
6

Non-BPS non-Abelian strings

In this chapter we will review non-BPS non-Abelian strings. In particular, they
appear in non-supersymmetric theories. We will see that, although for BPS strings
in supersymmetric theories the transition from quasiclassical to quantum regimes in
the world sheet theory on the string goes smoothly (see Section 4.4.4), for the non-
Abelian strings in non-supersymmetric theories these two regimes are separated by
a phase transition.

Next, we will show that the same behavior is typical for non-BPS strings in
supersymmetric gauge theories. As an example we consider non-Abelian strings in
the so-called N = 1∗ theory which is a deformed N = 4 supersymmetric theory
with supersymmetry broken down to N = 1 in a special way.

6.1 Non-Abelian strings in non-supersymmetric theories

In this section we will review some results reported in [154, 164] treating non-
Abelian strings in non-supersymmetric gauge theories. The theory studied in [154]
is essentially a bosonic part of N = 2 supersymmetric QCD with the gauge group
SU(N)×U(1) described in Chapter 4 in the supersymmetric setting.1 The action of
this model is

S =
∫
d4x

{
1

4g2
2

(
Faμν

)2 + 1

4g2
1

(
Fμν

)2 + 1

g2
2

|Dμaa|2

+ |∇μϕA|2 + g2
2

2

(
ϕ̄AT

aϕA
)2 + g2

1

8

(
|ϕA|2 −Nξ

)2

+ 1

2

∣∣∣(aaT a + √
2mA

)
ϕA
∣∣∣2 + i θ

32π2
FaμνF

∗a
μν

}
, (6.1.1)

1 In addition to the substitution (4.2.1) we discard the f abc āb ac term in Eq. (4.1.9). This term plays no role in
the consideration presented below.
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172 Non-BPS non-Abelian strings

where F ∗a
μν = (1/2) εμναβFαβ and θ is the vacuum angle. This model is a bosonic

part of the N = 2 supersymmetric theory (4.1.7) where, instead of two squark
fields qk and q̃k , only one fundamental scalar ϕk is introduced for each flavor
A = 1, . . . ,Nf , see the reduced model (4.2.2) in Section 4.2. We also limit ourselves
to the case Nf = N and drop the neutral scalar field a present in (4.1.7) as it plays
no role in the string solutions. To keep the theory at weak coupling we consider
large values of the parameter ξ in (6.1.1), ξ � �SU(N).

We assume here that

N∑
A=1

mA = 0. (6.1.2)

Later on it will be convenient to make a specific choice of the parameters mA,
namely,

mA = m× diag
{
e2πi/N , e4πi/N , . . . , e2(N−1)πi/N , 1

}
, (6.1.3)

wherem is a single common parameter. Then the constraint (6.1.2) is automatically
satisfied. We can (and will) assume m to be real and positive. We also introduce a
θ term in the model (6.1.1).

Clearly the vacuum structure of the model (6.1.1) is the same as of the theory
(4.1.7), see Section 4.1. Moreover, the ZN string solutions are the same; they are
given in Eq. (4.2.6). The adjoint field plays no role in this solution and is given by
its VEV (4.1.11). The tensions of these strings are given classically by Eq. (4.2.12).
However, in contrast with the supersymmetric theory, now the tensions of ZN
strings acquire quantum corrections in loops.

If masses of the fundamental matter vanish in (6.1.1) this theory has unbroken
SU(N)C+F much in the same way as the theory (4.1.7). In this limit the ZN strings
acquire orientational zero modes and become non-Abelian. The corresponding solu-
tion for the elementary non-Abelian string is given by Eq. (4.3.1). Below we will
consider two-dimensional effective low-energy theory on the world sheet of such
non-Abelian string. Its physics appears to be quite different as compared with the
one in the supersymmetric case.

6.1.1 World-sheet theory

Derivation of the effective world-sheet theory for the non-Abelian string in the
model (6.1.1) can be carried out much in the same way as in the supersymmetric
case [154], see Section 4.4. The world-sheet theory now is two-dimensional non-
supersymmetric CP(N − 1) model (4.4.9). Its coupling constant β is given by
the coupling constant g2

2 of the bulk theory via the relation (4.4.10). Classically
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6.1 Non-Abelian strings in non-supersymmetric theories 173

the normalization integral I is given by (4.4.11). Then it follows that I = 1 as in
supersymmetric case. However, now we expect quantum corrections to modify this
result. In particular, I can become a function of N in quantum theory.

