BULL. AUSTRAL. MATH. SOC. VOL. 34 (1986) 119-126. 47B05, 47B10, 47B15, 47B20, 47B47.

ON ZERO-TRACE COMMUTATORS

FUAD KITTANEH

We present some results concerning the trace of certain trace class commutators of operators acting on a separable, complex Hilbert space. It is shown, among other things, that if X is a Hilbert-Schmidt operator and A is an operator such that AX - XA is a trace class operator, then tr(AX - XA) = 0 provided one of the following conditions holds : (a) A is subnormal and $A^*A - AA^*$ is a trace class operator, (b) A is a hyponormal contraction and $1 - AA^*$ is a trace class operator, (c) A^2 is normal and $A^*A - AA^*$ is a trace class operator, (d) A^2 and A^3 are normal. It is also shown that if A is a self - adjoint operator, if f is a function that is analytic on some neighbourhood of the closed disc $\{z : |z| \le ||A||\}$, and if X is a compact operator such that f(A)X - Xf(A) = 0 is a trace class operator, then tr(f(A)X - Xf(A))=0.

An operator means a bounded linear operator on a separable, complex Hilbert space H. Let B(H), K(H), C_2 , and C_1 denote respectively, the algebra of all bounded linear operators acting on H, the class of compact operators, the Hilbert - Schmidt class, and the trace class operators in B(H). It is known that K(H), C_2 and C_1

Received 8 October 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00. 119

are two-sided ideals in $\mathcal{B}(\mathcal{H})$ and that if X and Y are in \mathcal{C}_2 , then $XY \ \epsilon \ \mathcal{C}_1.$

If $T \in C_1$ and $\{e_i\}$ is an orthonormal basis of H, then the trace of T, denoted by $tr \ T = \sum_i (Te_i, e_i)$ is independent of the choice of $\{e_i\}$. If X and Y in B(H) are such that both XY and YX lie in C_1 , then tr(XY) = tr(YX) [7, Corollary 3.8].

If H is finite dimensional, then every commutator, that is, operator of the form AX - XA, has zero trace. In fact by the Shoda -Albert and Muckenhoupt result [2], an operator on a finite dimensional Hilbert space is a commutator if and only if it has trace 0. If, however H is infinite dimensional, and AX - XA is in C_1 , then tr (AX - XA) may not be zero even though A is a normal operator. For example, if U is the unilateral shift operator, if $A = aU + bU^*$ where $|a| = |b| \neq 0$, and if X = U, then $AX - XA = b(1 - UU^*)$ is a rank one operator, hence in C_1 , but tr (AX - XA) = b. But if A is assumed to be diagonalizable, and X is in B(H) such that $AX - XA \in C_1$, then tr (AX - XA) = 0 (just evaluate the trace using the eigenvectors of A). Also if X is required to be compact and A is a self - adjoint operator such that $AX - XA \in C_1$ then tr (AX - XA) = 0, a result which is due to Helton and Howe [3, Lemma 1.3].

In [8], G. Weiss proved that if N is a normal operator, and χ is a Hilbert-Schmidt operator such that $NX - XN \in C_1$, then tr(NX - XN) = 0.

The purpose of this note is to extend the result of Weiss to nonnormal cases, and the result of Helton and Howe to non self-adjoint cases. For other extensions the reader is referred to [4]. In [8] the question as to whether Weiss' theorem remains true under the weaker assumption that $X \in K(H)$ was raised. Namely, if N is a normal operator and Xis a compact operator such that $NX - XN \in C_1$, must tr(NX - XN) = 0? In [9] it was observed that if C_1 possessed the generalized Fuglede property (that is for normal N and $X \in B(H)$, $NX - XN \in C_1$ implies $N^*X - XN^* \in C_1$), then the answer to this question would be yes.

Motivated by the work in [5] we now present the following generalizations of Weiss' result.

THEOREM 1. Let $A \in B(H)$ be subnormal with $A^*A - AA^* \in C_1$. If $X \in C_2$ and $AX - XA \in C_1$, then tr(AX - XA) = 0.

