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Abstract. Numerical models of molecular cloud cores are obtained,
with assumed Gaussian random velocity fields that are consistent with
moderate turbulence. If the velocity power spectrum is taken to be
P( k) f'V k", with n == -4 or -3, then the constructed line-of-sight velocity
maps on the plane of the sky show gradients that can be interpreted as
rotation. Deduced values of angular velocity, angular momentum, and
dimensionless rotational parameter {3 are consistent with observations.
The velocity gradient n of an individual core is not a good indicator
of its intrinsic angular momentum JIM. However, the distribution of
deduced angular momenta from a large sample ofcores with different
random velocity fields is close to the distribution of actual angular mo-
menta of these model cores if one assumes JIM == pOR 2 where R is the
core radius and p must be determined from a Monte-Carlo study. For
centrally condensed cores the standard value of p == 0.4 overestimates the
mean intrinsic angular momentum by a factor of 3.

1. Introduction-Observations

Dense cores of molecular clouds (n ~ 104 -105 em-3) are known to be the sites of
star formation. The distribution of angular momentum among the various cores
has important consequences for (a) whether a single star or a binary is formed,
(b) the period distribution of binaries, (c) the distribution of sizes of protostellar
disks and their structure, and (d) the properties of emerging planetary systems.
Observational evidence for rotation consists of gradients in the line-of-sight
velocity along cuts across the cores (Goodman et al. 1993; Barranco & Goodman'
1998). The observed gradients, for cores of about 0.1 pc in radius, are about 1.5
km s-l pc-1 which, if interpreted as rigid-body rotation, give 0 ~ 5 X 10-14

s-l. For uniform-density cores the values of specific angular momentum and
dimensionless parameter {3 are

JIM == 0.4nR2 ~ 2 x 1021 cm2 s-l

/3 = Erat ~ 0.03
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Turbulent Cloud Cores 123

Over the observed range of core sizes (0.06 pc - 0.6 pc) the rotational parameters
scale as n ex: R-OA , JIM ex: R1.6 , and (3 ~ constant.

The assumption of rigid-body rotation is customarily used not only for the
interpretation of observations, but also for the initial conditions for theoretical
calculations (e. g. review by Bodenheimer et al. 2000). However the supersonic
line widths in molecular clouds, and in particular the line width - size relation
(Larson 1981) have been interpreted in terms of turbulent motion. Furthermore,
line profiles in molecular clouds are consistent with Gaussian velocity fields with
a Kolmogorov spectrum (Dubinski, Narayan, & Phillips 1995). If the line width
- size relation is written a(A) ex: Aq , where A is the size and a is the velocity
dispersion, then recent work by Goodman et al. (1998) shows that on size scales
larger than 0.1 pc, q ~ 0.5 while on smaller scales q ~ 0 with a ~ 0.13 km
s-l. This value is somewhat subsonic for T == 10 K, indicating that substantial
dissipation of turbulent energy has taken place on this scale. The turbulent
motions in the cores may however still result in rotational properties that are
quite a bit more complicated than uniform rotation. In order to further explore
the connection between turbulence and rotation, we investigate the following
questions:

How does angular momentum originate in turbulent molecular cloud cores
(Goldsmith & Arquilla 1985; Goodman et al. 1993; Dubinski et al. 1995)?

How well can we estimate intrinsic rotational properties of cloud cores, in par-
ticular the specific angular momentum, from maps of the line-of-sight ve-
locity?

In particular, is the assumption of uniform rotation a good one for the estima-
tion of the specific angular momentum of a particular core?

2. Construction of Turbulent Core Models

The models are based on the following assumptions:

Dense cloud cores result from turbulent clumps which have become gravita-
tionally bound by the dissipation of their turbulent energy.

Starless dense cores are still in an early stage of contraction, so their velocity
fields still contain the signature of the turbulent velocity field of the en-
vironment in which they formed. These turbulent velocities are, however,
subsonic (Barranco & Goodman 1998).

The velocity field can be described as a Gaussian random field. The Fourier
components J(k) are then completely specified by the power spectrum
P(k).

