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We consider the stability of an elastic membrane on the bottom of a uniform horizontal
flow of an inviscid and incompressible fluid of finite depth with free surface. The
membrane is simply supported at the leading and the trailing edges which attach it to the
two parts of the horizontal rigid floor. The membrane has an infinite span in the direction
perpendicular to the direction of the flow and a finite length in the direction of the flow.
For the membrane of infinite length we derive a full dispersion relation that is valid for
arbitrary depth of the fluid layer and find conditions for the flutter of the membrane due
to emission of surface gravity waves. We describe this radiation-induced instability by
means of the perturbation theory of the roots of the dispersion relation and the concept of
negative energy waves and discuss its relation to the anomalous Doppler effect.

Key words: flow–structure interactions

1. Introduction

Flutter of membranes has been a classical subject for at least seven decades. Membranes
submerged in a compressible gas flow occupying a space or a semi-space and their flutter
at supersonic speeds have been considered already in the works by Miles (1947, 1956),
Goland & Luke (1954), Benjamin (1963) and Bolotin (1963).

Bolotin (1963), Spriggs, Messiter & Anderson (1969), Dowell & Ventres (1970) and
Kornecki, Dowell & O’Brien (1976) addressed the problem of the so-called membrane
flutter paradox regarding the relation of stability criteria for an elastic plate to those for
a membrane. Gislason (1971) demonstrated both theoretically and experimentally that a
membrane or elastic plate with a finite chord develops not only flutter but also a divergence
instability.

Dowell (1966), when critically appraising the study by Miles (1956) of an infinitely long,
infinitely wide panel in a compressible flow occupying the upper semi-space, pointed out
that the critical wavelength predicted in this study was infinite and the flutter velocity was
zero, which was not physically meaningful. This observation has led him to the conclusion
that the finite dimension of a membrane or a plate in the flow or a span direction is critical
to the physically meaningful prediction of the instability (Dowell 1966). A similar effect
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of an elastic foundation was shown both theoretically and experimentally by Dugundji,
Dowell & Perkin (1963).

Absolute and convective hydroelastic instabilities of slender elastic structures
submerged in a uniform flow were discussed by Triantafyllou (1992). A comprehensive
monograph by Dowell (2015) is a standard reference in the field.

Recent works on membrane flutter are motivated by such diverse applications as stability
of membrane roofs in civil engineering (Sygulski 2007), flutter of travelling paper webs
(Banichuk et al. 2010, 2019), aerodynamics of sails and membrane wings of natural
flyers (Newman & Paidoussis 1991; Tiomkin & Raveh 2017), as well as the design of
piezoaeroelastic systems for energy harvesting (Mavroyiakoumou & Alben 2020).

Surface gravity waves on a motionless fluid of finite depth are a classical subject as
well, going back to the seminal studies of Russell and Kelvin (Carusotto & Rousseaux
2013). Numerous generalizations are known taking into account, for instance, a uniform
or a shear flow and surface tension (Maissa, Rousseaux & Stepanyants 2016), submerged
solids (Smorodin 1972; Arzhannikov & Kotelnikov 2016) and hydrofoils (Faltinsen &
Semenov 2008), a flexible bottom (Mohapatra & Sahoo 2011) or a flexible plate resting on
a free surface (Greenhill 1886; Schulkes, Hosking & Sneyd 1987; Bochkarev, Lekomtsev
& Matveenko 2016; Das, Sahoo & Meylan 2018a,b; Das et al. 2018). The latter setting has a
straightforward motivation in the dynamics of sea ice and a less obvious application in the
analogue gravity experiments (Barcelo, Liberati & Visser 2011; Weinfurtner et al. 2011;
Carusotto & Rousseaux 2013). Recent work (Robertson & Rousseaux 2018) discusses the
effects of viscous dissipation of surface gravity waves to the analogue gravity.

Remarkably, another phenomenon that is analysed from the analogue gravity
perspective is super-radiance (Barcelo et al. 2011; Carusotto & Rousseaux 2013; Brito,
Cardoso & Pani 2015) and its particular form, discovered by Ginzburg & Frank (1947) and
Ginzburg (1996), known as the anomalous Doppler effect (ADE) (Nezlin 1976; Nemtsov &
Eidman 1987; Bekenstein & Schiffer 1998). In electrodynamics, the ADE manifests itself
when an electrically neutral overall particle, endowed with an internal structure, becomes
excited and emits a photon during its uniform but superluminal motion through a medium,
even if it started the motion in its ground state; the energy source is the bulk motion of the
particle (Bekenstein & Schiffer 1998).

The anomalous Doppler effect in hydrodynamics was demonstrated for a mechanical
oscillator with one degree of freedom, moving parallel to the border between two
incompressible fluids of different densities (Gaponov-Grekhov, Dolina & Ostrovskii
1983). It was shown that the oscillator becomes excited due to radiation of internal gravity
waves if it moves sufficiently fast. In Abramovich, Mareev & Nemtsov (1986) the ADE for
such an oscillator was demonstrated due to radiation of surface gravity waves in a layer of
an incompressible fluid.

Nemtsov (1985) was the first who considered flutter of an elastic membrane resting at
the bottom of a uniform horizontal flow of an inviscid and incompressible fluid as an
anomalous Doppler effect due to emission of long surface gravity waves. In the shallow
water approximation, he investigated both the case of a membrane that spreads infinitely
far in both horizontal directions and the case when the length of the membrane in the
direction of the flow (or the chord length) is finite whereas the span in the perpendicular
direction is infinite. Nevertheless, the case of flow of arbitrary depth has not been studied in
Nemtsov (1985), and no numerical computation supporting the asymptotic results has been
performed. Another issue that has not been addressed in Nemtsov (1985) is the relation of
stability domains for the membrane of finite length to those for the membrane of infinite
length.
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Membrane flutter due to radiation of surface gravity waves 901 A4-3

Vedeneev (2004) studied flutter of an elastic plate of finite and infinite length at
the bottom of a uniform horizontal flow of a compressible gas occupying the upper
semi-space. He performed an analysis of the relation of the stability conditions for the
finite plate to those for the infinite plate using the method of global stability analysis of
Kulikovskii (Doaré & de Langre 2006; Vedeneev 2016). A single-mode high-frequency
flutter due to a negative aerodynamic damping and a binary flutter have been identified in
Vedeneev (2016). However, no connection has been made to the ADE and the concept of
negative energy waves.

In the present work we reconsider the setting of Nemtsov in order to address the finite
depth of the fluid layer, find flutter domains in the parameter space, analyse them using
perturbation of multiple roots of the dispersion relation and investigate the flutter onset
for the membrane of infinite chord length. We will explain the radiative instabilities via
the interaction of positive and negative energy waves using an explicit expression for the
averaged total energy derived rigorously from physical considerations and relate them to
the anomalous Doppler effect. We believe that the Nemtsov membrane is as important
for understanding the phenomenon of radiation-induced instabilities (Hagerty, Bloch &
Weinstein 2003) as the famous Lamb oscillator coupled to a semi-infinite string was for
understanding the radiative damping (Lamb 1900; Barbone & Crighton 1994).

2. Model of a membrane interacting with a free surface

2.1. Physical system
In a Cartesian coordinate system OXYZ, consider an inextensible elastic rectangular
membrane strip of constant thickness h and density ρm, of infinite span in the Y-direction,
held at Z = 0 at the leading edge (X = 0) and at the trailing edge (X = L) by simple
supports, figure 1.

The membrane is initially still and flat, immersed in a layer of inviscid, incompressible
fluid of constant density ρ, with free surface at the height Z = H. The two-dimensional
flow in the layer is supposed to be irrotational and moving steadily with velocity v in the
positive X-direction. The bottom of the fluid layer at Z = 0 is supposed to be rigid and flat
for X ∈ (−∞, 0] ∪ [L,+∞).

Nemtsov (1985) assumed that a vacuum exists below the membrane. In the present study
we prefer to consider that a motionless incompressible medium of the same density ρ is
present below the membrane with a pressure that is the same as the unperturbed pressure
of the fluid (Vedeneev 2004, 2016).

