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Abstract

The wreath product W = A i T, where A ^ 1, is of type FP2 if and only if T is finite and A is of type
FP2.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20E22, 20F05, 20J05.

1. Introduction

In 1980, Bieri and Strebel proved that every finitely generated metabelian group of
type FP2 is finitely presented [5]. This shows that, in this restricted setting, the most
natural cohomological and geometric finiteness conditions are equivalent in dimension
two. The question as to whether these conditions are equivalent in general remained
unanswered until recently, when Bestvina and Brady constructed a class of counter-
examples by using Morse theory for cubical complexes [3]. They also obtained a
number of positive results, couched in geometric terms.

The purpose of the present note is to point out that one cannot build counter-
examples by means of familiar algebraic constructions such as wreath products, HNN
extensions, free products with amalgamation and the like. For graphs of groups this
follows from a standard argument using an appropriate Mayer-Vietoris sequence (see
[4])—this fact was pointed out to us by Peter Kropholler. In particular, an amalgamated
product of two finitely presentable groups is of type FP2 if and only if it is finitely
presentable (see [1]). Here we will prove the following theorem.
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THEOREM 1. The wreath product W = A i T, where A ^ 1, is of type FP2 if and
only ifT is finite and A is of type FP2.

The argument that we will give here is modelled in part on the proof of an analogous
result [2] where F P2 is replaced by finitely presentable.

2. Preliminaries

2.1. Some notation and definitions We use the notation [x, y] = x~'y~lxy and
a' = t~lat throughout this note; and we write [G, G] for the commutator subgroup
of a group G.

Let U be a fixed group. Then a group V is termed a U -group if V comes equipped
with a homomorphism of U into the automorphism group of V. The class of U-
groups constitutes a category in the usual way. If S is a subset of V, then we denote
the intersection of all [/-subgroups of V containing S by gp^ (S). If W is a [/-subgroup
of V, then we denote the minimal cardinality of those sets 5 such that gp^ (S) = W by
du(W), provided it is finite; otherwise we define du(W) = oo. If U = 1, we simply
denote du(W) by d(W)—in this case d(W) is the minimal number of generators of
the subgroup W of V. Observe that if the [/-group V is a quotient of the [/-group V,
then

du(V)<du(V).

Recall that a group G is of type FPn if there is a projective resolution

> Pn — • P B _ , • />, — • Po — • Z

of the trivial left G -module Z with Pn,..., PQ finitely generated projective G -modules.
It turns out that a group G is of type FP^ if and only if it is finitely generated.
Consequently if a group G is of type FP2, then G must be finitely generated. In this
case we can represent G as a factor group of a finitely generated free group F:

G = F/K.

Since A" is a normal subgroup of F, we can view it as an F-group, where F acts by
conjugation. Then K = K/[K, K] is a quotient F-group of the F-group K. It then
turns out that G is of type FP2 if and only if

dF(K) < oo

for all choices of the finitely generated free group F and the various normal subgroups
K that are involved. (See Proposition 2.2 on page 20 of [4].)

We shall need to make use of these characterisations of F Px and FP2 when we
come to the proof of the theorem.

https://doi.org/10.1017/S1446788700001713 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001713


224 Gilbert Baumslag, Martin R. Bridson and Karl W. Gruenberg [3]

2.2. Sketch of the proof of the theorem Suppose that

W = A l T,

where A ^ 1 and T is infinite. The interesting part of the theorem is the proof that,
under these circumstances, W cannot be of type FP2.

The first step is to show that if W is of type FP2 then both A and T must be finitely
generated. Next, if

A = {X;R), T = {Y;S)

are presentations of A and T with X and Y finite, we choose F to be the free group
on X U Y. Furthermore, let

Q = {[x, zw] | x, z e X, w any Y-word different from 1 in T}.

Finally, let

K = gpF(Q\JRUS)

where here F acts on F by conjugation - so K is the normal closure in F of Q U R U S.
It follows then that

W = F/K.

Our objective is to prove that dF(K) is not finite. In fact we will prove that dF(K/J) =
oo, where

J = gpF([K,K]UR\JS).

Since K/J is a quotient of K, this suffices to prove that W is not of type FP2.
The reason that this approach is manageable stems from the fact that F/J is what
Smelkin [9] terms a metabelian wreath product (see Section 4).

3. Metabelian products

3.1. The definition

DEFINITION 1. Let (Ax | X e A) be a family of groups and let B be a group. A
family of homomorphisms
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is termed a metabelian family if

for all A.], k2, A3, k4 e A with A.) ^ k2 and A.3 ^ A.4, all aXi e Ax. and all w e

I A € A}.

DEFINITION 2. The group B is termed the metabelian product of the family (A
k e A) if there exists a metabelian family (x//x : Ax —> B \ k e A) of ho-
momorphisms into B such that for every group B' and every metabelian family
(i/r{ : Ax —> B' \ k € A), there exists a unique homomorphism 1> : B —> B' such
that

\I/i/rx = \p-'x for every A e A.

The notion of a metabelian product as well as the more general notion of a verbal
product was first introduced by Golovin [6].

It is easy to see, from general principles, that B is uniquely defined by the above
universal property. It is also easy to see that each \jsx is monomorphism and, identifying
Ax with its image in B, that Ax n A^ — 1, A. ̂  jit. Moreover, B is generated by the
subgroups {Ax I A, e A}. We express the fact that B is the metabelian product of the
family (Ax \ k e A) by writing

(2)

(1) fl = f]^.
XeA

We shall need here also the free product and the restricted direct product of such a
family (Ax \ k e A) of groups, which we denote, respectively, by

(oo) ( I )

XeA XeA

If L is the kernel of the canonical homomorphism of Y[[™A AX onto flleA Ax, then it
is not hard to see that

(2) (oo)

(2)
AeA XeA

3.2. An important lemma The following simple lemma is important in the proof
of our theorem.
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LEMMA 1. Let

(2)

XeA

be the metabelian product of the family of groups (Ax | A e A). Then the following
hold.