The velocity dispersion a in cloud cores scales with their size A as a rv Aq
,

with 0 ~ q ~ 0.5. In this case the power spectrum is P(k) rv i», where
n == -3-2q, which gives P(k) rv k- 3 for the smaller cores and P(k) rv k-4

for cores larger than 0.1 pc. Note that these values are not very different
from the Kolmogorov spectrum P(k) rv k- 11/ 3 .
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Figure 1. Examples of maps of dense cores of molecular clouds show-
ing the normalized velocity in the line of sight for n == -4 (top row)
and for n == -3 (bottom row), where n describes the power spectrum
of the random velocity field. Dark areas correspond to velocities to-
ward the observer; light areas correspond to velocities away from the
observer. In the top row, the values of intrinsic angular momentum
j are 0.9 x 1021 cm2 s-l (left) and 1.0 x 1021 cm2 s-l (right). The
corresponding values of the angular velocity n, deduced from the line-
of-sight velocity gradient, are 1.9 and 0.2 km s-l pc-I. In the bottom
row the values of j are 0.4 x 1021 cm2 s-l (left) and 0.5 x 1021 cm2 s-l
(right). The corresponding values of n are 0.7 and 0.06 km s-l pc-I.
Each frame shows the projection of the full grid, but the velocity gra-
dients and the intrinsic j-values are deduced from the region inside of
which the density is at least half the maximum value. The radius of
this region is assumed to be 0.1 pc. These examples show that the line-
of-sight velocity gradient does in general not provide a good estimate
of the intrinsic specific angular momentum.
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The initial density distribution is of Gaussian form, reasonably consistent with
millimeter continuum observations of cores, which show them to be mod-
erately centrally condensed (Ward-Thompson, Motte, & Andre 1999):

p(r) = Pcexp ( -3 [R:axt)
where Pc is the central density and Rm ax is the total radius.

The velocity field is uncorrelated with the spectral line emissivity.
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Figure 2. For the models shown in Fig. 1, the line-of-sight velocity,
averaged over a strip parallel to the projected rotation axis, is plotted as
a function of distance to the projected axis. The dashed lines indicate
regions of low density that are not included in the analysis used for
the determination of the velocity gradient. Each curve is labelled by
the index n of the power spectrum P(k). Referring to the right-hand
half of this figure, the upper and lower curves for n == -4 correspond,
respectively, to the top left and top right frames of Fig. 1. The upper
and lower curves for n == -3 correspond, respectively, to the bottom
right and bottom left frames of Fig. 1.

Models are constructed on a three-dimensional grid in Cartesian coordi-
nates, with N grid cells in each direction, where generally N == 64. A Gaussian
random velocity field with a given P(k) is set up on this grid. Let the (x, z)
plane be the plane of the sky. By integrating along a set of lines of sight in the y-
direction, one obtains a map of N x N pixels giving the density-weighted average
line-of sight velocities. These maps can then be compared with observations; in
practice only the inner part of the calculated cloud is used, corresponding to den-
sities above the half-maximum value. With the exponential distribution given
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Figure 3. Results of 4000 random realizations of turbulent cores.
Histograms for the angular velocity n, as derived from the velocity
gradient (top left), the specific angular momentum j as derived from
n (bottom), and the dimensionless rotational parameter {3, as derived
from n (top right). Solid curves: calculations with n = -4; dashed
curves: calculations with n = -3. The observed distribution of {3-
values in cores (Goodman et al. 1993) is plotted in the top right frame.

above, the corresponding radius is about 0.5R max • Once a map has been ob-
tained, the velocity gradient is determined and interpreted in terms of rotation,
by minimizing the difference between the calculated line-of-sight velocity map
and the map expected for a rigidly rotating cloud (Goodman et al. 1993; Burk-
ert & Bodenheimer 2000). The projected rotational velocity n is found, along
with the angle of the projected rotation axis. In addition, the actual angular
momentum of the 'observed' region is obtained by summation over the inner
region of the full 3-D grid.

3. Results

3.1. Unevolved Cores

Here we consider cloud cores at an early stage when there are no collapse veloc-
ities, only a random Gaussian velocity field imposed on a fixed density distri-
bution. Four examples of line-of-sight velocity maps are shown in Figure 1, two
with P(k) ex k-4 and two with P(k) ex: k-3 . The two models illustrated in the
top row have about the same intrinsic i. but the values of n derived from the
velocity gradient differ by a factor of 10. The same is true for the two models
shown in the second row. Note also that for n = -3 the power on small scales
increases, leading to more substructure and smaller intrinsic j.
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Figure 2 shows the deduced line-of-sight velocities as a function of projected
distance to the rotation axis. It illustrates the fact that large velocity gradients
arise if there are dominant long wavelength modes with small phase shifts relative
to the center. This situation is more likely for the case n = -4 than for n = -3.
Note that the left-hand frames of Figure 1 give well-defined velocity gradients
within the 'observed' region, while the right-hand frames show practically no
velocity gradient.

