ERIK J. BALDER

Recently, Visintin gave conditions under which weak convergence in $L_1(T;\mathbb{R}^N)$ implies strong convergence. Here we analyze such results in terms of associated Young measures and present an extension to $L_1(T;\Xi)$, where Ξ is a separable reflexive Banach space.

1. Introduction

Let (T, T, μ) be an abstract σ -finite measure space and denote by $L_1(T; \mathbb{R}^N)$ the space of all integrable \mathbb{R}^N -valued functions on T. Recently, Visintin proved the following result for any given sequence $\{f_k\}_{0}^{\infty}$ of functions in $L_1(T; \mathbb{R}^N)$ ([8] Theorem 1).

THEOREM. Suppose that $f_k \rightarrow f_0$ weakly in $L_1(T; \mathbb{R}^N)$ and

Further, Visintin demonstrated by means of a counterexample ([8], p. 445) that this theorem does not continue to hold if one replaces the image space \mathbb{R}^N by a separable Hilbert space. Nevertheless, we shall show in this note that the above result can be extended and deepened. Let Ξ be a separable reflexive Banach space with norm $\|\cdot\|$; the topological dual of Ξ is denoted by Ξ^* , and the Borel σ -algebra on Ξ by $\mathcal{B}(\Xi)$. As usual, by the weak topology on Ξ we mean the topology $\sigma(\Xi,\Xi^*)$.

Received 2 August 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

Let $\{f_k\}_0^{\infty}$ be any given sequence in $L_1(T; \Xi)$, the space of all integrable functions from T into Ξ whose dual (in the prequotient sense) is known to be $L_{\infty}(T; \Xi^*)$ [5]. Our main result is as follows.

THEOREM 1. Suppose that $f_k \neq f_0$ weakly in $L_1(T; \Xi)$ and (1) $f_0(t)$ is an extreme point of $\bigcap_{n=1}^{\infty} \overline{co} \{f_k(t) : k \ge n\}$ a.e. in T.

Then $f_k \rightarrow f_0$ limitedly in $L_1(T; \Xi)$.

Here we say that $\{f_k\}_1^{\infty}$ converges *limitedly* to f_0 in $L_1(T; \Xi)$ if (2) $\int_T g(t, f_k(t) - f(t)) \mu(dt) \neq 0$

for every $T \times B(E)$ -measurable function $g : T \times E \rightarrow R$ satisfying

(3) g(t,0) = 0,

(4) $g(t, \cdot)$ is sequentially weakly continuous on Ξ ,

(5) $|g(t,\xi)| \leq C ||\xi|| + \phi(t)$ for some $C \geq 0$ and $\phi \in L_1(T;\mathbb{R})$.

Clearly, limited convergence is stronger than weak convergence in $l_1(T;\Xi)$, and is in general not equivalent to it. In fact, when $\Xi = \mathbb{R}^N$ limited convergence is equivalent to strong convergence. In one direction this is seen by taking $g(t,\xi) = |\xi|$ (Euclidean norm). In the other direction we note that any subsequence in (2) has a further subsequence for which (2) holds, since $\{f_k\}_1^\infty$ converges in measure to f_0 a fortiori and Fatou's lemma can be applied in an obvious way. Let us also note that in the infinite-dimensional case $g(t,\xi) = |\xi|$ does not satisfy (4) (it is merely weakly lower semicontinuous).

Our approach in proving the above generalization of Visintin's result differs considerably from the one used in [8]. We use Young measures (alias relaxed controls), which are known to be quite useful for the study of weak convergence; for example, see [2],[3],[6]. A Young measure (with respect to T and Ξ) is defined to be a transition probability with respect to (T,T) and $(\Xi,B(\Xi))$ ([7], III). To every $(T,B(\Xi))$ measurable function $f: T \to \Xi$ corresponds its relaxation ε_f , the Young measure defined by $\epsilon_f(t)$ = Dirac probability measure at f(t) .

A sequence $\{\delta_k\}_1^{\infty}$ of Young measures is said to converge *narrowly* (or *weakly*) to a Young measure δ_0 if

(6)
$$\liminf_{k} \int_{T} \int_{\Xi} g(t,\xi) \ \delta_{k}(t) (d\xi) \ \mu(dt) \\ \ge \int_{T} \int_{\Xi} g(t,\xi) \ \delta_{0}(t) (d\xi) \ \mu(dt)$$

for every $T \times B(\Xi)$ -measurable function $g: T \times \Xi \rightarrow [0, +\infty]$ such that (7) $g(t, \cdot)$ is sequentially weakly lower semicontinuous on Ξ (such functions are known as *normal integrands*); see [2],[3].