Assuming small vertical displacement of the membrane w(X, t), where t is time, a
constant tension T along the membrane profile and neglecting viscous forces, we write
the dimensional membrane dynamic equation as (Tiomkin & Raveh 2017)

ρmh∂2
t w = T∂2

Xw − ΔP, X ∈ [0, L], Z = 0, (2.1)

where ΔP(X, t) is the pressure difference across the interface Z = 0. The simply supported
boundary conditions for the membrane are

w(0) = w(L) = 0 at Z = 0. (2.2)

In general, to recover the pressure P(X, Z, t) of the fluid we write the Euler equation for
the vorticity-free flow (Carusotto & Rousseaux 2013; Maissa et al. 2016)

∂tv + ∇
(

v · v

2
+ P

ρ
+ gZ

)
= 0 (2.3)
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FIGURE 1. An elastic membrane with chord of length L attached to two rigid walls along its
leading (X = 0) and trailing (X = L) edges on the bottom of a fluid layer of depth H moving
with the velocity v. Ω is the fluid domain and ∂Ω0, ∂Ω1 and ∂Ω2 are respectively the free
surface, membrane and rigid wall boundaries.

with v = veX + ∇ϕ, where ϕ(X, Z, t) is the potential of the fluid, eX is the unit vector in
the X-direction and g stands for the gravitational acceleration. This yields the integral of
Bernoulli

P
ρ

+ (∂t + v∂X)ϕ + 1
2
∇ϕ · ∇ϕ + gZ = const. (2.4)

The incompressibility condition takes the form

∇2ϕ = 0. (2.5)

From (2.4) it follows that, in the case when a motionless medium of density ρ is present
below the membrane with its pressure equal to the unperturbed pressure of the fluid above
the membrane, the linear in ϕ expression for the pressure difference, ΔP(X, t), is

ΔP(X, t) = −ρ(∂t + v∂X)ϕ(X, 0, t). (2.6)

For the sake of completeness, we present also the analogous expression for the pressure
difference for the case when there is a vacuum below the membrane (Nemtsov 1985)

ΔP(X, t) = −ρ(∂t + v∂X)ϕ(X, 0, t) − ρgw(X, t). (2.7)

Impermeability of the rigid bottom implies the condition

∇ϕ · n = 0 at Z = 0, X ∈ (−∞, 0] ∪ [L,+∞). (2.8)

The prescription of the normal velocity at the boundaries of moving surfaces allows us to
express the kinematic condition for the membrane

∇ϕ · n = −(∂t + v∂X)w at Z = 0, X ∈ [0, L], (2.9)

and to specify the same condition at the free surface

∇ϕ · n = (∂t + v∂X)u, (2.10)

where u(X, t) is the free surface elevation and n is the vector of the outward normal to
a surface. This implies that the projection of the vector ∇ϕ to the normal will coincide
with the positive z-direction for the free surface and have the opposite direction for the
membrane, see figure 1.
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Membrane flutter due to radiation of surface gravity waves 901 A4-5

Using the Bernoulli integral (2.4) at the free surface where P = 0 and retaining only
linear in ϕ terms, we find

gu = −(∂t + v∂X)ϕ. (2.11)

Taking u from (2.11) and substituting it into (2.10) we obtain the boundary condition at the
free surface of the liquid that reads

∇ϕ · n = −1
g
(∂t + v∂X)2ϕ at Z = H. (2.12)

2.2. Dimensionless mathematical model
Let us choose the height of the fluid layer, H, as a length scale, and ω−1

0 , where ω0 =√
g/H, as a time scale. Then, we can introduce the dimensionless time and coordinates

τ = tω0, x = X
H

, y = Y
H

, z = Z
H

, (2.13a–d)

the dimensionless variables

ξ = w
H

, η = u
H

, φ = ω0

gH
ϕ, (2.14a–c)

the dimensionless parameters of the added mass ratio (Minami 1998) and membrane chord
length

α = ρH
ρmh

, Γ = L
H

, (2.15a,b)

and the two Mach numbers (Vedeneev 2004, 2016)

Mw = c√
gH

, M = v√
gH

, (2.16a,b)

where c2 = T/(ρmh) is the squared speed of propagation of elastic waves in the membrane
and

√
gH is the speed of propagation of long surface gravity waves in the shallow water

approximation. The added mass ratio α is the ratio of the fluid to solid mass contained in
the volume delimited by the dashed lines in figure 1 and in the membrane (Minami 1998).
In figure 1, Ω denotes the fluid domain and ∂Ω0, ∂Ω1 and ∂Ω2 stand, respectively, for the
free surface, membrane and solid wall borders.

The dimensionless wave equation (2.1) is therefore

∂2
τ ξ − M2

w∂2
x ξ = −α

ΔP
ρgH

, x ∈ [0, Γ ], z = 0. (2.17)

Supplementing it with the expression (2.6), which in the dimensionless time and
coordinates has the form

ΔP
ρ

= −
(
ω0∂τ + v

H
∂x

)
ϕ, (2.18)

we find

∂2
τ ξ − M2

w∂2
x ξ = α

(
∂τ + v

ω0H
∂x

)
ω0

gH
ϕ

= α(∂τ + M∂x)φ. (2.19)
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901 A4-6 J. Labarbe and O. N. Kirillov

The dimensionless boundary condition (2.9) is

∇φ · n = −(∂τ + M∂x)ξ at z = 0, x ∈ [0, Γ ], (2.20)

whereas the boundary condition (2.12) at the free surface in dimensionless form becomes

∇φ · n = −(∂τ + M∂x)
2φ at z = 1. (2.21)

Collecting together (2.19)–(2.21) and the obvious dimensionless versions of (2.5) and
(2.8) and assuming a time dependence in the form of φ, ξ ∼ e−iωτ results in the following
dimensionless set of equations and the boundary conditions for the case when a motionless
medium is present below the membrane:

∇2φ = 0, in Ω, (2.22a)

∇φ · n = −(−iω + M∂x)
2φ, on ∂Ω0, (2.22b)

∇φ · n = V(x), on ∂Ω1, (2.22c)

∇φ · n = 0, on ∂Ω2, (2.22d)

[ω2 + M2
w∂2

x ]ξ = −α(−iω + M∂x)φ, on ∂Ω1, (2.22e)

ξ(0) = ξ(Γ ) = 0, on ∂Ω1, (2.22f )

where V(x) = (iω − M∂x)ξ(x), x ∈ [0, Γ ] is the impermeability condition for the
membrane. For simplicity, we retain the same notation for the membrane displacement
and the fluid potential after the separation of time.

Therefore, due to the irrotational, incompressible and inviscid character of the fluid, our
mathematical model (2.22) consists of the Laplace equation for the fluid potential (2.22a),
supplemented by the kinematic conditions for the free surface (2.22b) and the membrane
(2.22c). The pressure at the surface of the fluid is also prescribed as a dynamic condition
and therefore closes the system of equations for the fluid in this model: the motion of the
membrane is described by a non-homogeneous wave equation (2.22e) with the pressure of
the fluid (recovered through the Bernoulli principle) as a source term. The membrane is
supposed to be simply supported at its extremities as in (2.22f ).

3. Methods and results

3.1. Membrane of infinite chord length
Our ultimate goal is to understand the fundamentals of the phenomenon of
radiation-induced instabilities in the model (2.22) that we see as a reasonable analytically
treatable substitute for the famous Lamb system (Lamb 1900; Barbone & Crighton 1994;
Hagerty et al. 2003). In this paper, as a first natural step, we analyse the case when the
chord of the membrane is infinite, i.e. when the membrane extends from −∞ to +∞ in
the x-direction.

The extension of the Nemtsov model to the case where the fluid layer presents a finite
depth is our main concern. In the following we will show that even in the limit of infinite
chord length the model (2.22) demonstrates physically meaningful radiation-induced
flutter that sets in at finite values of the dimensionless flow velocity M > Mw > 0, no
matter what the values of the wavenumber κ and the added mass ratio α are, in contrast to
other known models discussed, e.g. in Miles (1956) and Dowell (1966).
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Membrane flutter due to radiation of surface gravity waves 901 A4-7

3.1.1. Dispersion relation for the fluid layer of arbitrary depth
Since the motion of the fluid is two-dimensional in the (x, z)-plane and the horizontal

extension of the fluid layer is infinite in the x-direction too, we can represent the potential
of the fluid φ in the physical space by means of the inverse Fourier transform of the
potential φ̂ in the wavenumber space as

φ(x, z, ω) = 1
2π

∫ +∞

−∞
φ̂(κ, z, ω) eiκx dκ, (3.1)

where κ is the wavenumber and

φ̂(κ, z, ω) =
∫ +∞

−∞
φ(x, z, ω) e−iκx dx, (3.2)

under the standard assumption that both φ(x) and φ̂(κ) are absolutely integrable functions,
implying they vanish at infinity.

