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Abstract. The purpose of this note is to present a somewhat unexpected relation between
diophantine approximations and the geometric invariant theory.The link is given byMumford's
degree of contact.We show that destabilizing £ags of Chow-unstable projective varieties provide
systems of diophantine approximations which are better than those given by Schmidt's subspace
theorem, and we give examples of these systems
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Introduction

Let us ¢x two number ¢elds K � L, let S be a ¢nite set of places of L containing all
in¢nite places, and let E be a vector space of rank N � 1 over K . For each
v 2 S let lv;0; � � � ; lv;N be a basis of E 
K L over L, rv;0 X � � � X rv;N X 0 be integers
and X � P�E_� be a closed subvariety. Under which condition do we have the
following property?

PROPERTY P(X). The points x 2 X �K� such that

log
jlv;i�x�jv
jxjv

� �
W ÿ rv;ih�x� v 2 S; i � 0; � � � ;N;

are contained in ¢nitely may subvarieties of X.

We call these last subvarieties the exceptional subvarieties of P(X). One can gain
insight into this problem using a theorem of G. Faltings and G. Wu« stholz. ([1],
Theorem 7:3 and [2], for a quantitative version). They introduce, for each v 2 S,
a probability measure whose expected value Ev�X � (see (1.7)) allows to establish
a criterion for the truth of P�X �. Indeed, if the sum over all v 2 S of these expected
values is bigger than 1, then P�X � holds. Schmidt's Subspace Theorem corresponds
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exactly to the case X � Pn. In the situation where the geometry of X is such that

X
v2S

Ev�X �W
X
v2S

XN
i�0

rv;i=�N � 1� �
X
v2S

Ev�P�E_��; �0:1�

if we impose the condition
P

v2S Ev�X � > 1 we get
P

v2S Ev�P�E_�� > 1, and P�X �
follows by intersecting X with the exceptional varieties of P�P�E_��.Hence, the
strength of Faltings^Wu« stholz' result appears when the geometry of the system gives
the inequality (0.1).

When (0.1) is true, the Faltings^Wu« stholz method is (up to now) stronger then
anything else in the context of diophantine approximations on projective varieties.

The aim of this note is to give examples where (0.1) is true. As we will later see, this
happens when the Chow-point of X � � � � � X (#S-times) is unstable with respect to
the weighted bases f�lv;i; rv;i� : v 2 S; i � 0; � � � ;Ng. Geometric invariant theory tells
us that unstable objects are those for which it is not possible to have a nice moduli
space. Therefore, in order to ¢nd examples of (0.1), we have to look for what is
avoided in the construction of modular spaces, and that is what we will do.

Unstability is usually associated with singular varieties. We will see this for
hypersurfaces, for unstable local rings, and for a family of elliptic surfaces. However,
ruled surfaces, and some blow-ups give examples of nonsingular varieties having an
unstable embedding. In general it is quite dif¢cult to ¢nd examples of unstable pro-
jective varieties. All examples we found have a common style: the destabilizing £ags
are constructed using sections vanishing along special divisors. Moreover, in order
to control all the dimensions involved, it is crucial to use the Riemann^Roch
theorem, as well as some results on vanishing of higher cohomology.

1. Degree of Contact

1.1. Let E be a vector space of rank N � 1 over the number ¢eld K and
E_ � Hom�E;K�. Consider a closed dimension d subvariety X � P�E_� in the pro-
jective space of lines of E_. We choose a basis l0; � � � ; lN 2 E, ¢x nonnegative real
numbers r0 X � � � X rN and let r � �r0; � � � ; rN �. When m is large enough, say
mXm0, the cup product map

j : E
m ! H0�X ;O�m��

is surjective, so that H0�X ;O�m�� is generated by the monomials

la00 � � � laNN � j�l
a00 
 � � � 
 l
aNN �;

with a0 � � � � � aN � m. A special basis is a basis of H0�X ;O�m�� consisting of such
elements. We de¢ne the weight of li to be ri, i � 0; � � � ;N, the weight of a monomial
in E
m to be the sum of the weights of li's occurring in it, and the weight of a
monomial u 2 H0�X ;O�m�� to be the minimum wr�u� of the weights of the monomials
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in li's mapping to u by j. The weight of a special basis is the sum of the weights of its
elements. Finally, wr�m� denotes the minimal weight among all special bases of
H0�X ;O�m��. Fix a special basis of minimal weight, and denote by w1; � � � ;wM

the weights of its elements in increasing order. Let F 0 � f0g, and F j be equal to
the span of all monomials u of weight less or equal to wj ,j � 1; � � � ;M. We de¢ne
a probability measure on R with the density function:

rm�x� �
1

h0�X ;O�m��
XM
j�1

dim�F j=Fjÿ1�dwj=m�x�; �1:1�

where da�x� is the Dirac distribution supported at a 2 R. Its expected value E�rm�
equals