(1) If A' is a subset of A, then

(2)

(2) The homomorphism

(2) (2)

]~[AA to ]~I
AeA XeA'

VV/HC/? maps Ax identically to Ax ifk e A' and otherwise to the identity, is a retraction.
(3) Ifk, n e A , A / / i , then for all non-trivial elements a e Ax, b e AM,

PROOF. The assertion (1) follows immediately from the universal nature of \\XIA ^
and (2) is a consequence of this remark. Finally, in the light of either (1) or (2), it
suffices to consider the case where A = {1, 2}. In this case, if P is the free product of
Ai and A2, then [Au A2] is the free group, freely generated by the set

{[a,b] \a € Aub e A2,a^\,b^ 1}.

(This is essentially due to Levi [8] — see [7].) So, in view of (2), [a, b] ^ 1 in B.
This completes the proof of the lemma.

4. Wreath-like products

Suppose that G is a group and that A and T are subgroups of G. We term G a
product of A and T if

G = gp(A U T).

We shall have need of three such products, which depend for their definition on the
nature of the normal closure B = gpc (A) of A in G. With this in mind, we denote the
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conjugate t~x At of A by the element t e T by A, and the conjugate t~xat of a e A
by t e T by a,. Then £ is generated by the A, (t e T). If

(oo)

then it is not hard to see that G is simply the free product of A and T. In this event
we denote G by G^, B by Bx and observe that we have a semidirect product

Goo = Boo.T.

The remaining two products have similar descriptions. The first of these is the wreath
product of A by T. In this case

and is denoted by BUG is denoted by G, and

G , = B\.T = AiT.

Finally, if

(2)

= \\A,

is the metabelian product of the subgroups A, of G, then we denote B by B2, G by G2

and we observe that

G2 = B2.T,

which we denote by

Ai2T.

Observe that in every one of the cases above s~la,s = a,s. It follows from Lemma 1,
that if a, b e A, a ^ 1, b ^ 1 and if s, t e T, s ^ t, then [as, bt] ^ 1 in A i2 T.

5. The proof of the theorem

5.1. The easy part of the proof Suppose that W — AiT, where A ^ 1 and T is
finite. If A is of type FP2, then, adopting the notation introduced above, so too is B\.
Since B, is of finite index in W, it follows that W is also of type FP2.
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5.2. Finitely generated wreath products Suppose now that W is of type FP2.
Then W must be finitely generated. Now if X and Y are generating sets for A and T
respectively, then X UY generates W. So there are finite subsets X, and K, of X and
Y respectively, such that X] U Y\ generates W. It follows that X, generates A and K,
generates T, for example by considering the canonical homomorphims onto A and T
via the direct product A x T.

5.3. The case where A ^ 1 and T is infinite The main step in the proof of our
theorem is the following

LEMMA 2. Let A be a non-trivial, finitely generated group and let T be an infinite,
finitely generated group. Then W = AiT is not of type F P2.

Let us suppose that W is of type FP2. Our objective, then, is to derive a contradic-
tion to this assumption.

We adopt the notation introduced in 2.2 and 3.1. Consider then the homomorphism
6 of F onto Goo which maps X onto the corresponding set of generators of A and Y
onto the corresponding set of generators of T. Notice that K maps onto L and hence
[K, K] maps onto [L, L]. It follows that 6 induces a homomorphism of F/[K, K]
onto G2 = Ai2T which maps K onto the image, say L2, of L in G2. As L2 is a
quotient of K, it is the normal closure in G2 of a finite set. Now

L 2 = g y G 2 { { a s , a ' t ] \ a , a ' e A , s , t e T , s ^ t ) .

It follows that there is a finite subset 5 of T such that

L 2 = g p G 2 { [ a s , a ' , ] \ a , a ' e A , s,teS, s ^ t } .

It follows therefore also that

L 2 = g p B l [ [ a s u , a ' l u ] \ a , a ' € A , s , t e S , u e T , s ^ t ) .

We now put £ = {(s^ituy* = sr1 | s, t e S, u e T, s ^ t\. Then notice that E
is finite and that

L 2 = g p B l { [ a s , a't] \ a , a ' € A , s , t e T a n d s t ~]

Since T is infinite and E is finite, there exists t0 e T such that t0 ^ E, t0 ' ^ E.
By the very definition of E, 1 £ E. We now put A = {1, tn}. Observe that

AA"1 H E = 0.

We define the homomorphism

(2) (2)

SeA
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by defining S to be the identity homomorphism on Ax and A,o and the homomorphism
which takes all of the other A, to the identity element. If st~l e E, then either 5 fi A
or else t £ A. It follows that

{[as,a',] \ a , a ' e A , s , t e T , s t ~ l e E }

is in the kernel of 8 and consequently so too is L2. Hence 8 induces a homomorphism
of B2/L2 onto rh^A ^«- Now ^2/^2 is isomorphic to B\, the restricted direct product
of the A,, r G T, so if a G A is non-trivial, then [a1; a,0] — 1 in B2/L2 but, by Lemma
1(3), [a,, a,0] 7̂  1 in [ " [^ As. This contradiction completes the proof of Lemma 2.

5.4. The last step in the proof We have proved that if A ^ 1 and W = A 1 T is
of type FP2» then 7 is finite. Now a subgroup of finite index in a group of type FP2

is again of type FP2 (see Proposition 2.5 on page 20 of [4]). So B2 is of type FP2.
Since 62 is the direct product of finitely many copies of A, it follows that A is of type
FP2, as required. This completes the proof of the theorem.
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