Proof. By assumption there exists a Hilbert space H_1 and there exists a normal operator N on $H \notin H_1$ such that $N = \begin{bmatrix} A & R \\ 0 & A_1 \end{bmatrix}$. Let $Y = \begin{bmatrix} X & 0 \\ 0 & 0 \end{bmatrix}$. Then $Y \in C_2$ as an operator acting on $H \notin H_1$. Now $NY - YN = \begin{bmatrix} AX - XA & -XR \\ 0 & 0 \end{bmatrix}$. N being normal implies that $A^*A - AA^* = RR^* \in C_1$. Thus $R \in C_2$ and so $XR \in C_1$. Hence $NY - YN \in C_1$. Weiss' result now implies that tr(NY - YN) = 0. But tr(NY - YN) = tr(AX - XA). Therefore tr(AX - XA) = 0 as required.

COROLLARY. Let $A \in B(H)$ be a subnormal and rationally cyclic operator. If $X \in C_2$ and $AX - XA \in C_1$, then tr(AX - XA) = 0.

Proof. The conclusion follows from Theorem 1 and the fact that if A is a rationally cyclic hyponormal operator, then $A^*A - AA^* \in C_1$ [1].

If $A \in B(H)$ is a hyponormal contraction, and if $1 - AA^* \in C_1$, then $1 - A^*A \in C_1$. In fact it follows from the hypothesis that $1 - AA^* \ge 0$, $1 - A^*A \ge 0$, and $((1 - A^*A)f, f) \le ((1 - AA^*)f, f)$ for any vector $f \in H$ [5, Lemma 1].

THEOREM 2. Let $A \in B(H)$ be a hyponormal contraction with $1 - AA^* \in C_1$. If $X \in C_2$ and $AX - XA \in C_1$, then tr(AX - XA) = 0.

Proof. Let $U = \begin{bmatrix} A & (1-AA^*)^{\frac{1}{2}} \\ \\ (1-A^*A)^{\frac{1}{2}} & -A^* \end{bmatrix}$ on $H \notin H$. Then U is

unitary [2]. Let
$$Y = \begin{bmatrix} X & 0 \\ 0 & 0 \end{bmatrix}$$
. Then $UY - YU = \begin{bmatrix} AX - XA & -X(1 - AA^*)^{\frac{1}{2}} \\ (1 - A^*A)^{\frac{1}{2}}X & 0 \end{bmatrix}$

Since $1 - AA^* \in C_1$, it follows that $1 - A^*A \in C_1$. Thus both $(1 - AA^*)^{\frac{1}{2}}$ and $(1 - A^*A)^{\frac{1}{2}}$ lie in C_2 . But $X \in C_2$ implies that $(1 - AA^*)^{\frac{1}{2}}X \in C_1$ and $(1 - A^*A)^{\frac{1}{2}}X \in C_1$. Since $AX - XA \in C_1$, it follows that $UY - YU \in C_1$. Now Weiss' result implies that tr(UY - YU) = 0since U is unitary and $Y \in C_2$. But tr(UY - YU) = tr(AX - XA) and so the proof is complete.

THEOREM 3. Let $T \in B(H)$ be such that T^2 is normal and $T^*T - TT^* \in C_1$. If $X \in C_2$ and $TX - XT \in C_1$, then tr(TX - XT = 0. Proof. Since T^2 is normal, it follows by Radjavi's and Rosenthal's structure theorem [6] that $T = \begin{bmatrix} A & 0 & 0 \\ 0 & B & C \\ 0 & 0 & -B \end{bmatrix}$, where A, B are normal operators, $C \ge 0$ and one - to - one, BC = CB, and $\sigma(B)$ is contained in the closed upper half - plane. Now $T^*T - TT^* \in C_1$ implies that $C^2 \in C_1$. Hence $C \in C_2$. Therefore T = N+K, where $N = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & -B \end{bmatrix}$ is normal and $K = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in C_2$. Thus TX - XT = NX - XN + KX - XK. Since KX and XK both lie in C_1 and $TX - XT \in C_1$, it follows that $NX - XN \in C_1$, from which it follows by Weiss' result that tr(NX - XN)=0. Since tr(KX - XK)= 0, it follows that tr(TX - XT) = 0 as required.

THEOREM 4. Let $T \in B(H)$ be such that T^2 and T^3 are normal. If $X \in C_2$ and $TX - XT \in C_1$, then tr(TX - XT) = 0.