2. Proof of Theorem 1.

Theorem 1 will be proven by means of the following two lemmas.

LEMMA 2. Suppose that $f_k \neq f_0$ weakly in $L_1(T;\Xi)$. Then for every subsequence $\{k_j\}$ of $\{k\}$ there exist a Young measure δ_* and a further subsequence $\{k_j\}$ of $\{k_j\}$ such that

(8)
$$\varepsilon_{f_{k_i}} \rightarrow \delta_* \text{ narrowly ,}$$

(9) bar
$$\delta_{\star}(t) \equiv \int_{\Xi} \xi \, \delta_{\star}(t) \, (d\xi)$$
 exists and equals $f_0(t)$ a.e. in T,

(10)
$$\delta_*(t)$$
 is supported by $\bigcap_{n=1}^{\infty} \overline{co} \{f_{k_i}(t) : k_i \ge n\}$ a.e. in T .

This result follows from ([3], Theorem 3.1, Lemma 3.2), proven only for the case $\mu(T) < +\infty$; however, it carries over to the σ -finite case without any reservation. Let us remark that the reflexiveness of the Banach space Ξ is of crucial importance for the methods of [3].

LEMMA 3. Under (1) the Young measure δ_* of Lemma 3 is such that (11) $\delta_*(t) = \epsilon_{f_0}(t)$ a.e. in T.

Proof. Let $t \in T$ be such that (1),(9),(10) hold. We claim that for every closed convex subset D of $C \equiv \bigcap_{n=1}^{\infty} \overline{co} \{f_k(t) : k \ge n\}$ with $f_0(t) \not\in D$ it is true that $\delta_*(t)(D) = 0$. For if not so, we would have, writing $v \equiv \delta_*(t)$, that $v = v(D) v_1 + (1 - v(D)) v_2$, and hence $f_0(t) = v(D)$ bar $v_1 + (1 - v(D))$ bar v_2 . Here v_1 and v_2 are the normalized restrictions of v to D and its complement. By closedness and convexity of the supports bar $v_1 \in D$ and bar $v_2 \in C$. Hence, (1) implies that $f_0(t) = bar v_1 \in D$, which gives the desired contradiction. In particular, it now follows that the closed balls of Ξ not containing $f_0(t)$ are v-null sets, and hence so also are the open balls not containing $f_0(t)$ (note that $(\Xi,\sigma(\Xi,\Xi^*))$ and $(\Xi,\|\cdot\|)$ have the same Borel sets by separability of the latter space). Hence, by separability of $(\Xi,\|\cdot\|)$, all open sets of Ξ not containing $f_0(t)$ are v-null sets, $v_1 \in D$.

REMARK. If the support of $\delta_{\star}(t)$ is compact, (11) follows by an application of ([1] Corollary I.4.2).

Combining Lemmas 2 and 3 we find

THEOREM 4. Suppose that $f_k \neq f_0$ weakly in $L_1(T; \Xi)$ and that (1) holds. Then $\epsilon_{f_k} \neq \epsilon_{f_0}$ narrowly.

Proof. Suppose that for some $g : T \times \Xi \rightarrow [0, +\infty]$ as in (7) we would have

$$\lim \inf_k \int_T g(t, f_k(t)) \ \mu(dt) < \int_T g(t, f_0(t)) \ \mu(dt) \equiv \beta_0.$$

For some subsequence $\{k_j\}$ of $\{k\}$ the above $\liminf_k \beta_k$ equals $\lim_j \beta_k$. Let δ_* and $\{k_i\}$ be as in Lemma 2. By Lemma 3 and (6),(8) it then follows that $\liminf_k \beta_k = \lim_i \beta_k \ge \beta_0$, a contradiction. QED