Assuming that ∂xφ is also absolutely integrable, which allows us to use twice the
property ∂̂xφ = iκφ̂, we find the Fourier transform of the Laplace equation (2.22a)

∂2
z φ̂ − κ2φ̂ = 0. (3.3)

The general solution to (3.3) is

φ̂(κ, z, ω) = A(κ, ω) eκz + B(κ, ω) e−κz, (3.4)

where A(κ, ω) and B(κ, ω) are yet to be determined from the Fourier-transformed
boundary conditions.

The boundary condition (2.22c), expressing the impermeability of the membrane at
z = 0, takes the form

− ∂zφ = V, (3.5)

because the outward direction of the normal vector n to the surface of the membrane is
opposite to the positive z-direction, see figure 1. The Fourier transform of (3.5) reads

∂zφ̂ = −V̂(κ, ω), (3.6)

where

V̂(κ, ω) =
∫ +∞

−∞
(iωξ(s) − M∂sξ(s)) e−iκs ds

= i(ω − κM)ξ̂ . (3.7)

Substituting (3.4) into (3.6) yields at z = 0

κ(A − B) = −i(ω − κM)ξ̂ . (3.8)

Similarly transforming the boundary condition (2.22b) at the free surface we find

∂zφ̂ = (ω − κM)2φ̂. (3.9)

Substituting (3.4) into (3.9) yields at z = 1

κ(Aeκ − Be−κ) = (ω − κM)2(Aeκ + Be−κ). (3.10)
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Solving (3.8) and (3.10) simultaneously with respect to A and B, we obtain

A(κ, ω) = −iξ̂ [(ω − κM)2 + κ](ω − κM)

κ[(ω − κM)2 − κ] e2κ + κ[(ω − κM)2 + κ]
,

B(κ, ω) = iξ̂ [(ω − κM)2 − κ](ω − κM)

κ[(ω − κM)2 − κ] + κ[(ω − κM)2 + κ] e−2κ
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.11)

The Fourier transform of the non-homogeneous wave equation (2.22e) for the membrane
displacement evaluated at z = 0 reads

(ω2 − κ2M2
w)ξ̂ − iα(ω − κM)φ̂(κ, 0, ω) = 0. (3.12)

Inserting expression (3.4) for φ̂ with the coefficients (3.11) into (3.12), discarding ξ̂ in
the result and introducing new parameters, namely the phase velocity

σ = ω

κ
, (3.13)

and the coupling parameter

β = α

κ2
, (3.14)

we obtain the following dispersion equation in the case where a medium with constant
pressure is present below the membrane

β = (M2
w − σ 2)[κ(σ − M)2 − tanh κ]

κ(σ − M)2[κ(σ − M)2 tanh κ − 1]
. (3.15)

It is instructive to show another way of deriving the dispersion equation (3.15). For this,
we notice that (3.6) and (3.7) allow us to express ξ̂ by means of ∂zφ̂. Using the result in
(3.12), we can obtain a boundary condition for φ̂(z) at z = 0. This new boundary condition
together with boundary condition (3.9) and equation (3.3) produce a closed-form boundary
value problem for the Laplace equation with the Robin boundary conditions

∂2
z φ̂ − κ2φ̂ = 0,

∂zφ̂(ω2 − κ2M2
w) − α(ω − κM)2φ̂ = 0, z = 0,

∂zφ̂ − (ω − κM)2φ̂ = 0, z = 1.

⎫⎪⎪⎬⎪⎪⎭ (3.16)

Substituting the general solution (3.4) into the boundary conditions of the problem (3.16)
results in the system of two linear equations with respect to A and B,

κ(A − B)(ω2 − κ2M2
w) − α(ω − κM)2(A + B) = 0,

κ(Aeκ − Be−κ) − (ω − κM)2(Aeκ + Be−κ) = 0.

}
(3.17)

This system can be written in matrix form as

(ω2M1 + ωM2 + M3)f = 0, f :=
(

A
B

)
, (3.18)
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Membrane flutter due to radiation of surface gravity waves 901 A4-9

where the 2 × 2 matrices involved are

M1 = −
(

α − κ α + κ

eκ e−κ

)
,

M2 = 2κM
(

α α

eκ e−κ

)
,

M3 = −
(

κ2(M2α + M2
wκ) κ2(M2α − M2

wκ)

κeκ(M2κ − 1) κe−κ(M2κ + 1)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.19)

Computing the determinant of the matrix polynomial we arrive at the dispersion equation

D(ω, κ) = det(ω2M1 + ωM2 + M3)

= −α(Mκ − ω)2[(Mκ − ω)2 tanh κ − κ] + κ(M2
wκ2 − ω2)[(Mκ − ω)2 − κ tanh κ]

= 0, (3.20)

which, with the notation σ = ω/κ and β = α/κ2, transforms exactly to (3.15).
For the sake of completeness we present also the dispersion relation for the system with

a vacuum below the membrane

β = (M2
w − σ 2)

[
κ(σ − M)2 − tanh κ

][
κ2(σ − M)4 − 1

]
tanh κ

. (3.21)

In the shallow water approximation corresponding to the limit κ → 0, the expression
(3.21) reduces to

β = (σ 2 − M2
w)
(
(σ − M)2 − 1

)
, (3.22)

which is nothing else but the shallow water dispersion relation derived by Nemtsov (1985).
In order to get the dispersion relation (3.21), one must take the pressure difference (2.7),

make it non-dimensional and use in the expression (2.17) which then reads as

∂2
τ ξ − M2

w∂2
x ξ − αξ = α(∂τ + M∂x)φ. (3.23)

After separation of time it reduces to the analogue of boundary condition (2.22e),

[−ω2 − M2
w∂2

x − α]ξ − α(−iω + M∂x)φ(x, 0, t) = 0, (3.24)

which has the following Fourier transform[
ω2 − κ2M2

w + α
]
ξ̂ − iα (ω − κM) φ̂(κ, 0, ω) = 0. (3.25)

Inserting the expression (3.4) for φ̂ with the coefficients (3.11) into (3.25) results, after
familiar algebraic manipulations, in the dispersion relation (3.21).

3.1.2. Analysis of the dispersion equation
In the absence of coupling between the free surface and the membrane, i.e. for β = 0,

both the dispersion relation (3.15) and the dispersion relation (3.21) reduce to

(σ 2 − M2
w)[κ(σ − M)2 − tanh κ] = 0, (3.26)

which yields the dispersion relation of the elastic waves in the free membrane σ 2 = M2
w

and that of the surface gravity waves on a uniform flow: κ(σ − M)2 = tanh κ . The latter
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FIGURE 2. Real (red, a–d) and imaginary (blue, e–h) parts of the roots of the dispersion
relation (3.15) over the Mach number M for Mw = 1, κ = 1 and (a,e) β = 0, (b, f ) β = 0.01,
(c,g) β = 0.1 and (d,h) β = 1.

acquires a more familiar traditional form (Maissa et al. 2016)

(ω − κFr)2 = κ tanh κ (3.27)

after taking into account that σ = ω/κ and that M, as defined in (2.16a,b), can also be
interpreted as the Froude number, Fr.

The roots of the decoupled dispersion equation (3.26) are real

σ±
1 = ±Mw, σ±

2 = M ±
√

tanh κ

κ
. (3.28a,b)

If we consider the roots (3.28a,b) as functions of the fluid Mach number, M, we find
that σ±

1 are two horizontal straight lines and σ±
2 are two straight lines with the slope equal

to 1, see figure 2(a). One can see that at β = 0 the root branches intersect at four points
forming the double roots σ0 = Mw at

M±
0 = Mw ±

√
tanh κ

κ
(3.29)

and the double roots −σ0 at −M±
0 . The relation Mw = M+

0 − √
(tanh κ)/κ = σ−

2 = σ+
1 =

σ0 following from (3.29) and (3.28a,b) is the condition of ‘phase synchronism’ for the case
of an arbitrary height of the fluid layer that extends the corresponding result obtained in
Nemtsov (1985) in the shallow water limit, κ → 0.