Now, let us discuss the impact of the θ term which we introduced in our bulk
theory (6.1.1). At first sight, seemingly it cannot produce any effect because our
string is magnetic. However, if one allows for slow variations of nl in z and t , one
immediately observes that the electric field is generated via A0,3 in Eq. (4.4.5).
Substituting Fki from (4.4.7) into the θ term in the action (6.1.1) and taking into
account the contribution from Fkn times Fij (k, n = 0, 3 and i, j = 1, 2) we get the
topological term in the effective CP(N − 1) model (4.4.9) in the form

S(1+1) =
∫
dt dz

{
2β
[
(∂αn

∗∂αn)+ (n∗∂αn)2
]

− θ

2π
Iθεαγ (∂αn

∗∂γ n)
}

,

(6.1.4)

where Iθ is another normalizing integral given by the formula

Iθ = −
∫
dr

{
2fNA(1 − ρ)

dρ

dr
+ (2ρ − ρ2)

df

dr

}

=
∫
dr
d

dr

{
2fNAρ − ρ2fNA

}
. (6.1.5)

As is clearly seen, the integrand here reduces to a total derivative, and is determined
by the boundary conditions for the profile functions ρ and fNA. Substituting (4.4.6),
(4.4.8), and (4.2.8), (4.2.7) we get

Iθ = 1, (6.1.6)

independently of the form of the profile functions. This latter circumstance is
perfectly natural for the topological term.

The additional term in the CP(N − 1) model (6.1.4) we have just derived is the
θ term in the standard normalization. The result (6.1.6) could have been expected
since physics is 2π -periodic with respect to θ both in the four-dimensional bulk
gauge theory and in the two-dimensional world sheet CP(N − 1)model. The result
(6.1.6) is not sensitive to the presence of supersymmetry. It will hold in supersym-
metric models as well. Note that the complexified bulk coupling constant converts
into the complexified world sheet coupling constant,

τ = 4π

g2
2

+ i
θ

2π
→ 2β + i

θ

2π
. (6.1.7)

Now let us introduce small masses for the fundamental matter in (6.1.1). Clearly
the diagonal color-flavor group SU(N)C+F is now broken by adjoint VEV’s down

https://doi.org/10.1017/9781009402200.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.007


174 Non-BPS non-Abelian strings

to U(1)N−1 ×ZN . Still, the solutions for the Abelian (orZN ) strings are the same as
was discussed in Section 4.4.4 since the adjoint field does not enter these solutions.
In particular, we have N distinct ZN string solutions depending on what particular
squark winds at infinity, see Section 4.4.4. Say, the string solution with the winding
last flavor is still given by Eq. (4.2.6).

What is changed with the color-flavor SU(N)C+F explicitly broken bymA �= 0,
is that the rotations (4.3.1) no longer generate zero modes. In other words, the fields
n� become quasimoduli: a shallow potential (4.4.49) for the quasi-moduli nl on the
string world sheet is generated [132, 133, 154]. Note that we can replace m̃A by
mA due to the condition (6.1.2). This potential is shallow as long as mA � √

ξ .
The potential simplifies if the mass terms are chosen according to (6.1.3),

VCP(N−1) = 2β m2

⎧⎨
⎩1 −

∣∣∣∣∣
N∑
�=1

e2πi �/N |n�|2
∣∣∣∣∣
2
⎫⎬
⎭ . (6.1.8)

This potential is obviously invariant under the cyclic ZN substitution

� → �+ k, n� → n�+k , ∀�, (6.1.9)

with k fixed. This property will be exploited below.
Now our effective two-dimensional theory on the string world sheet becomes a

massive CP(N − 1) model (see Appendix B). As in the supersymmetric case the
potential (6.1.8) has N vacua at

n� = δ��0 , �0 = 1, 2, . . . ,N . (6.1.10)

These vacua correspond to N distinct Abelian ZN strings with ϕ�0�0 winding at
infinity, see Eq. (4.4.4).

6.1.2 Physics in the large-N limit

The massless non-supersymmetric CP(N − 1) model (6.1.4) was solved a long
time ago by Witten in the large-N limit [159]. The massive case with the potential
(6.1.8) was considered at largeN in [154, 164] in connection with the non-Abelian
strings. Here we will briefly review this analysis.