E�rm� �
wr�m�

m � h0�X ;O�m�� : �1:2�

1.2. Let r0 X � � � X rN X 0 be integers, and l0; � � � ; lN be a basis of E. De¢ne
si � ri ÿ rN ; i � 0; � � � ;N, and put s � �s0; � � � ; sN�: The s-weight of a monomial
of degree m in li's differs form its r-weight by mrN ; so

wr�m� � ws�m� �mrNh0�X ;O�m��:

By the usual theory of Hilbert polynomials

h0�X ;O�m�� � deg�X �m
d

d!
�O�mdÿ1�; �1:3�

hence

wr�m� � ws�m� � rN deg�X ��d � 1� md�1

�d � 1�!�O�md�: �1:4�

According to [8], Corollary 3:3, there exists an integer es�X � such that whenm goes to
in¢nity

ws�m� � es�X � md�1

�d � 1�!�O�md�:

If we de¢ne

er�X � � es�X � � rN deg�X ��d � 1�; �1:5�

then by (1.4) we have

wr�m� � er�X � md�1

�d � 1�!�O�md�: �1:6�

We call er�X � the degree of contact of X with respect to the basis l0; � � � ; lN and to the
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weights r0; � � � ; rN . Combining (1.3) with (1.6) we obtain

E1�X � :� lim
m!1E�rm� �

er�X �
�d � 1� deg�X � : �1:7�

1.3. There is an intersection theoretic formula expressing the degree of contact as the
degree of a divisor on a suitable modi¢cation of X .

Let OX�A1 �1� � OX �1� 
 OA1 , and t be the coordinate of A1. To integers
r0 X � � � X rN X 0 and a basis l0; � � � ; lN of E we associate the K �t�-submodule I
of H0�X� A1;OX�A1�1�� generated by ftriÿrN li; i � 0; � � � ;Ng, and an ideal sheaf
J � OX�A1 de¢ned by

J �OX�A1 �1� � sheaf generated by I in OX�A1�1�:

Choose a compacti¢cation Y of X �A1 on which OX�A1�1� extends to a line bundle
L, and let p : B! Y be the blow-up along the subscheme Z of Y de¢ned by the ideal
sheaf J. Then we have

er�X � ÿ rN deg�X ��d � 1� � c1�p�L�d ÿ �c1�p�L� ÿ c1�OB�S���d ; �1:8�

where S is the exceptional divisor, ((1.5); [8], Proposition 2:4; [8], Proposition 3:2).
According to [3] }4, one may write the degree of contact in terms of Segre classes:

er�X � ÿ rN deg�X ��d � 1� � �1� c1�L��d \ s�Z;Y �;

((1.5); [3], Corollary 4:2:2, and the projection formula). Thus, when Z is set-
theoretically a point wr�m� is the Hilbert^Samuel polynomial of J as an ideal in
OX�A1 ([3], }4:3, and Example 4:3:4 for the de¢nition of multiplicity), and
er�X �ÿ rN deg�X ��d � 1� the multiplicity at Z ([10], }2 Examples ii� p.55).

1.4. The Chow point of X is semistable with respect to integers r0 X � � � X rN and a
basis l0; � � � ; lN of E if and only if

E1�X �W 1
N � 1

XN
i�0

ri �1:9�

([10], Theorem 2:9). If this property is satis¢ed for all bases and weights as above, the
Hilbert^Mumford theorem implies that the Chow point of X is semistable with
respect to the action of SL�E�. Needless to say, the opposite of semistable is
unstable.