With the increase in β the roots ±σ0 situated at M = ±M−
0 split into simple real ones

and this split is accompanied by unfolding of the crossings into avoided crossings, figure 2.
Quite in contrast, the roots ±σ0 situated at M = ±M+

0 split into complex-conjugate pairs
that form bubbles of instability at moderate values of β that open up with the increase in
β to develop disconnected complex branches, as is seen in figure 2(d,h).
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Let us re-write the dispersion relation (3.15) as follows

D(σ, M, β) := βκ(σ − M)2 [κ(σ − M)2 tanh κ − 1
]

− (M2
w − σ 2)

[
κ(σ − M)2 − tanh κ

] = 0. (3.30)

Then, we can apply to it the perturbation theory derived in appendix A.
Consider the double root σ0 at M = M+

0 and β = β0 = 0. Adapt the approximate
equation (A 18) to our model

Δσ(∂2
σMDΔM + ∂2

σβDΔβ) + 1
2

[∂2
MD(ΔM)2 + 2∂2

MβDΔMΔβ + ∂2
βD(Δβ)2]

+ 1
2
∂2

σ D(Δσ)2 + ∂MDΔM + ∂βDΔβ = 0, (3.31)

where Δσ = σ − σ0, ΔM = M − M+
0 and Δβ = β. Calculating the partial derivatives at

σ = σ0, M = M+
0 , and β = β0 = 0, we find

∂2
σ D = −8Mwκ

√
tanh κ

κ
, ∂2

σMD = 4Mwκ

√
tanh κ

κ
,

∂2
MD = 0, ∂2

MβD = −∂2
σβD = 2κ(2(tanh κ)2 − 1)

√
tanh κ

κ
, ∂2

βD = 0,

∂MD = 0, ∂βD = (tanh κ)3 − tanh κ.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.32)

With the derivatives (3.32) the approximation (3.31) to the dispersion equation (3.30) near
the crossing takes the form

(σ − Mw)

[
σ − M +

√
tanh κ

κ

]
= β

√
tanh κ

κ

(tanh κ)2 − 1
4Mw

. (3.33)

For any β > 0 the crossing of the real roots σ at M = M+
0 unfolds into two hyperbolic

branches of the real roots

β

√
tanh κ

κ

[1 − (tanh κ)2]
4Mw

= 1
4

(
M − Mw −

√
tanh κ

κ

)2

−
(

Re σ − Mw + M
2

+ 1
2

√
tanh κ

κ

)2

, Im σ = 0, (3.34a,b)

that are connected to the ‘bubble’ of complex eigenvalues with the real parts Re σ =
1
2(M + Mw − √

(tanh κ)/κ) and with the imaginary parts that form an ellipse in the
(M, Im σ)-plane

(Im σ)2 + 1
4

(
M − Mw −

√
tanh κ

κ

)2

= β

√
tanh κ

κ

[1 − (tanh κ)2]
4Mw

, (3.35)

see figure 3. Equating to zero the discriminant of the quadratic in σ in equation (3.33), we
arrive at the following quadratic approximation to the neutral stability curve at the crossing
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FIGURE 3. Real and imaginary parts of the roots of the dispersion relation for Mw = 1, κ = 1
and β = 0.1: (red) (3.15) and (blue, dashed) their approximations by (3.33) and (3.37) near the
crossing points that exist at β = 0, M = M±

0 , σ = σ0. Notice an avoided crossing above the line
Re(σ ) = M and the bubble of instability below this line.

point M = M+
0

β = Mw

(
M − Mw − √

(tanh κ)/κ
)2

(1 − (tanh κ)2)
√

(tanh κ)/κ
. (3.36)

The bubble of instability (3.35) corresponds to the inner points of the instability domain
bounded by (3.36).

Using the same methodology to approximate the avoided crossing close to M = M−
0 ,

σ = σ0 and β = β0 by (3.31), we obtain

(σ − Mw)

[
σ − M −

√
tanh κ

κ

]
= −β

√
tanh κ

κ

(tanh κ)2 − 1
4Mw

. (3.37)

Separating real and imaginary parts of σ in (3.37) similarly to how it has been done in the
previous case, one can see that the bubble of instability does not originate for β > 0 in the
unfolding of the crossing at M = M−

0 , see figure 3.
In figure 4 we show that the exact neutral stability boundaries obtained from equating

the discriminant of the fourth-order polynomial (3.30) in σ to zero and their approximation
(3.36) calculated at the crossing point at M = M+

0 are in a very good agreement.
It is instructive to change the point of view and to look at the critical values of parameters

as functions of the Mach number Mw of elastic waves in the membrane. In figure 5 we
present stability maps of the dispersion equation (3.30) given by its discriminant in the
(Mw, β)-plane for the fixed value of M = M0 = 2 and increasing values of κ . We see
that for all κ the instability is possible only in the interval |Mw| < M0 = 2, which agrees
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FIGURE 4. Stability maps of the dispersion equation (3.30) given by its discriminant for
(a) Mw = 1 and κ = 1, (b) Mw = 1 and β = 0.1, (c) Mw = 1 and M = 1.6 and (d) β = 0.5 and
κ = 1. The regions of real phase speed σ are shown in white (stability) and those of the complex
σ (temporal instability) in blue. The red dotted curve is the approximation (3.36). Notice the
absence of instabilities for Mw > M in panel (d).

with figure 4. For β = 0, the instability domain touches the Mw-axis at the points Mw =
M0 − √

(tanh κ)/κ and Mw = −M0 + √
(tanh κ)/κ . In the limit κ → 0, the touching

occurs at Mw = M0 − 1 = 1 and Mw = −M0 + 1 = −1.
A qualitative change happens when κ ≥ κ0 where κ0 > 0 is uniquely determined by

M0 > 0 from the equation

κ0 tanh κ0 = 1
M2

0
. (3.38)

For instance, M0 = 2 yields κ0 ≈ 0.5218134478. At κ = κ0 a new, isolated, domain of
instability originates that touches the Mw-axis at β = 0 and grows when κ is further
increased, figure 5. At some value of κ the two domains touch each other and then
form a unified domain. At κ → ∞ the central part of the unified domain dominates
over its side parts corresponding to the instability found by Nemtsov in the shallow water
approximation when κ → 0 and the coupling β is weak, figure 5.

To understand the origin of the new instability, we plot the real and imaginary values
of σ as functions of Mw in figure 6 for a given M = M0 = 2. The central panel of figure 6
corresponding to β = 0 and κ = κ0 shows four straight lines intersecting at five points,
including the origin. The upper horizontal line corresponds to the fast surface gravity wave
with σ = M0 + √

(tanh κ0)/κ0 ≈ 3, whereas the lower horizontal line to the slow surface
gravity wave (Nemtsov 1985) with σ = M0 − √

(tanh κ0)/κ0 ≈ 1. The two inclined lines
correspond to the forward and backward elastic waves in the membrane with σ = ±Mw.
When β and κ depart respectively from zero and κ0, all the five crossings unfold either into
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FIGURE 5. Stability maps of the dispersion equation (3.30) given by its discriminant for
M = M0 = 2 and: (a) κ = 0.5, (b) κ = 0.55, (c) κ = 0.58, (d) κ = 0.8, (e) κ = 1.5, ( f ) κ = 3.
The regions of real phase speed σ are shown in white (stability) and those of the complex σ

(temporal instability) in blue. The black dotted curve is the approximation (3.36) and the solid
red ellipse is the conical approximation (3.43). When κ → ∞, the central part of the instability
domain approximated by (3.43) dominates over the side parts of the domain. Notice the absence
of instabilities for Mw > M0.

avoided crossings (as elastic and fast surface gravity waves) or into bubbles of instability
(as elastic and slow surface gravity waves) resulting in the high-frequency flutter due to
radiation of long surface gravity waves. For β > 0 the crossing at the origin transforms
into an avoided crossing at κ < κ0 or into the bubble of instability at κ > κ0, which yields
low-frequency flutter at short wavelengths κ .

Figure 7(a) allows us to track the evolution of the flutter domains as κ varies from zero
to infinity at M0 = 2 and β = 0.03. Nemtsov’s radiation-induced flutter domain is the
widest in the shallow water limit and evolves along the curves (shown as black solid lines
in figure 7b)

(M0 ± Mw)2 = tanh κ

κ
, (3.39)

to which the Nemtsov domains degenerate at β = 0. Note that the Nemtsov flutter domain
is perfectly approximated by formula (3.36) obtained from the unfolding of the eigenvalue
crossing corresponding to the slow surface gravity wave and the elastic wave (dotted lines
in figure 7a).