Proof. Since
$$T^2$$
 is normal, it follows that $T = \begin{bmatrix} A & 0 & 0 \\ 0 & B & C \\ 0 & 0 & -B \end{bmatrix}$

as in the proof of Theorem 3 above, where A, B are normal operators, $C \ge 0$ and one - to - one and BC = CB.

Now $T^3 = \begin{bmatrix} A^3 & 0 & 0 \\ 0 & B^3 & B^2 C \\ 0 & 0 & -B^3 \end{bmatrix}$. But T^3 being normal implies that $B^{*3}B^3 = B^3B^{*3} + B^{*2}B^2C^2$. Hence $B^{*2}B^2C^2 = 0$. Since C is one - to one, it follows that $B^{*2}B^2 = 0$. Thus $B^2 = 0$ and so B = 0 since it is normal. Therefore $T = \begin{bmatrix} A & 0 & 0 \\ 0 & 0 & C \\ 0 & 0 & 0 \end{bmatrix}$. Let $X = [X_{ij}](i, j = 1, 2, 3)$

be the corresponding matrix representation of X . Then

$$TX - XT = \begin{bmatrix} AX_{11} - X_{11}A & AX_{12} & AX_{13} - X_{12}C \\ CX_{31} - X_{21}A & CX_{32} & CX_{33} - X_{22}C \\ -X_{31}A & 0 & -X_{32}C \end{bmatrix} . \text{ Since } TX - XT \in C_1 \text{ , it}$$

follows that every entry of this matrix is in C_1 . Therefore $tr(TX - XT) = tr(AX_{11} - X_{11}A) + tr(CX_{32}) - tr(X_{32}C)$. Since A is normal and $X_{11} \in C_2$, it follows that $tr(AX_{11} - X_{11}A) = 0$. Now CX_{32} and $X_{32}C$ both lie in C_1 . Thus $tr(CX_{32}) = tr(X_{32}C)$ and so tr(TX - XT) = 0 as required.

Before focusing our attention on the Helton - Howe result, we give the following related result.

THEOREM 5. Let $V \in B(H)$ be an isometry of finite multiplicity. If $X \in K(H)$ and $VX - XV \in C_1$, then tr(VX - XV) = 0.

Proof. By the observation in [9]it is sufficient to show that $V^*X - XV^* \in C_1$. Since $1 - VV^*$ is of finite rank, it follows that $VV^* = 1 + C$ for some finite rank operator C. Now $V^*(VX - XV)V^* \in C_1$. Thus $XV^* - V^*XVV^* \in C_1$ and so $XV^* - V^*X(1 + C) \in C_1$. Therefore $V^*X - XV^* \in C_1$ as required.

Remark. The unilateral shift and unitary operators are important special cases for which Theorem 5 holds.

Our first generalization of the Helton - Howe result can be stated as follows.

THEOREM 6. Let $A \in B(H)$ be self - adjoint. If f = p/q is a rational function with poles off $\sigma(A)$, and $X \in K(H)$ with $S = f(A)X - Xf(A) \in C_{\gamma}$, then tr(q(A)Sq(A)) = 0.

Proof. We consider the following cases. Case (i) If f is constant, then the result holds trivially. Case (ii) If $f(t) = t^n (n \ge 1)$, then $f(A)X - Xf(A) = A(\sum_{k=0}^{n-1} A^{n-1-k} XA^k) - (\sum_{k=0}^{n-1} A^{n-1-k} XA^k) A$

 $= AY - YA \quad \text{for some} \quad Y \ \epsilon \ K(H) \ . \ \text{Hence the result in}$ this case follows from the Helton - Howe lemma.

Case (iii). If f is a polynomial, then the result follows from case (ii) by addition.

Case (iv). If f(t) = p(t)/q(t), where p, q are polynomials and q has no zeros on $\sigma(A)$, then by the spectral mapping theorem it follows that q(A) is invertible. Now $P(A)Xq(A) - q(A)XP(A) = q(A) Sq(A) \in C_1$ and so q(A)Sq(A) = [P(A)(Xq(A)) - (Xq(A))P(A)] - [q(A)(XP(A)) - (XP(A))q(A)]. By case (iii) we obtain that q(A)Sq(A) = (AY - YA) - (AZ - ZA), where Y and Z are compact operators. Hence q(A)Sq(A) = A(Y - Z) - (Y - Z)A, and so tr(q(A)Sq(A)) = 0 by the Helton - Howe lemma.