In order to derive physical quantities, we assume that a typical core with
R = 0.1 pc has an internal turbulent velocity dispersion a ~ 0.13 km s-l
and a mass M ~ 5 Mev. Then from the value of n derived from the velocity
gradient and assuming rigid-body rotation as in Goodman et al. (1993), we can
obtain the corresponding specific angular momentum J / M = 0.4!1R2 and the
rotational parameter {3 = n2R 3/(3GM). Note that the equation for determining
J / M corresponds strictly only to uniform density cores and not to centrally
condensed ones. Later, the derived J / M will be compared with the intrinsic
value.

For a given value of n and a given density distribution, we then construct a
set of 4000 line-of-sight velocity maps, each corresponding to a different random
realization of the velocity field. A distribution of derived values of n, j, and (3
can thus be produced. The results are shown in Figure 3, for n = -3 and -4.
Averaged over these two distributions, the peaks fall at about < n >~ 1.0 km
s-l pc-I, < j >~ 1.5 X 1021 cm2 s-l, and < {3 >~ 0.02, with a large spread
in all quantities, assuming the cloud has a radius of 0.1 pc. These values are in
reasonable agreement with observations, with better agreement for n = -4 than
for n = -3. For cores of other sizes, one can derive scaling relations between
the rotational parameters i, n,{3 and the global parameters R, M, a (Goodman
et al. 1993):

a a 2Rn ...... R j j ...... a x R; (3...... M . (3)

If we adopt a line width-size relation a ~ RO.5 and virial equilibrium a 2 ~ M / R
we obtain

J. ~ oR ~ R1.5 . n ~ a ~ R-O.5 . (3 ~ a2!i = const (4), R ' M .
The results show that Gaussian random velocity fields with power spectra

that are close to the Kolmogorov spectrum are in agreement with the line width-
size relation for molecular cloud cores and can explain observed gradients in the
line-of-sight velocity. It is generally assumed that if the gradients are interpreted
as rotation, then the specific angular momentum of the cloud can be determined.
However in turbulent cores the specific angular momentum may not correlate
with the deduced n. This problem is illustrated in Figure 4, which, for a large
sample of simulated cores and for P(k) ex k-4 , shows that for a given n, there
can be a wide variety of values of the actual intrinsic angular momentum. The
reason is that turbulent cores are not rigid rotators, and though they do contain
a net angular momentum, compressional velocity components introduce velocity
gradients that are not related to rotation. Thus the intrinsic j of a core cannot
be determined from a line-of-sight velocity map.

However, suppose we consider the distribution of angular momenta of a
large sample of cores, all with the same P(k). As P(k) does not depend on the
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Figure 4. For a large sample of simulated cores (n = -4), the pro-
jected n values are plotted as a function of the intrinsic specific angular
momentum j = J / M. The large filled circles indicate the values of j
and 0 of the models illustrated in Fig. 1.

direction of k, a set of maps of the line-of-sight velocity contains considerable
information on the intrinsic distribution of angular momenta of the cores. Figure
5, which illustrates a set of calculations for n = -4, compares the actual angular
momenta of this set of cores (solid lines) with the angular momenta deduced
from the derived velocity gradients and the formula j = pOR2 , where p is the
dimensionless moment of inertia which depends on the density distribution of
the core and is in general not p = 0.4 as frequently adopted (Goodman et al.
1993). For both an exponential density distribution and a constant density the
two curves for j are in good agreement if p = 0.14 in the former case and p = 0.4
in the latter. Figure 5a illustrates the fact that for a centrally condensed core
the use of p = 0.4 gives an overestimate of the actual j-values by a factor of
almost 3, while Figure 5b shows that for the constant-density case the actual
dimensionless moment of inertia p = 0.4 gives very good agreement between
actual and deduced values of j.

