / K)=\mathfrak{B}(F / K)$.

Now let the valuation of K be archimedean. Then K is either the field of complex numbers, or the field of real numbers. In the first case K is algebraically closed and hence $\mathfrak{B}(F / K)=\mathfrak{B}(F / K)=1$. In the second case, assume first that F / K has a real place \mathfrak{p}. Then $F \mathfrak{p}=K, \mathfrak{B}(F / K) \subset \mathfrak{B}(K / K)=1$, hence $\mathfrak{B}(F / K)=\mathfrak{B}(F / K)=1 . \quad$ Secondly, if all places \mathfrak{p} of F / K are complex, then $F \mathfrak{p}$ $=\bar{K}$ is the field of complex numbers for all \mathfrak{p}. Hence $\mathfrak{B}(F / K)=\mathfrak{B}(\bar{K} / K)=$ $\mathfrak{B}\left(K^{\prime}\right)$ is of order two, the only non-trivial element of $\mathfrak{B}(K)$ corresponding to the quaternion algebra over K. On the other hand, Witt has shown that if F / K has no real places, then -1 is a sum of two squares in F, hence -1 is a norm of $F \bar{K} / F$, i.e. the quaternion algebra splits over $F .{ }^{15)}$ This implies that $\mathfrak{B}(F / K)$ contains the quaternion algebra and is therefore equal to $\mathfrak{B}(K)$.

Hence, in any case, $\left.\mathfrak{\mathcal { B }}\left(F^{\prime} / K\right)=\mathfrak{B}(F / K) .{ }^{16}\right)$

[^5]In order to complete the proof of theorem 1 we have to describe the group $\mathfrak{3}(F / K)$.

Consider first the non-archimedean case. As is well known from local class field theory, the Brauer group $\mathfrak{B}(K)$ is isomorphic to the additive $\operatorname{group} \mathbf{Q} / \mathbf{Z}$ of rational numbers modulo integers. ${ }^{17)}$ The isomorphism

$$
\mathfrak{B}(K) \approx \mathbf{Q} / \mathbf{Z}
$$

is obtained by assigning to each central simple algebra A / K its Hasse invariant $\operatorname{inv}_{K}(A)$. If L / K is a finite algebraic extension field, then $\operatorname{inv}_{L}\left(A \otimes_{K} L\right)=$ $(L: K) \cdot \operatorname{inv}_{K}(A)$. In particular, L splits A if and only if ($L: K$) is a multiple of the order of A in $\mathfrak{B}(K)$. In other words $\mathfrak{B}(L / K)$ consists of all those $A \in \mathfrak{B}(K)$ for which $A^{(L: K)}=1$. The group structure of \mathbf{Q} / \mathbf{Z} implies moreover that $\mathfrak{B}(L / K)$ is cyclic of order ($L: K$).

In particular, $\mathfrak{B}(F \mathfrak{p} / K)$ is cyclic of order $\left(F \mathfrak{p}: K^{\prime}\right)=\operatorname{deg}(\mathfrak{p})$, and $\mathfrak{B}(F \mathfrak{p} / K)$ consists of all elements $A \in \mathfrak{B}(K)$ with $A^{\operatorname{deg}(p)}=1$. Taking the intersection for all \mathfrak{p}, we see that if

$$
0<d \backslash F / K)=\underset{p}{\operatorname{gcd}} \operatorname{deg}(\mathfrak{p})
$$

then $\mathfrak{F}(F / K)$ is cyclic of order $d(F / K)$ and consists of all elements $A \in \mathfrak{B}(K)$ with $A^{d(F / K)}=1$.

If $\mathfrak{a}=\prod_{\mathfrak{p}} \mathfrak{p}^{a(p)}$ is a divisor of F / K then $\operatorname{deg}(\mathfrak{a})=\sum_{\mathfrak{p}} a(\mathfrak{p}) \cdot \operatorname{deg}(\mathfrak{p})$ is a linear combination of the degrees $\operatorname{deg}(\mathfrak{p})$, hence a multiple of $d(F / K)$, and conversely. Hence $d(F / K)$ can be characterized as the least positive degrees of divisors of F / K.

This proves theorem 3 in the non-archimedean case, if one uses the fact (proved by studying the Hasse invariant as above) that the Schur index of any $A \in \mathfrak{B}(K)$ is equal to its order in $\mathfrak{B}(K)$.

In the archimedean real case, we have

$$
\mathfrak{B}(K) \approx \frac{1}{2} \mathbf{Z} / \mathbf{Z} .
$$

If one defines the Hasse invariant of the quaternion algebra to be $\frac{1}{2}$ modulo \mathbf{Z}, then the above considerations carry over verbally in order to prove theorem 1.

[^6]In the archimedean complex case, there is nothing to prove.