As was discussed in Section 4.4.4, the CP(N − 1) model can be understood as a
strong coupling limit of a U(1) gauge theory. The action has the form

S =
∫
d2x

{
2β |∇kn�|2 + 1

4e2
F 2
kp + 1

e2
|∂kσ |2 − θ

2π
εkp∂kAp

+ 4β

∣∣∣∣σ − m̃�√
2

∣∣∣∣
2

|n�|2 + 2e2β2(|n�|2 − 1)2
}

, (6.1.11)
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where we also included the θ term. As in the supersymmetric case, in the limit
e2 → ∞ the σ field can be eliminated via the algebraic equation of motion which
leads to the theory (6.1.4) with the potential (4.4.49).

The ZN -cyclic symmetry (6.1.9) now takes the form

σ → ei
2πk
N σ , n� → n�+k , ∀�, (6.1.12)

where k is fixed.
It turns out that the non-supersymmetric version of the massive CP(N−1)model

(6.1.11) has two phases separated by a phase transition [154, 164]. At large values
of the mass parameterm we have the Higgs phase while at smallm the theory is in
the Coulomb/confining phase.

The Higgs phase

At largem,m � �σ , the renormalization group flow of the coupling constant β in
(6.1.11) is frozen at the scalem. Thus, the model at hand is at weak coupling and the
quasiclassical analysis is applicable. The potential (6.1.8) has N degenerate vacua
which are labeled by the order parameter 〈σ 〉, the vacuum configuration being

n� = δ��0 , σ = m̃�0√
2

, �0 = 1, . . . ,N , (6.1.13)

as in the supersymmetric case, see (4.4.53). In each given vacuum theZN symmetry
(6.1.12) is spontaneously broken.

These vacua correspond to Abelian ZN strings of the bulk theory. N vacua of
the world-sheet theory have strictly degenerate vacuum energies. From the four-
dimensional point of view this means that we haveN strictly degenerateZN strings.

There are 2(N − 1) elementary excitations. Here we count real degrees of free-
dom. The action (6.1.11) containsN complex fields n�. The common phase of n�0 is
gauged away. The condition |n�|2 = 1 eliminates one more field. These elementary
excitations have physical masses

M� = |m� −m�0 |, � �= �0. (6.1.14)

Besides, there are kinks (domain “walls” which are particles in two dimensions)
interpolating between these vacua. Their masses scale as

Mkink
� ∼ β M�. (6.1.15)

The kinks are much heavier than elementary excitations at weak coupling. Note that
they have nothing to do with Witten’s n solitons [159] identified as solitons at strong
coupling. The point of phase transition separates these two classes of solitons.
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176 Non-BPS non-Abelian strings

As was already discussed in the supersymmetric case (see Section 4.5) the flux
of the Abelian ’t Hooft–Polyakov monopole is the difference of the fluxes of two
“neighboring” strings, see (4.5.1). Therefore, the confined monopole in this regime
is obviously a junction of two distinct ZN strings. It is seen as a quasiclassical kink
interpolating between the “neighboring” �0th and (�0 + 1)th vacua of the effective
massive CP(N − 1) model on the string world sheet. A monopole can move freely
along the string as both attached strings are tension-degenerate.

The Coulomb/confining phase

Now let us discuss the Coulomb/confining phase of the theory occurring at
small m. As was mentioned, at m = 0 the CP(N − 1) model was solved by Witten
in the large-N limit [159]. The model at small m is very similar to Witten’s solu-
tion. (In fact, in the large-N limit it is just the same.) The paper [164] presents a
generalization of Witten’s analysis to the massive case which is then used to study
the phase transition between the ZN asymmetric and symmetric phases. Here we
will briefly summarize Witten’s results for the massless model.

The non-supersymmetric CP(N − 1) model is asymptotically free (as its super-
symmetric version) and develops its own scale �σ . If m = 0, classically the field
n� can have arbitrary direction; therefore, one might naively expect spontaneous
breaking of SU(N) and the occurrence of massless Goldstone modes. This cannot
happen in two dimensions. Quantum effects restore the full symmetry making the
vacuum unique. Moreover, the condition |n�|2 = 1 gets in effect relaxed. Due to
strong coupling we have more degrees of freedom than in the original Lagrangian,
namely all N fields n become dynamical and acquire masses �σ .