1.5. Let F �X0; � � � ;Xd� be the Chow form of X , with respect to the embedding given
by a basis l0; � � � ; lN of E. It is a multihomogeneous polynomial of degree
deg�X � in each set of variables Xi � �Xi0; � � � ;XiN�, i � 0; � � � ; d. Let t be an auxiliary
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variable, and r0 X � � � X rN be integers. We consider the decomposition

F �tr0X00; � � � ; trNX0N ; � � � ; trNXdN � �
X
k

trkFk�X0; � � � ;Xd�;

where Fk�X0; � � � ;Xd� are polynomials not containing the variable t. According to
[10], Proposition 2:11 we get

er�X � � minfrk; Fk 6� 0g: �1:10�

2. Diophantine Approximations

2.1. Let K be an algebraic number ¢eld. Denote its ring of integers by OK , and its
collection of places (equivalence classes of absolute values) by MK . For v 2MK ,
x 2 K , we de¢ne the absolute value jxjv by

(1) jxjv � js�x�j1=�K :Q� if v corresponds to the embedding s : K,!R;
(2) jxjv � js�x�j2=�K :Q� � js�x�j2=�K:Q� if v corresponds to the pair of conjugate

embeddings s; s : K,!C;
(3) jxjv � �Np�ÿordp�x�=�K:Q� if v corresponds to the prime ideal p of OK.

Here Np � #�OK=p� is the norm of p, and ordp�x� is the exponent of p in the prime
ideal decomposition of �x�, with ordp�0� :� 1. In case 1 or 2 we call v real in¢nite
or complex in¢nite respectively, and write vj1; in case 3 we call v ¢nite, and write
v y 1. These absolute values satisfy the Product FormulaY

v2MK

jxjv � 1; for x 2 K�: �2:1�

The height of x � �x0; � � � ; xN � 2 KN�1 with x 6� 0 is de¢ned as follows: for v 2MK

put

jxjv �
XN
i�0
jxij2�K :Q�

v

 !1=2�K:Q�
if v is real infinite;

jxjv �
XN
i�0
jxij�K :Q�

v

 !1=�K :Q�
if v is complex infinite;

jxjv � maxfjx0jv; � � � ; jxN jvg if v is finite:

Now de¢ne

h�x� � h�x0; � � � ; xN � �
X
v2MK

log jxjv:

By Product Formula (2.1) this de¢nes a function on PN �K�. Further, h�x� depends
only on x and not on the choice of the number ¢eld K containing the coordinates
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of x. In other words the function h�x� extends to a function onPN �Q�, whereQ is the
algebraic closure of Q inside C.

It is possible to de¢ne the height h�X � of a projective variety X � PN de¢ned over
K (see [13] for a good reference). This invariant can be computed through the height
of the (Cayley^Bertini^van der Waerden ^) Chow point of X .

2.2. From now on, we will denote with L � K a ¢nite ¢eld extension, and S a ¢nite set
of places of L containing all in¢nite places. For each v 2 S we choose a basis
lv;0; � � � ; lv;N of E 
K L and rational numbers rv;0 X � � � X rv;N X 0. Since the degree
of contact is linear in the weights this de¢nes a real numberEv;1�X 
K L� as in (1.7).

THEOREM 2.3. Let us suppose that for some real number 0 < d < 1 we have,X
s2S

Ev;1�X 
K L� � 1� d: �2:2�

Then there are effectively computable positive real numbers c1; c2, and c3 depending
only on K, S, d, N, deg�X �, h�X �, and supv2S;i�0;���;N h�lv;i� such that all points
x 2 X �K� with

h�x� > c1; �2:3�
and

log
jlv;i�x�jv
jxjv

� �
W ÿ rv;ih�x� v 2 S; i � 0; � � � ;N; �2:4�

are contained in at most c2 proper subvarieties of X of degree not exceeding c3.
Proof. [2] Theorem 10:2, and [1] Theorem 7:3 for a quantitative version. &

Remark 2.4. Theorem 10:2 of [1] claims that if (2.2) holds for some d > 0, then the
solutions x 2 X �K� of (2.4) are not Zarisky dense in X . If we further assume that
d < 1, then we can determine explicitly the constants c1; c2; c3 ([2], Theorem 7:3).

Remark 2.5. A priori, it is not clear why one has to choose the coef¢cients of the
linear forms lv;0; � � � ; lv;N in a ¢eld L bigger than K . One reason is that this is coherent
with the spirit of the original Roth's Theorem, where one considers rational
approximations of algebraic numbers. Moreover, Theorem 2.3 can explicitly control
the dependence of the solutions from the ¢eld L.