REMARK. When $\Xi = \mathbb{R}^N$ one can prove easily that $\varepsilon_{f_k} \to \varepsilon_{f_0}$ narrowly if and only if $f_k \to f_0$ in measure on every $B \in T$ with $\mu(B) < +\infty$. The same equivalence fails for infinite-dimensional Ξ , again because $\|\cdot\|$ is not weakly continuous. Let us now give the proof of Theorem 1. First, we shall prove (2) under the simplifying hypothesis $\mu(T) < +\infty$. By ([4], Theorem 1) we have that $\sup_k \int_T \|f_k\| \ d\mu < +\infty$ and $\sup_k \int_{B_j} \|f_k\| \ d\mu + 0$ whenever $B_j + \emptyset$ (uniform σ -additivity). Since μ is supposed to be finite, this implies that $\{\|f_k\|\}_1^{\infty}$, and by (5) also $\{|g(\cdot,f_k(\cdot)-f_0(\cdot))|\}_1^{\infty}$ are uniformly integrable ([7], Proposition II.5.2). Let $\varepsilon > 0$ be arbitrary; then there exists C > 0 such that $\sup_k \int_{A_k} |g(t,f_k(t)-f_0(t))| \mu(dt) \leq \varepsilon$, where A_k denotes the set of all $t \in T$ with $|g(t,f_k(t)-f_0(t)) > C$. Now we define $g^C \equiv \max(g,-C) + C$. Then, writing $g_k \equiv g(\cdot,f_k(\cdot)-f_0(\cdot))$, etc., we get

$$\int_T g_k d\mu \ge \int_{\{g_k \ge -C\}} g_k d\mu - \varepsilon = \int_T (g_k^C - C) d\mu - \varepsilon .$$

Since we may apply (6) to $g^{\mathcal{C}}$, we obtain by virtue of Theorem 4

$$\lim \inf_k \int_T g_k \ d\mu \ge \int_T (g_0^C - C) \ d\mu - \varepsilon = -\varepsilon \ .$$

Hence, $\lim \inf_k \int_T g_k \ d\mu \ge 0$. By repeating the above for $-g$

conclude that (2) has been proven for the case $\mu(T) < +\infty$. In the general case ($\mu \sigma$ -finite) there exists a sequence $\{T_n\}_1^{\infty}$ in T such that $\mu(T_n) < +\infty$ for all n and $T T_n + \emptyset$. Thus, by the uniform σ -additivity property mentioned above and (5), $\lim_n \sup_k \int_{T \cap T_n} |g_k| d\mu = 0$. By the previous step we know that for every n, $\lim_k \int_{T_n} g_k d\mu = 0$. Hence, we conclude that $\lim_k \int_T g_k d\mu = 0$, that is (2) holds. This finishes the proof of Theorem 1.

Conclusions

We have demonstrated that when $f_k \neq f_0$ weakly in $L_1(T;\Xi)$ the extreme point condition (1) forces the associated relaxations to show narrow convergence in the sense of Young measures (Theorem 4). Limited

we

convergence of the original functions $\{f_k\}_1^{\infty}$ to f_0 is the manifestation of this underlying narrow convergence. When Ξ is finite-dimensional limited convergence coincides with strong convergence in L_1 $(T;\Xi)$.

References

- [1] Erik M. Alfsen, Compact convex sets and boundary integrals (Springer-Verlag, Berlin, Heidelberg, New York, 1971).
- [2] E.J. Balder, "A general approach to lower semicontinuity and lower closure in optimal control theory", SIAM J. Control Optim., 22 (1984), 570-598.
- [3] E.J. Balder, "An extension of Prohorov's theorem for transition probabilities with applications to infinite-dimensional lower closure problems", *Rend. Circ. Mat. Palermo*, 34(3) (1985). (in press)
- [4] James K. Brooks and N. Dinculeanu, "Weak compactness in spaces of Bochner integrable functions and applications", Adv. in Math., 24 (1977), 172-188.
- [5] N. Dinculeanu, Vector measures (Deutscher Verlag der Wissenschaften, Berlin, 1966).
- [6] Ronald J. DiPerna, "Measure-valued solutions to conservation laws", Arch. Rational Mech. Anal., 88 (1985), 223-270.
- [7] Jacques Neveu, Bases mathématiques du calcul des probabilités (Masson, Paris, 1964; English Transl. Holden-Day, San Fransisco, London Amsterdam, 1965).
- [8] A. Visintin, "Strong convergence results related to strict convexity", Comm. Partial Differential Equations, 9 (1984), 439-466.

Mathematical Institute, University of Utrecht, PO Box 80.010, 3508 TA Utrecht,

The Netherlands.