This is not the end of the story, however. In addition, one gets another composite
degree of freedom. The U(1) gauge field Ak acquires a standard kinetic term at
one-loop level,2 of the form

N �−2 FkpFkp. (6.1.16)

Comparing Eq. (6.1.16) with (6.1.11) we see that the charge of the n fields with
respect to this photon is 1/

√
N . The Coulomb potential between two charges in

two dimensions is linear in separation between these charges. The linear potential
scales as

V (R) ∼ �2
σ

N
R, (6.1.17)

whereR is separation. The force is attractive for pairs n̄ and n, leading to formation
of weakly coupled bound states (weak coupling is the manifestation of the 1/N

2 By loops here we mean perturbative expansion in 1/N perturbation theory.
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n* n

k=0 k=0k=1

Figure 6.1. Linear confinement of the n-n∗ pair. The solid straight line represents
the string. The dashed line shows the vacuum energy density (normalizing E0 to
zero).

suppression of the confining potential). Charged states are eliminated from the
spectrum. This is the reason why the n fields were called “quarks” by Witten. The
spectrum of the theory consists of n̄n- “mesons.” The picture of confinement of n’s
is shown in Fig. 6.1.

The validity of the above consideration rests on largeN . IfN is not large Witten’s
solution [159] ceases to be applicable. It remains valid in the qualitative sense, how-
ever. Indeed, at N = 2 the model was solved exactly [204, 205] (see also [206]).
Zamolodchikovs found that the spectrum of the O(3) model consists of a triplet of
degenerate states (with mass ∼ �σ ). At N = 2 the action (6.1.11) is built of dou-
blets. In this sense one can say that Zamolodchikovs’ solution exhibits confinement
of doublets. This is in qualitative accord with the large-N solution [159].

Inside the n̄ n mesons, we have a constant electric field, see Fig. 6.1. Therefore
the spatial interval between n̄ and n has a higher energy density than the domains
outside the meson.

Modern understanding of the vacuum structure of the massless CP(N−1)model
[207] (see also [208]) allows one to reinterpret confining dynamics of the n fields
in different terms [155, 154]. Indeed, at large N , along with the unique ground
state, the model has ∼ N quasi-stable local minima, quasi-vacua, which become
absolutely stable atN = ∞. The relative splittings between the values of the energy
density in the adjacent minima are of the order of 1/N , while the probability of
the false vacuum decay is proportional to N−1 exp(−N) [207, 208]. The n quanta
(n quarks-solitons) interpolate between the adjacent minima.

The existence of a large family of quasi-vacua can be inferred from the study
of the θ evolution of the theory. Consider the topological susceptibility, i.e. the
correlation function of two topological densities

∫
d2x 〈Q(x), Q(0)〉, (6.1.18)

where

Q = i

2π
εkp∂kAp = 1

2π
εkp
(
∂kn

∗
� ∂pn

�
)
. (6.1.19)
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Vacuum energy

k0 1 2−1−2

Figure 6.2. The vacuum structure of CP(N − 1) model at θ = 0.

The correlation function (6.1.18) is proportional to the second derivative of the
vacuum energy with respect to the θ angle. From (6.1.19) it is not difficult to deduce
that this correlation function scales as 1/N in the largeN limit. The vacuum energy
by itself scales as N . Thus, we conclude that, in fact, the vacuum energy should be
a function of θ/N .

On the other hand, on general grounds, the vacuum energy must be a 2π -periodic
function of θ . These two requirements are seemingly self-contradictory. A way
out reconciling the above facts is as follows. Assume that we have a family of
quasi-vacua with energies

Ek(θ) ∼ N �2
σ

{
1 + const

(
2πk + θ

N

)2
}

, k = 0, . . . ,N − 1. (6.1.20)

A schematic picture of these vacua is given in Fig. 6.2. All these minima are entan-
gled in the θ evolution. If we vary θ continuously from 0 to 2π the depths of the
minima “breathe.” At θ = π two vacua become degenerate, while for larger values
of θ the former global minimum becomes local while the adjacent local minimum
becomes global. It is obvious that for the neighboring vacua which are not too far
from the global minimum

Ek+1 − Ek ∼ �2
σ

N
. (6.1.21)

This is also the confining force acting between n and n̄.
One could introduce order parameters that would distinguish between distinct

vacua from the vacuum family. An obvious choice is the expectation value of the
topological charge. The kinks n� interpolate, say, between the global minimum and
the first local one on the right-hand side. Then n̄’s interpolate between the first local
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minimum and the global one. Note that the vacuum energy splitting is an effect
suppressed by 1/N . At the same time, these kinks have masses which scale as N0,

Mkink
� ∼ �σ . (6.1.22)

The multiplicity of such kinks is N [67], they form an N -plet of SU(N). This is in
full accord with the fact that the large-N solution of (6.1.11) exhibits N quanta of
the complex field n�.