§ 5. Some additional remarks

(a) Examples of function fields F / K over a number field K for which $\mathfrak{B}(F / K)$ キ $\widetilde{\mathfrak{B}}(F / K)$:

Let K be a number field and F / K be a function field of one variable which is of genus 0 but not rational. It has been shown by Witt [13] that $F=F(A)$ is a generic splitting field of a certain quaternion algebra A over K which is uniquely determined by F. Then $\mathfrak{B}(F / K)$ is of order 2 , the only non-trivial element of $\mathfrak{B}(F / K)$ being A; this follows also from our general theory of generic splitting fields ${ }^{18)}$. Let q range over the primes of K including the primes at infinity. Let M be the set of primes q at which A is ramified, i.e. for which the q-adic Hasse invariant $\operatorname{inv}_{q}(A) \equiv \frac{1}{2} \bmod \mathbf{Z}$. According to the Hasse sum formula $\sum_{q} \operatorname{inv}_{\mathfrak{q}}(A) \equiv 0 \bmod \mathbf{Z}^{19)}$ the number m of primes $\mathfrak{q} \in M$ is even. To every non-empty subset $N \subset M$ which consists of an even number of primes \mathfrak{q} there exists one and only one quaternion algebra $A(N)$ with the primes in N as its ramification primes. ${ }^{19)}$ In particular, $A=A(M)$. These quaternion algebras generate a subgroup of $\mathfrak{B}(K)$ of order 2^{m-1}. We claim that this subgroup coincides with $\mathfrak{B}(F / K)$. Let \mathfrak{p} be a prime of F / K. Then $F p$ splits A, hence the q-adic completion $(F \mathfrak{p})_{q}$ splits $A_{q}=A \underset{K}{\otimes} K_{\mathrm{q}}$ for every q . Hence $\left((F \mathfrak{p})_{q}: K_{q}\right) \equiv 0 \bmod 2$ for $\mathfrak{q} \in M$. In particular, this holds for $\mathfrak{q} \in N$. Hence $(F p)_{q}$ splits $A(N)_{q}$. Since this is true for all \mathfrak{q}, it follows ${ }^{201}$ that $F p$ splits $A(N)$. Hence $A(N) \in \mathfrak{B}(F / K)$ for all N. Conversely, let $B \in \mathfrak{B}(F / K)$, $B \neq 1$. Let L / K be a finite algebraic splitting field of A. Since $F=F(A)$ is a generic splitting field for A, there is a place \mathfrak{p} of F / K such that $F \mathfrak{p} \subset L .{ }^{21)}$ Since $F p$ splits B it follows that L splits B. Hence every finite algebraic splitting field L of A is also a splitting field for B. According to the existence theorem of Grunwald ${ }^{22)}$ there exists a finite algebraic extension field L / K such that ($L_{q}: K_{q}$) $=2$ for $q \in M$ and $L_{q_{0}}=K_{q_{0}}$ if $q_{0} \notin M$ is arbitrarily chosen. This field L splits A by construction and hence B.

[^7]It follows $\operatorname{inv}_{\mathfrak{q}}(B) \equiv 0 \bmod \frac{1}{2}$ for $q \in M$ and $\operatorname{inv}_{q_{0}}(B)=1 . \quad$ Since $q_{0} \notin M$ is arbitrary, we see that B is unramified outside of M. For $q \in M$, the invariant $\operatorname{inv}_{q}(B)$ is either 0 or $\frac{1}{2} \bmod \mathbf{Z}$. Hence $B=A(N)$ is a quaternion algebra belonging to some subset $N \subset M$.

We have now shown that $\mathfrak{B}(F / K)$ is of order 2 while $\mathfrak{\mathfrak { B }}(F / K)$ is of order 2^{m-1}. If we choose A such that the number m of ramification points of A is $m>2$, which is possible ${ }^{19}$, then for the field $F=F(A)$ we have $B(F / K) \neq \widetilde{\mathcal{B}}(F /$ K.
(b) Examples of function fields F / K over a number field K such that $d(F / K) \neq 1$ and $\mathfrak{B}(F / K)=1$.

Let K be a number field and F / K a function field of one variable and genus 1 with the property that $d(F / K)>1$ but $d\left(F_{q} / K_{q}\right)=1$ for all primes q of K, where $F_{\mathrm{q}}=F K_{\mathrm{q}}$ is the constant extension of F / K with respect to the completion $K_{\mathfrak{q}}$ of q. ${ }^{23)}$ If $A \in \mathcal{B}(F / K)$, then for every \mathfrak{q} the completion $A_{\mathfrak{q}}$ is split by $F_{\mathfrak{q}} / K_{\mathrm{q}}$. Since $d\left(F_{q} / K_{q}\right)=1$ it follows from theorem 1 that A_{q} splits too. Hence $\operatorname{inv}_{q}(A)$ $\equiv 0 \bmod \mathbf{Z}$ for all q, i.e. $A=1{ }^{19)}$