3. Hypersurfaces

3.1. Let l0; � � � ; lN be a basis of E and for each v 2 S let rv;0 X � � � X rv;N X 0 be
integers. Let X � P�E_� be a hypersurface. Suppose that, with respect to the basis
l0; � � � ; lN , X is given by the polynomial F �l0; � � � ; lN � �

P
i0�����iN�g ai0;���;iN l

i0
0 � � � liNN .
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THEOREM 3.2. For each v 2 S let dv > 0 be real numbers such that

X
v2S

1
dv

min
XN
k�0

ik
X
j 6�k

rv;j; ai0;���;in 6� 0

( )
> N � g: �3:1�

Then the points x 2 X �K� with

log
jlix�jv
jxjv

� �
W ÿ rv;i

dv
h�x�; v 2 S; i � 0; � � � ;N

are contained in ¢nitely many subvarieties of X of bounded degree.
Proof. The Chow form of X is F �� � � ; p j0;���;jkÿ1;jk�1;���;jN ; � � ��, where we used the

Plu« cker coordinates

p j0;���;jkÿ1;jk�1;���;jN � �ÿ1�k det�Xij�;
with i; k 2 f0; � � � ;N ÿ 1g, and j 2 f0; � � � ; kÿ 1; k� 1; � � � ;Ng. We compute the
degree of contact using (1.10). Then by (3.1) we can apply Theorem 2.3 and ¢nish
the proof. &

3.3. If we do not have any singularities on X , the discriminant of the polynomial F
does not vanish. Since the discriminant is SL�E�-invariant, this means that if X
is non-singular, then it is semistable ([10], }1:5). Since we are interested in unstable
objects, this means that X#S has to have quite bad singularities.

4. Local Rings

4.1. Let E be a vector space of rank N � 1 over K , and E_ �Hom �E; K�. Consider a
dimension d closed subvariety X � P�E_� in the projective space of lines of E_. Let
P 2 X �L� be a closed point, and let l0; � � � ; lN be a basis of E 
K L so that
P � �1; 0; � � � ; 0� with respect to the coordinates in P�E_� de¢ned by this basis.
For v 2 S we de¢ne weights r0;v � kv, r1;v � � � � � rv;N � 0.

PROPOSITION 4.2. Let P 2 X �L� be a closed point, and for v 2 S let dv > 0 be a real
number such that

multPX
X
v2S

kv
dv
> �dimX � 1� deg X :

Then the points x 2 X �K� with

log
jl0�x�jv
jxjv

W ÿ kv
dv

h�x�; v 2 S;

lie in ¢nitely many subvarieties of X of bounded degree.
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Proof. For each v 2 S the ideal J �OX�A1 �1� from Proposition 1.3 is generated by
ftkv l0; l1; � � � ; lNg. Since fl1; � � � ;lNg generate the maximal ideal mP;X , and l0 is a unit
at P, J � �tkv ;mP;X �OX�A1 �1�. Hence

er�X � � kv �mult�0;P��X �A1� � kv �multPX :

The claim follows by the linearity of the expected value in the weights, (1.7), and
Theorem 2.3. &

4.3. The attempt to generalize this theorem leads to a numerical measure of the
degree of singularity at a point. Let R be a local ring of dimension r and m be a
positive integer. Then the mth £at multiplicity em�R� of R is de¢ned by

e0�R� � sup
e�I�

r!col�I� : I of finite colength in R
� �

em�R� � e0�R��t0; � � � ; tm���;

where e�I� denotes the multiplicity of the ideal I . Further, a local ring is called
semistable if e1�R� � 1. Let X be a projective scheme, and L be an ample line bundle
on X . For a suf¢ciently large n let

fn : X ! Ph0�X ;L
n�ÿ1

be the embedding de¢ned by L
n. Suppose that there exists a point P on X such that
the local ring OP;X is unstable. Then for every positive integer n, there exists a posi-
tive integer m > n such that the Chowpoint and the Hilbert point corresponding
to fm�X � are unstable under the natural action of SL�h0�X ;L
m�� ([10], Proposition
3:12, [12], Proposition 1:3). Little is known about the semistability of local rings.
See, however, [12] and [10], }3.