Thus we see that the CP(N − 1)model has a fine structure of “vacua” which are
split, with the splitting of the order of�2

σ /N . In four-dimensional bulk theory these
“vacua” correspond to elementary non-Abelian strings. Classically all these strings
have the same tension (4.2.12). Due to quantum effects in the world sheet theory
the degeneracy is lifted: the elementary strings become split, with the tensions

T = 2πξ + c1N �
2
σ

{
1 + c2

(
2πk + θ

N

)2
}

, (6.1.23)

where c1 and c2 are numerical coefficients. Note that (i) the splitting does not
appear to any finite order in the coupling constant; (ii) since ξ � �σ , the splitting
is suppressed in both parameters, �σ/

√
ξ and 1/N .

Kinks of the world-sheet theory represent confined monopoles (string junctions)
in the four-dimensionalbulk theory.Thereforekinkconfinement inCP(N−1)model
can be interpreted as follows [155, 154]. The non-Abelian monopoles, in addition to
the four-dimensional confinement (which ensures that the monopoles are attached
to the strings) acquire a two-dimensional confinement along the string: a monopole–
antimonopole forms a meson-like configuration, with necessity, see Fig. 6.1.

In summary, the CP(N − 1) model in the Coulomb/confining phase, at small m,
has a vacuum family with a fine structure. For each given θ (except θ = π , 3π , etc.)
the true ground state is unique, but there is a large number of “almost” degenerate
ground states. The ZN symmetry is unbroken. The classical condition (4.4.3) is
replaced by 〈n�〉 = 0. The spectrum of physically observable states consists of
kink-anti-kink mesons which form the adjoint representation of SU(N).

Instead, at large m the theory is in the Higgs phase; it has N strictly degenerate
vacua (6.1.13); theZN symmetry is broken. We haveN −1 elementary excitations
n� with masses given by Eq. (6.1.14). Thus we conclude that these two regimes
should be separated by a phase transition at some critical valuem∗ [154, 164]. This
phase transition is associated with theZN symmetry breaking: in the Higgs phase the
ZN symmetry is spontaneously broken, while in the Coulomb phase it is restored.
For N = 2 we deal with Z2 which makes the situation akin to the Ising model.

In the world-sheet theory this is a phase transition between the Higgs and
Coulomb/confining phase. In the bulk theory it can be interpreted as a phase
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 Λ

Tension

mm*
2πx

Figure 6.3. Schematic dependence of string tensions on the mass parameterm. At
small m in the non-Abelian confinement phase the tensions are split while in the
Abelian confinement phase at large m they are degenerative.

transition between the Abelian and non-Abelian confinement. In the Abelian con-
finement phase at largem, theZN symmetry is spontaneously broken, allN strings
are strictly degenerate, and there is no two-dimensional confinement of the 4D-
confined monopoles. In contrast, in the non-Abelian confinement phase occurring
at small m, the ZN symmetry is fully restored, all N elementary strings are split,
and the 4D-confined monopoles combine with antimonopoles to form a meson-like
configuration on the string, see Fig. 6.1. We show schematically the dependence of
the string tensions on m in these two phases in Fig. 6.3.

In [164] the phase transition point is found using large-N methods developed by
Witten in [159]. It turns out that the critical point is

m∗ = �σ . (6.1.24)

The vacuum energy is calculated in both phases and is shown to be continuous at the
critical point. If one approaches the critical point, say, from the Higgs phase some
composite states of the world sheet theory (6.1.11), such as the photon and the kinks,
become light. One is tempted to believe that these states become massless at the
critical point (6.1.24). However, this happens only in a very narrow vicinity of the
phase transition point where 1/N expansion fails. Thus, the large-N approximation
is not powerful enough to determine the critical behavior.
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To conclude this section we would like to stress that we encounter a crucial
difference between the non-Abelian confinement in supersymmetric and non-
supersymmetric gauge theories. For BPS strings in supersymmetric theories we
have no phase transition separating the phase of the non-Abelian strings from that
of the Abelian strings [132, 133]. Even for small values of the mass parameters
supersymmetric theory strings are strictly degenerate, and the ZN symmetry is
spontaneously broken. In particular, at�mA = 0 the order parameter for the broken
ZN , which differentiates theN degenerate vacua of the supersymmetric CP(N−1)
model, is the bifermion condensate of two-dimensional fermions living on the string
world sheet of the non-Abelian BPS string, see Section 4.4.3 and Section 5.1.3.