Notice that the Helton - Howe lemma becomes a special case of Theorem 6 upon taking p(t) = t and q(t) = 1.

We conclude with the following result.

THEOREM 7. Let $A \in B(H)$ be self - adjoint. If f is a function that is analytic on some neighbourhood of the closed disc $\{z : |z| \le ||A||\}$ and $X \in K(H)$ with $T = f(A)X - Xf(A) \in C_1$, then tr T = 0.

Proof. Without loss of generality, we may assume that $||A|| \le 1$ and $||X|| \le 1$. Thus f is analytic on the disc $D = \{z: |z| < 1 + r\}$

125

for some r > 0 . Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be the power series expansion of

f. Let $f_n(z) = \sum_{k=0}^n a_k z^k$. Then $f_n(z) \longrightarrow f(z)$ uniformly on the

closed unit disc and so $f_n(A) \longrightarrow f(A)$. Therefore

$$T = \lim_{\substack{n \to \infty \\ n \to \infty}} f_n(A)X - X \lim_{\substack{n \to \infty \\ n \to \infty}} f_n(A)$$

=
$$\lim_{\substack{n \to \infty \\ n \to \infty}} (f_n(A)X - Xf_n(A))$$

=
$$\lim_{\substack{n \to \infty \\ n \to \infty}} (AX_n - X_nA) \text{, where } \{X_n\} \text{ is a sequence of compact}$$

operators as shown in case (iii) of Theorem 6. In fact it is not hard to see that $X_n = a_1 X + a_2 (AX + XA) + \ldots + a_n (\sum_{k=0}^{n-1} A^{n-k-1} XA^k)$. For n > m

we have

$$\begin{split} &X_n - X_m = a_{m+1} (\sum_{k=0}^m A^{m-k} X A^k) + a_{m+2} (\sum_{k=0}^{m+1} A^{m+1-k} X A^k) + \ldots + a_n (\sum_{k=0}^{n-1} A^{n-k-1} X A^k) \\ &\text{and so} \quad ||X_n - X_m|| \leq (m+1) |a_{m+1}| + (m+2) |a_{m+2}| + \ldots + n |a_n| \\ &\text{is analytic on } D \text{ , it follows that } \sum_{\substack{n=m+1 \\ k=m+1}}^n k |a_k| \longrightarrow 0 \\ &\text{as } n, m \longrightarrow \infty. \end{split}$$
Therefore $\{X_n\}$ is a Cauchy sequence of compact operators, hence it is convergent to some compact operator Y . Now $T = AY - YA$. Since A is self - adjoint and Y is compact and $T \in C_1$, it follows by the Helton

Howe lemma that tr T = 0 as required.

We would like to remark here that f(A) as described in Theorem 7 is normal operator but it need not be self - adjoint.

References

- [1] C. A. Berger and B. I. Shaw, "Self commutators of multicyclic hyponormal operators are always trace class", Bull. Amer. Math. Soc. 79 (1973), 1193 - 1199.
- [2] P. R. Halmos, A Hilbert space problem book, (Springer Verlag, New York, 1982).

- [3] J. Helton and R. Howe, "Traces of commutators of integral operators, Acta Math. 135 (1975), 271 - 305.
- [4] F. Kittaneh, "Inequalities for the Schatten p-norm", Glasgow Math.J. 26 (1985). 141 - 143.
- [5] F. Kittaneh, "On generalized Fuglede Putnam theorems of Hilbert -Schmidt type", Proc. Amer. Math. Soc. 88 (1983), 293 - 298.
- [6] H. Radjavi and P. Rosenthal, "On roots of normal operators", J. Math. Anal. Appl. 34 (1971), 653 - 664.
- [7] B. Simon, Trace ideals and their applications, Cambridge University Press, (1979).
- [8] G. Weiss, "The Fuglede commutativity theorem modulo the Hilbert -Schmidt class and generating functions for matrix operators" I, Trans. Amer. Math. Soc. 246 (1978), 193 - 209.
- [9] G. Weiss, "The Fuglede commutativity theorem modulo operator ideals", Proc. Amer. Math. Soc. 83 (1981), 113 - 118.

Department of Mathematics United Arab Emirates University Al-Ain United Arab Emirates.