4.4. Suppose that there is a closed point P on X �L� such that the local ring OP;X is
unstable. By [10], Lemma 3:6, there exists a sequence of ideals of ¢nite colength

I0 � I1 � � � � � IM � OP;X � IM�1 � � � �

such that if I is the ideal �iX 0Iiti � OP;X ��t��, then
e�I� � �1� e��dimX � 1�!col�I�; �4:1�

where e > 0. We can choose n suf¢ciently large so that

(1) L
n is very ample,
(2) the map SmH0�X ;L
n� ! H0�X ;L
nm� is surjective for all mX 1,
(3) the map cm : H0�X ;L
mn� ! OP;X=Im0 is surjective for all mX 1,
([12], p. 334). The vector space H0�X ;L
n� has the induced ¢ltration de¢ned by

Fj � cÿ11 �Ij=I0�; j � 0; � � � ;M:
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For each v 2 S choose a basis lv;0; � � � ; lv;N of H0�X ;L
n� compatible with the
¢ltration. Assign the weights as in (5.2):

rv;i � minfj : lv;i 2 F jg: �4:2�

THEOREM 4.5. For each v 2 S let dv > 0 be a real number such that

X
v2S

XN
i�0

rv;i
dv
>

deg�X �
dim�X �! : �4:3�

Then the points x 2 X �K� with

log
jlv;i�x�jv
jxjv

� �
W ÿ rv;i

dv
h�x�; v 2 S; i � 0; � � � ;N

are contained in ¢nitely many subvarieties of X of bounded degree.
Proof. Since the colength of I corresponds to the sum of weights ([12], p. 334), the

theorem follows by (4.1), (4.3) and Theorem 2.3. &

Remark 4.6. According to (0.1), Theorem 4.5 is stronger than the Schmidt Sub-
space Theorem. For several examples of destabilizing weighted £ags of unstable
two-dimensional local rings, we refer to [12], }}4; 5; 6.

5. Ruled Surfaces

5.1. The Steiner surface X � P4 is the closure of the image of the map c : P2! P4

de¢ned by

�x; y; z�7!�xz; yz; x2; xy; y2� � �l0; � � � ; l4�:

This surface is the blow-up of P2 at the point P � �0; 0; 1�, and embedded by the
system of conics passing through P. It is a rational ruled surface of type F1, ruled
by the pencil of lines passing through P. Theorem 2.3 implies:

PROPOSITION 5.2. For each v 2 S choose non-negative integers kv, and positive
rationals dv withX

v2S

kv
dv
>

9
4
:

Then the solutions x 2 X �K� of the inequalities

log
jli�x�jv
jxjv

� �
W ÿ kv

dv
h�x�; v 2 S; i � 0; 1

are contained in ¢nitely many curves in X.
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Proof. For each v 2 S let us consider the £ag given by choosing the linear forms li
as above and with weights rv;0 � rv;1 � kv and rv;2 � rv;3 � rv;4 � 0. Then a compu-
tation shows that erv �X � � 4kv ([8], Example 3:6). The degree of the Steiner surface
is 3, the number of free points of intersection of two conics passing through
�0; 0; 1�. Altogether we get

erv �X �
�dim�X � � 1� deg�X � �

4kv
3 � 3 ;

and the proposition follows from Theorem 2.3. &

Remark 5.3. If we consider the same problem for x 2 P4�K�, then the Schmidt
Subspace Theorem implies that its solutions are contained in ¢nitely many subspaces
of P4, hence in ¢nitely many curves of X , if the condition

P
v2S�kv=dv� > 5=2�> 9=4�

holds true. However, Vojta's conjecture predicts 2 as the best possible lower bound
([14], Conjecture 3:4:3).

5.4. A good reference for the general properties of ruled surfaces is [5], V :2. Fix a
smooth curve C of genus g, and a geometrically ruled surface p : R! C. For
one section s : C ! R of p we refer to the divisor S on R which is the image of
s. Fix one section, say S, and let f denote the numerical equivalence class of a ¢bre
of p. When the parity of S2, which is independent of S, is even, then a convenient
basis of Num�R� is given by f , and the element G determined by G2 � 0 and
G � f � 1. For surfaces of odd parity such a G can be found in Num�R� 
Q. We
will by abuse of language consider G as a divisor on R. This is no restriction since
we will be utilizing only the numerical properties of G.