3.2. Evolved Cores

The models in the previous section were calculated with a given assumed velocity
distribution imposed on a fixed density profile. Thus the density structure is not
entirely consistent with the velocity structure; however the profiles do become
consistent if the model is evolved hydrodynamically. Here we discuss the early
evolution of an initially turbulent core.

The starting point is a cloud of 1 M0 with a uniform sound speed of 1 x 104

em s-l with no ordered rotation and with a dimension Rm ax = 1.088 X 1017 em.
The cloud is prolate with a density profile
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Figure 5. The distribution of specific angular momenta for simulated
cores, as inferred from the projected velocity gradient and the relation
j == pnR2 (dashed lines) is compared with the distribution of intrinsic
specific angular momenta, as calculated from the 3-dimensional velocity
field (solid lines). a): centrally condensed core. b): constant density
core. The dotted line in frame a gives the distribution of j inferred
from the velocity gradient with p == 0.4, while the dashed line gives the
distribution with an assumed p == 0.14. In frame b, p == 0.4 is used for
the inferred values.

( ) (
x2 y2+z2)P r == pcexp -Ql - b2

where the central density Pc == 6.2 X 10-18 g cm-3 , a == R max/1.73, and b == a/2.
A turbulent velocity field with P(k) '"'-J k-4 is imposed, giving a ratio of kinetic
energy to gravitational potential energy of 0.3 and a ratio of internal energy to
gravitational potential energy of 0.47. The turbulent velocity field results in a
net specific angular momentum j == 3.1 X 1020 cm2 s-l. The isothermal evolution
of the collapse is followed with an SPH code of 40,000 particles. As the collapse
proceeds the turbulence gradually decays. The surface density distribution and
line-of-sight velocity map viewed along the z-axis are shown in Figure 6, at a
time corresponding to two initial free-fall times at the cloud center; at this time
some turbulence is still present, since the elapsed time is of order 0.1 times the
sound crossing time of the initial configuration, and decay of turbulence takes
place on a time scale of about one sound crossing time (Mac Low et al. 1998). In
the density plot, there are two separated density maxima. In the velocity plot
there is clear evidence of a velocity gradient, which, if interpreted as a rotation
of the central region, would give n == 3.0 x 10-14 s-l. The velocity gradient
determined for the same region at the initial stage gives almost the same value
of n. Thus the large-scale eddies which are responsible for the line-of-sight
velocity gradients are still present even after an increase of the central density
by a factor 3.
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Figure 6. Map of surface density (left) and line-of-sight velocity
(right) of the inner part of a collapsed core after a time of 7.8 x 1011 s.
The highest mass density is 2.5 x 10-17 g cm-3. Velocities range from
-0.05 km s-l (dark) to +0.07 km s-l (light). The total width of the
region plotted is 1.4 x 1016 cm. Only regions corresponding to densities
greater than half the maximum are plotted.

4. Conclusions

Our simulations show that random Gaussian velocity fields with power spectra
P(k) rv k-3 or k-4 can reproduce both the observed line width-size relationship
and the observed projected random properties of cloud cores. As cores are in
general turbulent, such a velocity field should be used as an initial condition
for more realistic simulations of core collapse and binary formation, instead of
a rigidly rotating sphere (R. Klein & R. Fisher; this volume).

We find that cores that are statistically identical (i.e. generated with the
same power spectrum) still show a large spread in their internal and deduced
rotational properties. This spread is qualitatively in agreement with the large
spread in observed binary periods and results from the random superposition of
the various velocity modes.

The line-of-sight velocity gradients in general do not provide a good estimate
of the internal specific angular momenta for a specific core. However, on a
statistical basis, the distribution of projected velocity gradients can reproduce
very well the distribution of internal specific angular momenta, if one assumes

where p depends on the density distribution of the core and has to be determined
from a Monte-Carlo study. In general, adopting p = 0.4 will overestimate the
mean intrinsic angular momentum of condensed cores by a factor of 3.

The linewidths in typical observed cores of molecular clouds indicate that
the turbulence is mildly subsonic. No strong shocks are expected to form, and
therefore the power spectrum in an evolved core should not be too different from
the initial power spectrum in the core, as long as the evolution time is short
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compared with the decay time of the turbulence. Our analysis should therefore
still remain valid in dynamically evolved cores. This conjecture has indeed been
confirmed in a numerical calculation in which the dynamical evolution of the
velocity field and the density field have been self-consistently determined.
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