Moreover, the presence of the phase transition between Abelian and non-Abelian
confinement in non-supersymmetric theories suggests a solution for the problem of
enrichment of the hadronic spectrum mentioned in the beginning of Section 4, see
also a more detailed discussion in Section 4.9. In the phase of Abelian confinement
we have N strictly degenerative Abelian ZN strings which give rise to too many
“hadron” states, not present in actual QCD. Therefore, the Abelian ZN strings can
hardly play a role of prototypes for QCD confining strings.Although the BPS strings
in supersymmetric theories become non-Abelian as we tune the mass parameters
mA to a common value, still there are N strictly degenerative non-Abelian strings
and, therefore, still too many “hadron” states in the spectrum.

As was explained in this section, the situation in non-supersymmetric theories
is quite different. As we make the mass parameters mA equal we enter the non-
Abelian confinement phase. In this phase N elementary non-Abelian strings are
split. Say, at θ = 0 we have only one lightest elementary string producing a single
two-particle meson with the given flavor quantum numbers and spin, exactly as
observed in nature. If N is large, the splitting is small, however. If N is not-so-
large the splitting is of the order of�2

σ . Therefore, the mesons produced by excited
strings are unstable and may appear invisible experimentally.
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6.2 Non-Abelian strings in N = 1∗ theory

So far in our quest for the non-Abelian strings we focused on a particular model, with
the SU(N)×U(1) gauge group and fundamental matter. However, it is known that
solutions for ZN strings were first found in simpler models, with the SU(N) gauge
group and adjoint matter [134, 135, 136, 137] (in fact, the gauge group becomes
SU(N)/ZN if only adjoint matter is present in the theory). A natural question
which immediately comes to one’s mind is: can theseZN strings under some special
conditions develop orientational zero modes and become non-Abelian? The answer
to this question is yes. Solutions for non-Abelian strings in the simplest theory with
the SU(2) gauge group and adjoint matter were found in [155] (actually, the gauge
group of this theory is SO(3)). Here we will briefly review the results of this paper.

Although the model considered in [155] is supersymmetric the price one has to
pay for its simplicity is that the strings which appear in this model are not BPS.
The reason is easy to understand. One cannot introduce the FI term in the theory
with the gauge group SU(N) and, therefore, one cannot construct the string central
charge [27].

The model considered in [155] is the so-called N = 1∗ supersymmetric theory
with the gauge group SU(2). It is a deformed N = 4 theory with the mass terms for
three N = 1 chiral superfields. Let us take two equal masses, say m1 = m2 = m,
while the third mass m3 is assumed to be distinct. Generally speaking, N = 4
supersymmetry is broken down to N = 1, unless m3 = 0. If m3 = 0 the theory
has N = 2 supersymmetry. It exemplifies N = 2 gauge theory with the adjoint
matter (two N = 1 flavors of adjoint matter with equal masses).

Classically the vacuum structure of this theory was studied in [209], while quan-
tum effects were taken into account in [210]. The N = 4 theory with the SU(2)
gauge group has three vacua, and if the coupling constant of the N = 4 theory is
small,3 g2 � 1, one of these vacua is at weak coupling. All three adjoint scalars
condense in this vacuum. Therefore, it is called the Higgs vacuum [209, 210]. Two
other vacua of the theory are always at strong coupling. For small m3 they corre-
spond to the monopole and dyon vacua of the perturbed N = 2 theory [2]. Here
we will concentrate on the Higgs vacuum in the weak coupling regime.