5.5. Fix a ruled surface R, a very ample divisor D � aG� bf on R, and a section S
such that Dÿ aS is effective. Let PN � P�H0�R;D�_� and let Fj � f h2
H0�R;D�; h 2 H0�R;Dÿ jS�g. Since a section in D can vanish to order at most a
on S,

H0�R;D� � F 0 � F 1 � � � � � Fa � Fa�1 � f0g:

Choose a basis l0; � � � ; lN of H0�R;D� compatible with this £ag, and ¢x weights ri,
i � 0; � � � ;N by the condition that

ri � aÿ j()li 2 F j n F j�1:

That is, ri equals a minus the order to which li vanishes along S, for i � 0; � � � ;N.
Clearly, the ri's decrease to zero. This construction generalizes that from 5.1. of
the Steiner surface in P4. There, we have C � P1,E � OP1 �1� �OP1 �2� and
R � P�E�. Further, D � OP�E��1� � G� 3=2f and S, the exceptional divisor, which
is numerical equivalent to Gÿ 1=2f and which is the section associated to the bundle
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OP1�2� in E, we get the £ag of that example. By [8] Theorem 6:5 we obtain a
non-trivial generalisation of the Schmidt Subspace Theorem for this embedding:

THEOREM 5.6. Let S be a section of R. For each v 2 S let lv;0; � � � ; lv;N be a basis
compatible with the ¢ltration (5.1) associated to S, and let r0; � � � ; rN be the corre-
sponding weights (5.2). Suppose that Hi�R;Dÿ jS� � 0 for i > 0 and 0W jW a.
Further, for each v 2 S let dv > 0 be real numbers such that

�3a2D � S ÿ a3S2�
X
v2S

1
dv
> 3D2:

Then the points x 2 R�K� with

log
jlv;i�x�jv
jxjv

W ÿ ri
dv

h�x�; v 2 S; i � 0; � � � ;N

lie in ¢nitely many curves in R of bounded degree.
Proof. Under the condition Hi�R;Dÿ jS� � 0 for i > 0 and 0W jW a, [8] Prop-

osition 6:2 implies

er�X � � 3a2D � S ÿ a3S2:

By construction R is embedded in P�H0�R;D�_�, thus deg�X � � D2. We get

er�X �
�dim�X � � 1� deg�X � �

3a2D � S ÿ a3S2

3 �D2 ;

and Theorem 2.3 concludes the proof. &

5.7. If p : E ! C is a rank 2 vector bundle on C such that P�E� � R we say that E
represent R. Such E always exists and R determines E up to tensoring with a line
bundle L on C. Let L be a line subbundle of E of maximal degree. The number
deg E ÿ 2 degL is independent of the choice of E. Then we say that the ruled surface
is bundle semistable if deg EX 2 degL and bundle unstable when deg E < 2 degL.
In the latter case there exists a unique section S of negative sel¢ntersection.

THEOREM 5.8. Suppose R is bundle unstable. Let D � aG� bf be very ample on R.
Let S � G� cf be the unique section of R of negative sel¢ntersection. For each v 2 S
let lv;0,� � � ; lv;N be a basis compatible with the ¢ltration(5.1) associated to S, and
let r0; � � � ; rN be the corresponding weights (5.2). Further, for each v 2 S let
dv > 0 be real numbers such that

b > a cÿ 1
2
�deg E ÿ 2 degL�

� �
� 2gÿ 2; �5:4�
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and X
v2S

1
dv
>

6b
a�ac� 2b� 2gÿ 2� : �5:5�

Then the points x 2 R�K� satisfying

log
jlv;i�x�jv
jxjv

W ÿ ri
dv

h�x�; v 2 S; i � 0; � � � ;N

lie in ¢nitely many curves of R of bounded degree.
Proof. Since deg E < 2 degL, (5.4) implies that for all integers j with 0W jW a we

have

�bÿ jc� > �aÿ j��2g� 1� 1
2 �deg E ÿ 2 degL�� � 4gÿ 1:

Then by [8], Proposition 5:7, the cohomology groups Hi�R;Dÿ jS� vanish for i > 0
and 0W jW a (see also [8], Remark after Proposition 6:2). The degree of R is
D2 � 2ab. According to [8] �6:7� we have 3a2D � S ÿ a3S2 � �a3=2��deg Eÿ
2 degL� � 3a2b. Again, (5.4) implies

3a2D � S ÿ a3S2

3 �D2 �
a2
2 �deg E ÿ 2 degL� � 3ab

6b
>

a
6b
�ac� 2b� 2gÿ 2�:

Then inequality (5.5) imply (5.3), and Theorem 5.6 proves the assertion. &

5.9. Little is known about the unstability of higher dimensional varieties, and any
information on this problem has interesting consequences. For instance, Vojta's
Conjectures (see [14]) for the ruled hypersurface of P2 �P2 de¢ned by
a4x� b4y� c4z � 0 imply the abc-conjecture (see [9], Conjecture 0:2 for another
point of view).