To understand the central instability domain shown in figure 7(a) for a given β we plot
it in the (Mw, κ, β)-space in figure 7(b), given M = M0. One can see that the domain is
symmetric with respect to the plane Mw = 0 and has a pronounced conical singularity
at κ = κ0 determined by (3.38) when β = 0 and Mw = 0. Equation (3.38) follows from
the discriminant of the dispersion equation (3.30) at β = 0 and Mw = 0. The conical
singularity of the stability boundary therefore exactly corresponds to the crossing of the
eigenvalue curves at the origin in figure 6(b). Usually, the conical singularity of the
stability boundary is associated with a double semi-simple eigenvalue with two linearly
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FIGURE 6. Real (upper panels) and imaginary (lower panels) parts of the roots of the dispersion
equation (3.30) for M = M0 = 2 and: (a,d) β = 0.05 and κ = κ0 − 0.1, (b,e) β = 0 and κ =
κ0 ≈ 0.5218134478, (c, f ) β = 0.05 and κ = κ0 + 0.3. Notice that the bubbles of instability
develop only for Re(σ ) < M0 = 2.
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FIGURE 7. (a) Stability map of the dispersion equation (3.30) given by its discriminant for
M = M0 = 2 and β = 0.03. The regions of real phase speed σ are shown in white (stability)
and those of the complex σ (temporal instability) in blue. The black dotted curves correspond
to the approximation (3.36) and the solid red line is the conical approximation (3.43). When
β = 0, the blue instability domains degenerate (central) to the ray κ ≥ κ0 ≈ 0.5218134478 and
(sides) to the curves (3.39) shown as solid black lines. (b) Stability boundary with the conical
singularity at κ = κ0, β = 0 and Mw = 0, according to (blue, internal surface) the discriminant
of the dispersion equation (3.30) and (red, external surface) to the approximation of the cone
(3.43).

independent eigenvectors (Kirillov & Seyranian 2004; Guenther & Kirillov 2006; Kirillov
2009, 2010, 2013; Kirillov, Guenther & Stefani 2009).

For this reason, we apply the perturbation theory of double eigenvalues presented
in appendix A to the double zero eigenvalue σ = σ0 = 0 at the crossing shown in
figure 6(b) and corresponding to the values of parameters β = β0 = 0, κ = κ0, M = M0,
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Mw = Mw,0 = 0. A natural extension of the approximation formula (A 18) to the case of
four parameters β, κ , Mw and M yields

(Δσ)2 1
2
∂2

σ D + Δσ
(
∂2

σβDΔβ + ∂2
σκDΔκ + ∂2

σMDΔM + ∂2
σMw

DΔMw
)+ ∂2

βκDΔβΔκ

+ 1
2

[
∂2

βD(Δβ)2 + ∂2
κ D(Δκ)2 + ∂2

MD(ΔM)2 + ∂2
Mw

D(ΔMw)2]+ ∂2
MκDΔMΔκ

+ ∂2
MwκDΔMwΔκ + ∂2

βMDΔβΔM + ∂2
βMw

DΔβΔMw + ∂2
βMDΔMwΔM

+ ∂βDΔβ + ∂κDΔκ + ∂MDΔM + ∂Mw DΔMw = 0. (3.40)

Computing the corresponding partial derivatives of the left part of the dispersion
equation (3.30), and evaluating them at β = β0 = 0, κ = κ0, M = M0, Mw = Mw,0 = 0,
where M0 and κ0 are related by (3.38), we find that the only non-zero derivatives are

∂2
σ D = −∂2

Mw
D = 2κ0M2

0 − 2
κ0M2

0
, ∂2

MβD = −∂2
σβD = 2κ0M0,

∂2
κβD = M4

0κ
2
0 + M2

0 − 1.

⎫⎪⎬⎪⎭ (3.41)

Taking this into account in (3.40), we find a simple approximation describing the unfolding
of the double zero eigenvalue

(M4
0κ

2
0 − 1)(σ 2 − M2

w) − 2κ2
0 M3

0σβ + κ0M2
0(M

4
0κ

2
0 + M2

0 − 1)(κ − κ0)β

+ 2κ2
0 M3

0(M − M0)β = 0. (3.42)

Let us further assume that M = M0 is fixed. Then the last term in (3.42) vanishes, and
the discriminant of the resulting quadratic polynomial in σ produces the equation of a
cone with the apex at κ = κ0, Mw = 0 and β = 0

M6
0κ

4
0 β

2 − M2
0κ0(M4

0κ
2
0 + M2

0 − 1)(M4
0κ

2
0 − 1)(κ − κ0)β + M2

w(M4
0κ

2
0 − 1)2 = 0. (3.43)

The cone (3.43) is shown in red in figure 7(b). With β = 0.03, M0 = 2 and κ0 computed by
means of (3.38), the approximation (3.43) fits the boundary of the exact instability domain
with remarkable precision, as is evident in figure 7(a).

It is easy to see that in the plane Mw = 0 the cone (3.43) defines the two lines

β = (M4
0κ

2
0 − 1)(M4

0κ
2
0 + M2

0 − 1)

M4
0κ

3
0

(κ − κ0), β = 0, (3.44)

that approximate the instability domain near κ = κ0, see figure 8(b). As soon as Mw
deviates from zero, the cone (3.43) again provides a very good fit to the actual stability
boundary, figure 8(c). In the plane

β = (M4
0κ

2
0 − 1)(M4

0κ
2
0 + M2

0 − 1)

2M4
0κ

3
0

(κ − κ0), (3.45)

the cross-section of the cone (3.43) is described by the two lines

κ = κ0 ± Mw
2κ0M0

M4
0κ

2
0 + M2

0 − 1
, (3.46)

that constitute a linear approximation to the stability boundary shown in figure 8(a).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.533


Membrane flutter due to radiation of surface gravity waves 901 A4-17

κ

κκMw

β β

0.53

0.55

0.57

0.59

00.20.10–0.1–0.2 1.00.80.60.40.2 1.00.80.60.40.2

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0(b)(a) (c)

FIGURE 8. For M = M0 = 2 (a) cross-section of the instability domain with the conical
singularity shown in figure 7(b) in the plane (3.45). The regions of real phase speed σ are
shown in white (stability) and those of the complex σ (temporal instability) in blue. The red
lines crossing at the apex of the cone at κ = κ0 ≈ 0.5218134478 are linear approximations given
by (3.46). (b) Cross-section in the plane Mw = 0 of the instability domain and (red line) its
linear approximation (3.44) at the conical point κ = κ0. The black dotted line is given by (3.45).
(c) Similar cross-section in the plane Mw = 0.1 where the red curve is the approximation (3.43).

3.1.3. Wave energy of the Nemtsov system for membrane of infinite chord length
Let us use physical considerations to derive the expression for the averaged over the

wave period energy of the Nemtsov system with the membrane of infinite chord length, by
combining the approaches of the works by Maissa et al. (2016) and Schulkes et al. (1987).

In the linear wave theory, the energy is a function of the squared wave amplitude (Maissa
et al. 2016). Therefore, the total energy per surface area of the membrane resulting both
from the wave velocity of the structure and the elastic energy due to its tension is

Em = Km + Pm = 1
2
(Re[∂τ ξ(x, τ )])2 + 1

2
M2

w(Re[∂xξ(x, τ )])2, (3.47)

where Re stands for the real part of the vibration amplitude that is complex valued because
of the assumed plane wave solution

[φ(x, z, τ ), η(x, τ ), ξ(x, τ )] ∼ [φ̂(z), η̂, ξ̂ ]ei(κx−ωτ). (3.48)

Recall that φ̂(z) is determined by the expression (3.4) with the coefficients (3.11) and η̂, ξ̂
are, respectively, displacement amplitudes of the free surface and the membrane.