In this vacuum the gauge group SU(2) is broken down toZ2 by the adjoint scalar
VEV’s. Therefore there are stable Z2 non-BPS strings associated with

π1(SU(2)/Z2) = Z2. (6.2.1)

If we choose a special value of m3,

m3 = m,

3 Note that the coupling of the unbroken N = 4 theory g2 does not run since the N = 4 theory is conformal.
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there is a diagonal O(3)C+F subgroup of the global gauge group SU(2), and the
flavor O(3) group, unbroken by vacuum condensates. In parallel with Refs. [131,
130, 132, 133] (see also Chapter 4), the presence of this group leads to emergence of
orientational zero modes of theZ2-strings associated with rotation of the color mag-
netic flux of the string inside the SU(2) gauge group, which converts the Z2 string
into non-Abelian.

Let us discuss this model in more detail. In terms of N = 1 supermultiplets,
the N = 4 supersymmetric gauge theory with the SU(2) gauge group contains
a vector multiplet, consisting of the gauge field Aaμ and gaugino λαa , and three
chiral multiplets �aA, A = 1, 2, 3, all in the adjoint representation of the gauge
group, with a = 1, 2, 3 being the SU(2) color index. The superpotential of the
N = 4 gauge theory is

WN=4 = −
√

2

g2
εabc�

a
1�

b
2�

c
3. (6.2.2)

One can deform this theory, breaking N = 4 supersymmetry down to N = 2, by
adding two equal mass terms m, say, for the first two flavors of the adjoint matter,

WN=2 = m

2g2

∑
A=1,2

(
�aA
)2. (6.2.3)

Then, the third flavor combines with the vector multiplet to form an N = 2 vector
supermultiplet, while the first two flavors (6.2.3) can be treated as N = 2 massive
adjoint matter. If one wishes, one can further break supersymmetry down to N = 1,
by adding a mass term to the �3 multiplet,

WN=1∗ = m3

2g2

(
�a3
)2 . (6.2.4)

The bosonic part of the action is

SN=1∗ = 1

g2

∫
d4x

(
1

4

(
Faμν

)2 +
∑
A

∣∣Dμ �aA∣∣2
+ 1

2

∑
A,B

[
(�̄A�̄B)(�A�B)− (�̄A�B)(�̄B�A)

]

+
∑
A

∣∣∣∣ 1√
2
εabcε

ABC�bB�
c
C −mA�

a
A

∣∣∣∣
2
)

, (6.2.5)

where Dμ �aA = ∂μ�
a
A + εabcAbμ�

c
A, and we use the same notation �aA for the

scalar components of the corresponding chiral superfields.
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As was mentioned above, we are going to study the so-called Higgs vacuum of
the theory (6.2.5), where all three adjoint scalars develop VEVs of the order of
m,

√
mm3. The scalar condensates �aA can be written in the form of the following

3×3 color-flavor matrix (convenient for the SU(2) gauge group and three chiral
flavor superfields)

〈�aA〉 = 1√
2

⎛
⎝

√
mm3 0 0
0

√
mm3 0

0 0 m

⎞
⎠. (6.2.6)

These VEV’s break the SU(2) gauge group completely. The W -bosons masses are

m2
1,2 = m2 +mm3 (6.2.7)

for A1,2
μ , while the mass of the photon field A3

μ is

m2
γ = 2mm3. (6.2.8)

In what follows, we will be especially interested in a particular point in the
parameter space: m3 = m. For this value of m3, (6.2.6) presents a symmetric
color-flavor locked vacuum

〈�aA〉 = m√
2

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠. (6.2.9)

This symmetric vacuum respects the global O(3)C+F symmetry,

� → O�O−1, Aaμ → OabAbμ, (6.2.10)

which combines transformations from the global color and flavor groups, similarly
to the SU(N)C+F group of the U(N) theories, see Chapter 4. It is this symmetry that
is responsible for the presence of the non-Abelian strings in the vacuum (6.2.9).

Note that at m3 = m all gauge bosons have equal masses,

m2
g = 2m2, (6.2.11)

as is clearly seen from (6.2.7) and (6.2.8). This means, in particular, that in the point
m3 = m we lose all traces of the “Abelization” in our theory, which are otherwise
present at generic values of m3.
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Let us also emphasize that the coupling g2 in Eq. (6.2.5) is the N = 4 coupling
constant. It does not run in the N = 4 theory at scales above m, and we assume it
to be small,

g2 � 1. (6.2.12)

At the scale m the gauge group SU(2) is broken in the vacuum (6.2.9) by the
scalar VEVs. Much in the same way as in the U(N) theory (see Chapter 4),
the running of the coupling constant below the scale m is determined by the
β function of the effective two-dimensional sigma model on the world sheet of
the non-Abelian string.