6. Blow-up

6.1. Let X be a normal dimension n variety de¢ned over K ,H be a Cartier divisor on
X , and S be an effective Cartier divisor. Fix an integer s > 0. Assume that for a
suf¢ciently large r, say larger than r0 X s, rH ÿ sS is very ample. Put
Wi;j � H0�X 
K L; iH ÿ jS� for i; j 2 Z. Then Wr;s has a ¢ltration
Wr;s �Wr;s�1 � � � � �Wr;r. For v 2 S let lv;0, lv;1,� � �, lv;N be a basis of Wr;s com-
patible with the ¢ltration. For these bases we consider weights rv;i � rÿ j if
lv;i 2Wr;j and lv;i 62Wr;j�1.

THEOREM 6.2. Suppose that for any i > 0

hi�X 
K L; rH ÿ jS� � O��r� j�nÿ2� onf�r; j� 2 Z2j sW jW rg:
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For each v 2 S let dv be positive real numbers withXn
i�0

Hnÿi�ÿS�i n� 1
i � 1

� �
��i � 1��rÿ s�rnÿisi ÿ rn�1 � rnÿisi�1�

X
v2S

1
dv
> �n� 1��rH ÿ sS�n:

�6:1�

Then the points x 2 X �K� with

log
jlv;i�x�jv
jxjv

� �
W ÿ rv;i

dv
h�x�; v 2 S; i � 0; � � � ;N

are contained in ¢nitely many subvarieties of X of bounded degree.
Proof. For each v 2 S the ¢ltrations constructed above correspond to the ¢ltration

of [6], Lemma 3. In loc. cit. it is proven that for each v 2 S the left hand side of (6.1) is
a lower bound for the degree of contact. Notice that ai as de¢ned in [6] equals
Hnÿi�ÿS�i. The assertion of the theorem follows then from Theorem 2.3. &

Remark 6.3. Lemma 3 in [6] yields that this theorem is stronger than Schmidt's
Subspace Theorem restricted to X . Further, one could observe that all intersection
products of (6.1) can be written in terms of Segre classes.

6.4.Here we follow [6], }2. Let V be a normal projective variety over K of dimension
nÿ 1X 1, D an ample divisor on V , t a positive integer, and Yt,!Ph0�V
KL;O�tD�� be
the projective cone over FjtDj : V ,!Ph0�V
KL;O�tD��ÿ1. Let ft : Xt ! Yt be the blow-up
with center at the vertex. Let OYt�H0;t� � O

Ph0 �V
KL;O�tD�� �1�jYt
, Ht � f �t H0;t, and St be

the exceptional divisor of ft.

PROPOSITION 6.5. Choose a large integer t such that

hi�V 
K L;O�mtD�� � 0; for all m > 0 and all i > 0: �6:2�

For each v 2 S let lt;v;i; rt;v;i, i � 1; � � � ;N, be sections and weights as in 6.1. Further, let
dt;v be positive real numbers satisfyingX

v2S

1
dt;v

>
�n� 1��rn ÿ sn�

�n� 1�sn�sÿ r� � rn�1 ÿ sn�1
:

Then the points x 2 Xt�K� with

log
jlt;v;i�x�jv
jxjv

� �
W ÿ rt;v;i

dt;v
h�x�; v 2 S; i � 0; � � � ;N

are contained in ¢nitely many subvarieties of X of bounded degree.
Proof. Condition (6.2) implies vanishing of higher cohomology for each rHt ÿ jSt,

j � 1; � � � ; r ([6], Proposition 4). Moreover, all intersection numbers Hnÿi
t �ÿSt�i are
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zero except for i � 0; n where Hn
t � ÿ�ÿSt�n. Thus, (6.3) implies (6.1) and the prop-

osition follows. &

Remark 6.6. The projective cone over a non-singular conic in P2 and a
non-singular quadratic surface in P3 satisfy the condition of Proposition 6.5 for
each tX 1 ([6], Example 6.)