The energy of the fluid depends on whether we assume a vacuum below the membrane
(Nemtsov 1985) or a quiescent medium of the same density as the fluid above the
membrane and with a pressure equal to the pressure of the unperturbed fluid (Vedeneev
2004, 2016). The gravitational potential energy of the free surface is the only term
contributing to the total potential energy of the fluid in the latter context. Therefore,

Pf = 1
2
α(Re[η(x, τ )])2. (3.49)

The kinetic energy of the flow per unit area is determined by the velocity field u =
∇φ + Mex , where u = v/

√
gH, that needs to be directly integrated within the limits given
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by the surface of the membrane and the free surface of the fluid,

Kf = 1
2
α

∫ Re η

Re ξ

||Re(u)||2 dz = 1
2
α

∫ Re η

Re ξ

[
(Re[∇φ])2 + 2MRe[∂xφ] + M2] dz

= 1
2
α

∫ Re η

Re ξ

[
(Re[∂xφ])2 + (Re[∂zφ])2] dz

+ αM
∫ Re η

Re ξ

[
Re[∂xφ] + M

2

]
dz. (3.50)

From assumption (3.48) and the explicit form of the complex amplitude φ̂(z) determined
by (3.4) with the coefficients (3.11), it follows that

Re[∂xφ] = iκφ̂(z) cos (κx − ωτ), Re[∂zφ] = i∂zφ̂(z) sin (κx − ωτ),

Re ξ = ξ̂ cos (κx − ωτ), Re η = η̂ cos (κx − ωτ).

}
(3.51)

Taking into account the expressions (3.51) in (3.50), we find∫ Re η

Re ξ

(Re[∂xφ])2 dz = −κ2 cos2 (κx − ωτ)

∫ Re η

Re ξ

φ̂(z)2 dz. (3.52)

Similarly, with the help of integration by parts, the Laplace equation (3.3), and
expressions (3.51), we obtain∫ Re η

Re ξ

(Re[∂zφ])2 dz = − sin2 (κx − ωτ)

{
[φ̂∂zφ̂]Re η

Re ξ −
∫ Re η

Re ξ

φ̂(∂2
z φ̂) dz

}
= − sin2 (κx − ωτ)

{
[φ̂∂zφ̂]Re η

Re ξ − κ2
∫ Re η

Re ξ

φ̂(z)2 dz
}

. (3.53)

Finally, following Maissa et al. (2016), we evaluate the last integral term in (3.50) with
the help of the Lagrange mean value theorem, which is justified by the assumption that
η and ξ are infinitesimally small perturbations of the surface boundaries ∂Ω0 and ∂Ω1.
Performing this procedure, and then taking into account expressions (3.51), we obtain∫ Re η

Re ξ

[
Re[∂xφ] + M

2

]
dz

=
∫ 0

Re ξ

Re[∂xφ] dz +
∫ 1

0
Re[∂xφ] dz +

∫ Re η

1
Re[∂xφ] dz + 1

2

∫ Re η

Re ξ

M dz

= Re ηRe[∂xφ]|z=1 − Re ξRe[∂xφ]|z=0 +
∫ 1

0
Re[∂xφ] dz + M

2
Re(η − ξ)

= iκ[η̂φ̂(1) − ξ̂ φ̂(0)] cos2 (κx − ωτ) +
[

iκ
∫ 1

0
φ̂(z) dz + M

2
(η̂ − ξ̂ )

]
cos (κx − ωτ).

(3.54)

Note that the right-hand sides in the expressions (3.52)–(3.54) are T-periodic functions of
time, where T = 2π/ω. Averaging these expressions over the wave period T according to
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the rule

〈 f (τ )〉 = 1
T

∫ T

0
f (τ ) dτ, (3.55)

we deduce the mean kinetic energy of the fluid

〈Kf 〉 = 1
4
α{−[φ̂∂zφ̂]∂Ω0

∂Ω1
+ 2iκM[η̂φ̂(1) − ξ̂ φ̂(0)]}. (3.56)

The term φ̂∂zφ̂ in (3.56) is evaluated with the help of the Bernoulli principle (2.11) and
the free surface kinematic condition (2.10) at ∂Ω0, and the wave equation (2.22e) with the
impermeability condition (2.22c) at ∂Ω1. This yields, respectively,

φ̂|∂Ω0 = η̂

i(ω − κM)
, φ̂|∂Ω1 = ω2 − κ2M2

w

iα(ω − κM)
ξ̂ ,

∂zφ̂|∂Ω0 = −i(ω − κM)η̂, ∂zφ̂|∂Ω1 = −i(ω − κM)ξ̂ .

⎫⎪⎬⎪⎭ (3.57)

Substituting expressions (3.57) into (3.56) we obtain the final expression for the mean
kinetic energy of the fluid

〈Kf 〉 = 1
4
{αη̂2 − (ω2 − κ2M2

w)ξ̂ 2 + 2iακM[η̂φ̂(1) − ξ̂ φ̂(0)]}. (3.58)

The other energies of the system, after taking into account (3.51) and time averaging
(3.55), become

〈Pm〉 = 1
4
κ2M2

wξ̂ 2, 〈Km〉 = 1
4
ω2ξ̂ 2, 〈Pf 〉 = 1

4
αη̂2. (3.59a–c)

Notice that in the absence of the background flow (M = 0) the system respects the
equipartition of energy

〈Pf 〉 + 〈Pm〉 = 〈Kf 〉 + 〈Km〉, (3.60)

in accordance with the virial theorem (Landau & Lifschitz 1987), because the flow is
irrotational and thus derived from a fluid potential (Schulkes et al. 1987).

After summing up all the different terms given by (3.58) and (3.59a–c) we obtain the
total averaged energy

〈E〉 = 1
2

{
κ2M2

wξ̂ 2 + αη̂2 + iακM
[
η̂φ̂(1) − ξ̂ φ̂(0)

]}
, (3.61)

thus providing an extension to the case when the velocity field contains a background flow
(M /= 0).

A more suitable expression for the mean total energy can be obtained by expressing the
different amplitudes of the system in (3.61) in terms of a unique one, for instance, ξ̂ . From
the kinematic condition (2.10) on the free surface with the plane wave solution (3.48) and
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the coefficients (3.11), it is straightforward to express the surface amplitude η̂ as

η̂ = iκ
ω − κM

[
Aeκ − Be−κ

] = (ω − κM)2ξ̂

(ω − κM)2 cosh κ − κ sinh κ
. (3.62)

Substituting (3.62) into (3.61) and using the complex amplitude φ̂(z) recovered from the
boundary value problem (3.16), we find

〈E〉 = ξ̂ 2

2

{
κ2M2

w + α
(ω − κM)4(1 − (tanh κ)2)[
(ω − κM)2 − κ tanh κ

]2
+αM(ω − κM)

[
(ω − κM)4 + κ2

]
tanh κ − 2κ(ω − κM)2(tanh κ)2[

(ω − κM)2 − κ tanh κ)
]2

}
. (3.63)

Next, expressing the term κ2M2
w by means of the dispersion relation (3.20) and

substituting the result into (3.63) yields a more compact formula for the total energy

〈E〉 = 1
4
ω

{
2ω + α

κ

2(ω − κM) tanh κ[(ω − κM)4 + κ2 − 2κ(ω − κM)2 tanh κ]
[(ω − κM)2 − κ tanh κ]2

}
ξ̂ 2.