References

[1] Artin, Kohomologietheorie endlicher Gruppen; Vorlesungsausarbeitung Hamburg, (1957).
[2] Artin-Nesbitt-Thrall, Rings with minimum condition, Ann Arbor (1944).
[3] Cartan-Eilenberg, Homological Algebra, Princeton, (1956).
[4] Cassels, Arithmetic on Curves of genus one. VI. The Tate-Šafarevič group can be arbitrarily large, Journal für die reine und angewandte Mathematik, vol. 214/215 (1964), 65-70.
[5] Chevalley, Introduction to the theory of functions of one variable, New York, (1951).
[6] Deuring, Algebren, Berlin, (1935).
[7] Hasse, Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, Journal für die reine und angewandte Mathematik, vol. 188 (1950), 40-64.
[8] Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen; Journal für die reine und angewandte Mathematik vol. 184 (1942), 12-18.
[9] Roquette, On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras; Mathematische Annalen, vol. 150 (1963), 411-439.

[^8][10] Serre, Corps locaux, Paris, (1962).
[11] Tate, WC-groups over p-adic fields; Séminaire Bourbaki no. 156, Paris, (1957).
[12] Witt, Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper. Journal für die reine und angewandte Mathematik, vol. 171 (1934), 4-11.
[13] Witt, Über ein Gegenbeispiel zum Normensatz, Mathematische Zeitschrift, vol. 39 (1935), 492-467.
[14] Witt, Schiefkörper über diskret bewerteten Körpern. Journal für die reine und angewandte Mathematik, vol. 176 (1937), 153-156.
[15] Zariski-Samuel, Commutative Algebra, vol. II, Princeton, (1960).

Tübingen University
Germany

[^0]: Received July 19, 1965.
 ${ }^{1)}$ For the general theory of central simple algebras see e.g. Deuring [6], chap. IV and V, or Artin-Nesbitt-Thrall [2], chap. V-VIII.
 ${ }^{2)}$ A field K is called a number field if it is a finite-dimensional extension of the field \mathbf{Q} of rational numbers. A field K is called a local number field if it is the completion of a number field k with respect to a non-trivial valuation of K. This is the case if and only if K is either the field of real numbers or the field of complex numbers (archimedean case), or if K is a finite-dimensional extension of the rational p-adic field \mathbf{Q}_{p}, for some prime number p.
 ${ }^{3}$) A field extension F / K is called a function field of one variable, if F / K is finitely generated, K is algebraically closed in F, and the degree of transcendency of F / K is 1 .
 ${ }^{4)}$ For the general theory of places see e.g. Zariski-Samuel [15], vol. II, chap. VI.

[^1]: ${ }^{5)}$ [9], page 428, prop. 8.

[^2]: ${ }^{6)}$ See e.g. the books mentioned in ${ }^{1)}$. For another approach see Serre [10], chap. X, § 5-6.
 ${ }^{7)}$ For the general cohomology theory we refer to [10] chap. VII, or Cartan-Eilenberg [3], or Artin [1].
 ${ }^{8)}$ Deuring [6], page 61, Satz 1.

[^3]: ${ }^{11)}$ By continuity, the valuation $w_{\mathfrak{p}}$ of F extends uniquely to a valuation of the completion $F_{\mathfrak{p}}$, and this extension is again denoted by $w_{\mathfrak{p}}$.

[^4]: ${ }^{12)}$ Cartan-Eilenberg [3], page 56, prop. 2.1.

[^5]: ${ }^{14)}$ Tate [11], page 156-02, line 2-5.
 15) Witt [12], page 7 Satz 2.
 16) Using Witts results, it can be shown that Tates relation $H^{1}(G, \overline{C J})=1$ holds also if K is real and \bar{K} complex. For, if one interprets Witts statement I^{\prime} ([12], page 5) cohomologically, it says that the map $H^{2}\left(G, \bar{F}^{\times}\right) \rightarrow H^{2}(G, \bar{J})$ is injective. On the other hand, from our diagram in $\S 3$ we obtain an exact sequence $H^{1}(G, \bar{J}) \rightarrow H^{1}(G, \overline{C J}) \rightarrow H^{2}(G$, $\bar{F} \times) \rightarrow H^{2}(G, \bar{J})$ and we have $H^{1}(G, \bar{J})=1$ from Hilberts theorem 90 for the completions $\overline{F_{\mathrm{p}}}$. Hence $H^{1}(G, \overline{C J})=1$.

[^6]: ${ }^{17)}$ See e.g. Deuring [6], page 112, Satz 3.

[^7]: 18) [9], page 414, theorem 5.
 19) Deuring [6], page 119, Satz 9.
 20) Deuring [6], page 117, Satz 1.
 21) [9] page 413, theorem 2.
 ${ }^{22}$) Hasse [7], page 40, Ganz schwacher Existenzsatz.
[^8]: ${ }^{23)}$ The existence of such function fields has been proved by Reichardt [8]. See also Cassels [4], page 65, theorem.