6.7 Let f : X ! Y be the blow-up of a normal projective varietyY along Z, where Z
is a not necessarily irreducible or reduced subscheme. Assume that X is non-singular
of dimension n. Hence, X is a resolution of the singularities of Y . Let S be the excep-
tional divisor. Put H � f �H0 for an ample divisor H0 on Y , and ¢x an integer sX 0.

PROPOSITION 6.8. Take a suf¢ciently large integer t such that tH ÿ S is ample on X
and tH0 is very ample on Y. Assume(6.1), then the assertion of Theorem 6.2 holds.

Proof. Vanishing for the higher cohomology spaces is assured by the proof of [6],
Proposition 8. &

7. Elliptic Surfaces

7.1. Following [7], we call a £at proper map of Q-schemes p : X ! P1 a rational
Weierstrass ¢bration if X is reduced and irreducible rational surface over Q, every
geometric ¢bre of p is an irreducible curve of genus 1, and a section s:P1! X
is given, which does not pass through the nodes or the cusps of the ¢bres. Moreover,
we will assume thatX is normal, and that the generic ¢bre of p is smooth. In this case,
we may resolve singularities of X and obtain an elliptic surface p : X ! P1 (with a
section) which we call the induced elliptic surface. In this situation one may represent
X in Weierstrass form by the equation

y2 � x3 � A�t�x� B�t�;

where A is a quartic and B is a sextic polynomial in the parameter t of P1.

7.2. Let us consider the following situation: X is a minimal rational elliptic surface
with a section and a ¢bre of type IV� (in the Kodaira classi¢cation), X is the associ-
ated Weierstrass ¢bration, S is the given section of X , f is the numerical class
of a ¢bre of X , R is the unique rational component of the singular IV� ¢bre having
multiplicity 3, D � 3kS � 6kf is a very ample divisor on X for some positive integer
k. We have a ¢ltration on H0�X ;O�D�� de¢ned by

H0�X ;O�D�� � H0�X ;O�Dÿ R�� � � � � � H0�X ;O�Dÿ 18kR�� � f0g:

Suppose K is a number ¢eld de¢ning X as a geometrically irreducible variety. For
each v 2 S, we choose a basis lv;0; � � � ; lv;N compatible with this ¢ltration, and de¢ne
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weights rv;i � 18kÿ j if lv;i is inH0�X ;O�Dÿ jR�� but not inH0�X ;O�Dÿ �j � 1�R��,
i � 0; � � � ;N.

THEOREM 7.3. For each v 2 S let dv be positive real numbers such that

X
v2S

k
dv
>

3
25
:

Then all x 2 X �K� satisfying

log
jlv;i�x�jv
jxjv

� �
W ÿ rv;i

dv
h�x�; v 2 S; i � 0; � � � ;N

are contained in ¢nitely many curves in X of bounded degree.
Proof. According to [7], �6:7� we know that the degree of contact of the ¢ltration

(7.1) is bounded below by 675k3. On the other hand, the degree of X with respect
to D equals 27k2 ([7], �4:1�). Hence,

er�X �
�dimX � 1� deg�X � X

675k3

3 � 27k2 �
25
3
k:

Theorem 2.3 implies then the theorem. &

Remark 7.4. Since D is very ample, by Riemann^Roch we can compute the
dimensionN � 1 of the spaceH0�X 
K L;O�D��which equals �27k2 � 3k� 2�=2 ([7],
�4:2�). For each v 2 S

XN
i�0

rv;i � 225
2

k3 � 9k2 � 23
2
k;

([7], �5:10�). Moreover, for all kX 1 we have

25
3
k >

1
27k2�3k�2

2

225
2

k3 � 9k2 � 23
2
k

� �
:

This means that the Schmidt subspace theorem restricted to X is weaker than
Theorem 7.3.

Remark 7.5.Filtration (7.1) is clearly given by the order of vanishing of sections of
D along the curve R. Calculations of the same type can be carried through for
Weierstrass ¢brations with singularities of type II� and III�. The ¢ltrations used
in the latter cases are also given by the order of vanishing along the unique curve
of maximum multiplicity in the singular ¢bre in question. This curve is the
multiplicity six component in the III� ¢bre and the multiplicity four component
in the II� ¢bre.
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