(3.64)
Notice that the term in the braces in (3.64) is nothing else but the partial derivative

∂D/∂ω of the dispersion relation (3.20) written in the following equivalent form

D(ω, κ) := Dm(ω, κ) + α

κ

(ω − κM)2[(ω − κM)2 tanh κ − κ]
Df (ω, κ)

= 0, (3.65)

where Dm = ω2 − κ2M2
w and Df = [(ω − κM)2 − κ tanh κ] stand for the dispersion

relation of, respectively, the free membrane and the free surface flow with a rigid boundary
at the bottom. This proves that our total energy per unit area, averaged over the wave
period, possesses the following simple representation in terms of the dispersion relation

〈E〉 = 1
4
ω

∂D
∂ω

ξ̂ 2. (3.66)

The representation (3.66) can be found, e.g. in Cairns (1979), and can be derived
in the frame of the general Lagrangian variational approach (Ostrovskii, Rybak &
Tsimring 1986; Whitham 1999), see also the recent work by Fukumoto, Hirota &
Mie (2014) for historical notes and application to stability of vortices. Notice that
according to (3.66) the energy vanishes at the points where ω = 0 or ∂D/∂ω = 0, the
latter condition corresponding to the existence of multiple roots of the dispersion relation.
Correspondingly, the ratio 〈E〉/ω, which is the averaged wave action 〈A〉 (Whitham 1999;
Zhang et al. 2016), vanishes only at the locations of the multiple eigenvalues, cf. figures 2
and 9. In the latter figure as well as in figure 10 we show several computations of the
averaged wave energy and wave action over the fluid Mach number M, and, respectively,
the membrane Mach number Mw, where ω is calculated with the use of the dispersion
relation (3.20).
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FIGURE 9. The averaged wave energy (a–d) 〈E〉 given by the expression (3.64) and the action
(e–h) 〈A〉 = 〈E〉/ω over the Mach number M evaluated for Mw = 1, κ = 1, ξ̂ = 0.01 and:
(a,e) α = 0.1, (b, f ) α = 0.5, (c,g) α = 1 and (d,h) α = 5. Positive (respectively negative)
energy/action is represented in red (respectively green).
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FIGURE 10. The averaged wave energy (upper panels) 〈E〉 given by the expression (3.64) and
the action (lower panels) 〈A〉 = 〈E〉/ω over the Mach number Mw for ξ̂ = 0.01, M = M0 = 2,
and (a,d) β = 0.05 and κ = κ0 − 0.1, (b,e) β = 10−3 and κ = κ0 ≈ 0.5218134478, (c, f )
β = 0.05 and κ = κ0 + 0.3.

4. Discussion

Comparing the eigenvalue plots of figures 2 and 6 with the averaged wave energy and
wave action of each branch that are shown in figures 9 and 10, respectively, we notice that
flutter instability is necessarily accompanied with the interaction of waves of opposite sign
of energy/action. In contrast to the action, the energy changes sign also at the points where
the phase velocity σ changes sign, quite in accordance with (3.66).

Looking now at the roots (3.28a,b) of the decoupled dispersion equation (3.26), we
conclude that the elastic waves σ±

1 = ±Mw propagating in the membrane always have
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positive energy whereas among the surface gravity waves σ±
2 = M ± √

(tanh κ)/κ it is
the energy of the slow wave σ−

2 that becomes negative for M > 0 as soon as M >√
(tanh κ)/κ . Therefore at the crossing (3.29) corresponding to M+

0 = Mw + √
(tanh κ)/κ

the positive energy/action elastic wave meets the slow surface gravity wave that carries
negative energy/action (Nemtsov 1985).

With β increasing from zero, the crossing unfolds causing the eigenvalue branches to
merge on the interval bounded by the points where ∂ωD = 0. At these exceptional points
(Kirillov 2013) both the energy and the action change sign, see figures 9 and 10. On the
interval the roots are complex and form the bubble of instability, see figures 2 and 6.

Since the fast surface gravity wave carries positive energy, one needs to add energy to
the flow in order to excite this wave on the flow. In contrast, in order for the slow surface
gravity wave carrying negative energy to build up on the flow, the energy must be extracted
from the flow (Nezlin 1976) via some mechanism for dissipation of its energy. In the
Nemtsov problem, such a mechanism is the energy transfer from the slow surface gravity
wave to an elastic wave associated with the membrane, which is a stationary medium and
therefore has positive energy (Nezlin 1976). One can say that this transferred energy yields
flutter of the membrane due to emission of the slow surface gravity wave carrying negative
energy.

In figures 2 and 6 as well as in figures 9 and 10 we observe that the flutter instability of
the membrane occurs only if the velocity of the flow is higher than the phase velocity
of the oscillations on the surface of the flow, σ < M, i.e. the flow moves faster than
the waves it can excite (Nezlin 1976; Nemtsov & Eidman 1987). The condition ω = Mκ

or σ = M is known as the Cerenkov condition for emission of radiation by a moving
source (Ginzburg & Frank 1947; Nezlin 1976; Ginzburg 1996; Bekenstein & Schiffer
1998; Carusotto & Rousseaux 2013). Substituted into a dispersion relation, the Cerenkov
condition transforms the former into an expression defining a surface in the space of
wavenumbers that determines the wake pattern behind the source (Schulkes et al. 1987;
Carusotto & Rousseaux 2013). For the supercritical velocities M > σ the surface in
the space of wavenumbers develops a conical singularity known as the Cerenkov cone
(Nemtsov 1985; Carusotto & Rousseaux 2013) with the angular aperture

2 arccos
( σ

M

)
. (4.1)

The anomalous Doppler effect (ADE) is the change in the sign of the field frequency
radiated into the Cerenkov cone as compared with the field radiated outside this cone
(Nezlin 1976; Gaponov-Grekhov et al. 1983; Nemtsov 1985; Abramovich et al. 1986;
Carusotto & Rousseaux 2013). It is exactly the slow surface gravity wave that satisfies
this condition

σ−
2 − M = −

√
tanh κ

κ
< 0. (4.2)

Hence, for the one-dimensional or, more precisely, plane two-dimensional waves, both
the negative energy waves and the ADE correspond simply to waves with phase velocity
lower than the flow velocity and wave vector pointing in the same direction as the flow
(Nemtsov 1985; Ostrovskii et al. 1986). In our case, the radiated slow gravity wave
increases the energy of oscillations of the membrane at the expense of the energy of the
flow that supports this wave.

Finally, we plot the dispersion curves ω(κ) in figure 11, which show that the slow surface
gravity wave branch and the membrane branch interact under the line Re(ω) = κM, if
κ > 0. Substituting the Cerenkov condition in the dispersion relation (3.20) we reduce
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FIGURE 11. Dispersion curves ((red) real and (blue) imaginary parts of the roots ω of the
dispersion relation (3.20)) for M = 2, α ≈ 0.0036725648 and (a,d) Mw = 0, (b,e) Mw = 0.09,
(c, f ) Mw = 0.0967, (g,j) Mw = 0.1, (h,k) Mw = 0.5, (i,l) Mw = 1. Vertical dashed lines in
the panels (a,d) correspond to κ = κ0 ≈ 0.5218134478 and mark the onset of instability
corresponding to the central instability zone in figure 7(a) and the conical instability zone in
figure 7(b).

it to (M2
w − M2) tanh κ = 0, thus providing a rationale for the absence of instabilities for

M2
w > M2 that is evident in all our stability diagrams.

5. Conclusion

Through the revival of a classical hydrodynamical model performed in this work, we
have been able to extend the stability analysis and to enhance knowledge of the underlying
physics by making connections with the fundamental concepts such as negative energy
waves and the ADE, supported by advanced mathematical tools.
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Our continuation of Nemtsov’s investigation of the radiation-induced flutter of a
membrane in a uniform flow with the new derivation of the dispersion relation for a fluid
layer of arbitrary depth and membrane of infinite chord length has led to a significant
improvement in the computation of stability diagrams without any limitation on the range
of the system parameters.

An exhaustive stability analysis has been performed using the original perturbation
theory of multiple roots of the dispersion relation to compare with the exact stability
domains, and both computations are proven to be in excellent agreement. More precisely,
the crossings and avoided crossings of the dispersion curves are very well approximated by
the simplified expressions for the phase speed of the membrane and fluid modes derived
with the perturbation approach.

After computing the discriminant of the full dispersion relation, we have identified a new
instability domain arising from a conical singularity in the parameter space that was not
present in the early study of Nemtsov. This new domain is associated with a low-frequency
flutter for short wavelengths and corresponds to the case when the velocity of propagation
of elastic waves in the membrane is much smaller than the velocity of the flow.

Moreover, following the procedures used in previous studies on simplified
hydrodynamical systems to calculate the averaged wave energy and after developing the
method further to take into account the coupling between the free surface of the flow
and the elastic membrane on the bottom, we have obtained an elegant and applicable
expression for the total averaged energy. We have verified that, in the absence of the
background flow, the system respects the equipartition of energy in accordance with the
virial theorem, thus confirming that the existence of the negative energy waves can only
be possible when the fluid is in motion.

We have shown that the formula for the total averaged energy recovered in our work by
means of the direct integration of different physical fields is expressed via the derivative
of the dispersion relation with respect to the frequency of oscillations and reduces exactly
to the form described by Cairns (1979).