Skipping details we present here the solution for the non-Abelian string in the
model (6.2.5) found in [155]. When m3 approaches m, the theory acquires addi-
tional symmetry. In this case the scalar VEVs take the form (6.2.9), preserving
the global combined color-flavor symmetry (4.1.15). On the other hand, the Z2

string solution itself is not invariant under this symmetry. The symmetry (4.1.15)
generates orientational zero modes of the string. The string solution in the singular
gauge is

�aA = O

⎛
⎜⎝

g√
2
φ 0 0

0 g√
2
φ 0

0 0 a0

⎞
⎟⎠O−1

= g√
2
φδaA + SaSA

(
a0 − g√

2
φ

)
,

Aai = Sa
εij xj

r2
f (r), i, j = 1, 2, (6.2.13)

where we introduced the unit orientational vector Sa ,

Sa = Oa
b δ
b3 = Oa

3 . (6.2.14)

It is easy to see that the orientational vector Sa defined above coincides with the
one we introduced in Section 4, see Eq. (4.4.21). The solution (6.2.13) interpolates
between the Abelian Z2 strings for which �S = {0, 0, ±1}. We see that the string
flux is determined now by an arbitrary vector Sa in the color space, much in the
same way as for the non-Abelian strings in the U(N) theories.
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Since this string is not BPS-saturated, the profile functions in (6.2.13) satisfy
now the second-order differential equations,

φ′′ + 1

r
φ′ − 1

r2
f 2φ = φ

(
g2φ2 − √

2m3a0

)
+ 2φ

(
a0 − m√

2

)2

,

a′′
0 + 1

r
a′

0 = −m3√
2

(
g2φ2 − √

2m3a0

)
+ 2g2φ2

(
a0 − m√

2

)
,

f ′′ − 1

r
f ′ = 2g2f φ2, (6.2.15)

where the primes stand for derivatives with respect to r , and the boundary condi-
tions are

φ(0) = 0, φ(∞) =
√
mm3

g
,

a′
0(0) = 0, a(∞) = m√

2
,

f (0) = 1, f (∞) = 0. (6.2.16)

The string tension is

T = 2π
∫ ∞

0
rdr

⎡
⎣ f ′ 2

2g2r2
+ φ′ 2 + a′ 2

0

g2
+ f 2φ2

r2

+ g2

2

(
φ2 −

√
2m3

g2
a0

)2

+ 2φ2
(
a0 − m√

2

)2
⎤
⎦.

(6.2.17)

The second-order equations for the string profile functions were solved in [155]
numerically and the string tension was found as a function of the mass ratiom3/m.
Note that for the BPS string (which appears in the limit m3 → 0) the tension is

TBPS = 2π mm3/g
2.

The effective world sheet theory for the non-Abelian string (6.2.13) was shown
to be the non-supersymmetric CP(1) model [155]. Its coupling constant β is
related to the coupling constant g2 of the bulk theory via (4.4.10), where now
the normalization integral

I ∼ 0.78.

In this theory there is a ’t Hooft–Polyakov monopole with the unit magnetic charge.
Since theZ2-string charge is 1/2, it cannot end on the monopole, much in the same

https://doi.org/10.1017/9781009402200.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.007


6.2 Non-Abelian strings in N = 1∗ theory 187

way as for the monopoles in the U(N) theories, see Section 4.5. Instead, the confined
monopole appears to be a junction of the Z2 string and anti-string. In the world
sheet CP(1) model it is seen as a kink interpolating between the two vacua.

At small values of the mass difference m3 − m the world sheet theory is in
the Coulomb/confining phase, see Section 6.1.2, although, strictly speaking, the
large-N analysis is not applicable in this case. Still, the monopoles, in addition
to four-dimensional confinement ensuring that they are attached to a string, also
experience confinement in two dimensions, along the string [155]. This means that
each monopole on the string must be accompanied by an antimonopole, with a
linear potential between them along the string. As a result, they form a meson-like
configuration, see Fig. 6.1. As was mentioned in Section 6.1.2, this follows from
the exact solution of the CP(1) model [204, 205]: only the triplets of SU(2)C+F are
seen in the spectrum.
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