The ADE is a direct consequence of the relative motion of an oscillator in a medium
and more precisely, it occurs when the internal energy of the system increases due to the
emission of negative energy waves (NEW). In our context, while the system is composed
of a fluid layer and a membrane, such a phenomenon has been proved by Nemtsov to exist
only when the conditions of phase synchronism and NEW emission are satisfied. The
criterion for the phase synchronism in the system is easily identified in the computations
of the dispersion curves as the crossings of the different branches that lead to the onset
of positive growth rate and therefore to temporal instability. The latter phenomenon is a
natural consequence of the highly excited state of energy that the system transits to due to
the dominance of NEW over the waves carrying positive energy. Indeed, NEW emission is
known as a process that increases the total energy of an oscillatory system while radiating
energy away from the oscillator and, only when this gain in internal energy exceeds the
losses from the contribution of positive energy modes, the total energy of the system starts
growing in amplitude. Hence, it requires to have waves carrying energy of opposite signs
that interact for the instability to develop.

Our expressions for the action and energy of the Nemtsov system demonstrated as
expected the collision of waves carrying positive and negative energy as the onset for the
radiative instability and the flutter of the membrane. Such a phenomenon is well known in
the community of dynamical systems, but in this context, it is associated with the emission
of NEW in the region of ADE. Hence, in addition to improving the stability analysis of the
Nemtsov system and computing the averaged wave energy, our study provides a further,
more detailed, examination of the ADE in hydrodynamics. Despite our problem being
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restricted to the study of planar waves, with the latter being emitted only in the horizontal
direction, it is still sufficient for exploring the connection between the ADE and flutter
theory.

An extension of this work to the case of a membrane with a chord of finite size, as
described by the system of (2.22), is a promising necessary next step requiring asymptotic
methods for the global stability analysis and numerical computations that we leave for
future work.
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Appendix A. Sensitivity analysis of dispersion equations

In contrast to other works on frequency coalescence, e.g. Triantafyllou & Triantafyllou
(1991), we adapt a more systematic multiparameter sensitivity analysis that can be found,
e.g. in Kirillov & Seyranian (2002), Kirillov & Seyranian (2004), Kirillov (2007a),
Kirillov (2007b), Kirillov (2009), Kirillov et al. (2009), Kirillov (2010) and Kirillov
(2013).

Let us consider the dispersion equation

D(ω, p, q) = 0, (A 1)

where D is a smooth function of scalar arguments ω, p and q. Assume that D(ω) is a
polynomial of degree n in ω.

A.1. Sensitivity of simple roots
Let at p = p0 and q = q0 (A 1) have a simple root ω0 such that

D0 := D(ω0, p0, q0) = 0, (A 2)

where we use the symbol := to indicate a definition.
Following Kirillov & Seyranian (2002), Kirillov & Seyranian (2004), Kirillov (2007a),

Kirillov (2007b), Kirillov (2010) and Kirillov (2013), we assume that p = p(ε) and q =
q(ε). For |ε| sufficiently small we can represent these functions as Taylor series

p(ε) = p0 + ε
dp
dε

+ ε2

2
d2p
dε2

+ o(ε2),

q(ε) = q0 + ε
dq
dε

+ ε2

2
d2q
dε2

+ o(ε2),

⎫⎪⎪⎬⎪⎪⎭ (A 3)

with the derivatives evaluated at ε = 0, and p0 := p(0) and q0 := q(0). Then, ω = ω(ε) is
also a root of (A 1), i.e. it satisfies the equation

Dε := D(ω(ε), p(ε), q(ε)) = 0. (A 4)
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Differentiating (A 4), we find

d
dε

Dε = ∂ωD
dω

dε
+ ∂pD

dp
dε

+ ∂qD
dq
dε

= 0, (A 5)

where the partial derivatives are evaluated at ω = ω0, q = q0, p = p0.
Denoting Δω = ε(dω/dε) ≈ ω − ω0, Δq = ε(dq/dε) ≈ q − q0 and Δp = ε(dp/dε) ≈

p − p0, we find the expression for the increment of the simple root ω0 of (A 1) when the
parameters depart from the values q0 and p0

Δω = − ∂pD
∂ωD

Δp − ∂qD
∂ωD

Δq + o(|Δp|, |Δq|). (A 6)

A.2. Double root of the dispersion relation: generic case
Let at p = p0 and q = q0 the dispersion equation (A 1) have a double root ω0, which
implies

D0 = 0,

∂ωD0 := ∂ωD(ω0, p0, q0) = 0.

}
(A 7)

Assume that the perturbation of the parameters (A 3) causes splitting of the double root ω0
which generically is described by the Newton–Puiseux series (Kirillov & Seyranian 2002,
2004; Kirillov 2007a,b, 2010, 2013)

ω(ε) = ω0 + ω1ε
1/2 + ω2ε + ω3ε

3/2 + ω4ε
2 + o(ε2). (A 8)

Expanding Dε as

Dε =
n∑

s=0

(ω(ε) − ω0)
s

s!
(∂ s

ωD + ε∂ s
ωD1 + ε2∂ s

ωD2 + o(ε2)), (A 9)

where

D1 := ∂pD
dp
dε

+ ∂qD
dq
dε

,

D2 := 1
2
∂pD

d2p
dε2

+ 1
2
∂qD

d2q
dε2

+ 1
2

(
∂2

p D
d2p
dε2

+ 2∂2
pqD

dp
dε

dq
dε

+ ∂2
q D

d2q
dε2

)
,

⎫⎪⎪⎬⎪⎪⎭ (A 10)

substituting expansion (A 8) into (A 9) and collecting the coefficients at the same powers
of ε, we find

D0 = 0,

ω1∂ωD0 = 0,

D1 + ω2
1

1
2
∂2

ωD + ω2∂ωD0 = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A 11)

Looking for the coefficient ω1 /= 0, we see that the first two equations of (A 11) are satisfied
in view of the fact that ω0 is a double root of the dispersion equation (A 1). Taking this
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into account, the last of (A 11) yields the expression for the coefficient ω1 in the expansion
(A 8)

ω2
1 = −D1

(
1
2
∂2

ωD
)−1

, (A 12)

where all the partial derivatives are calculated at p = p0, q = q0, ω = ω0.
Therefore, if D1 /= 0, the double root ω0 splits under variation of parameters (A 3)

according to the formula

ω = ω0 ±
√

−εD1

(
1
2
∂2

ωD
)−1

+ o(|ε|1/2). (A 13)

In terms of the increments of the parameters, we can re-write (A 13) as

Δω = ±
√

−(∂pDΔp + ∂qDΔq)

(
1
2
∂2

ωD
)−1

+ o(|Δp|1/2, |Δq|1/2). (A 14)

A.3. Double root of the dispersion relation: degenerate case
The case D1 = 0 is degenerate, because the leading term in (A 13) of order ε1/2 vanishes
and the expansion (A 8) is no longer valid, see e.g. Kirillov & Seyranian (2004).
Substituting expansion (A 13) with ω1 = 0 into (A 9) and collecting coefficients of the
same powers of ε, we obtain

D1 + ω2∂ωD0 = 0,

ω3∂ωD0 = 0,

D2 + ω2
2

1
2
∂2

ωD + ω2∂ωD1 + ω4∂ωD0 = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A 15)

Taking into account that ∂ωD0 = 0 since ω0 is the double root and that D1 = 0 due to
our assumption, we conclude that the first two of (A 15) hold automatically. The third one
simplifies as follows:

ω2
2

1
2
∂2

ωD + ω2∂ωD1 + D2 = 0, (A 16)

where all the derivatives are calculated at ω = ω0, p = p0 and q = q0.
Therefore, the degeneracy, D1 = 0, implies that the double root ω0 splits according to

the formula
ω = ω0 + ω2ε + o(ε), (A 17)

where the coefficient ω2 is a root of the polynomial (A 16).
In combination with (A 10) and (A 17) the polynomial (A 16) transforms into

(Δω)2 1
2
∂2

ωD + Δω(∂2
ωpDΔp + ∂2

ωqDΔq) + 1
2

[
∂2

p D(Δp)2 + 2∂2
pqDΔpΔq + ∂2

q D(Δq)2]
+ ∂pDΔp + ∂qDΔq = 0. (A 18)

Extension to the case of more than two parameters is straightforward, see e.g. Kirillov
& Seyranian (2002), Kirillov & Seyranian (2004), Kirillov (2007a), Kirillov (2007b),
Kirillov (2009), Kirillov et al. (2009), Kirillov (2010) and Kirillov (2013).
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