# ON ZERO-TRACE COMMUTATORS 

Fuad Kittaneh


#### Abstract

We present some results concerning the trace of certain trace class commutators of operators acting on a separable, complex Hilbert space. It is shown, among other things, that if $X$ is a HilbertSchmidt operator and $A$ is an operator such that $A X-X A$ is a trace class operator, then $\operatorname{tr}(A X-X A)=0$ provided one of the following conditions holds : (a) $A$ is subnormal and $A^{*} A-A A^{*}$ is a trace class operator, (b) $A$ is a hyponormal contraction and $1-A A^{*}$ is a trace class operator, (c) $A^{2}$ is normal and $A^{*} A-A A^{*}$ is a trace class operator, (d) $A^{2}$ and $A^{3}$ are normal. It is also shown that if $A$ is a self - adjoint operator, if $f$ is a function that is analytic on some neighbourhood of the closed $\operatorname{disc}\{z:|z| \leq||A||\}$, and if $X$ is a compact operator such that $f(A) X-X f(A)$ is a trace class operator, then $\operatorname{tr}(f(A) X-X f(A))=0$.

An operator means a bounded linear operator on a separable, complex Hilbert space $H$. Let $B(H), K(H), C_{2}$, and $C_{1}$ denote respectively, the algebra of all bounded linear operators acting on $H$, the class of compact operators, the Hilbert - Schmidt class, and the trace class operators in $B(H)$. It is known that $K(H), C_{2}$ and $C_{1}$


Received 8 October 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$.
are two-sided ideals in $B(H)$ and that if $X$ and $Y$ are in $C_{2}$, then $X Y \in C_{1}$.

If $T \in C_{1}$ and $\left\{e_{i}\right\}$ is an orthonormal basis of $H$, then the trace of $T$, denoted by $\operatorname{tr} T=\sum_{i}\left(T e_{i}, e_{i}\right)$ is independent of the choice of $\left\{e_{i}\right\}$. If $X$ and $Y$ in $B(H)$ are such that both $X Y$ and $Y X$ lie in $C_{1}$, then $\operatorname{tr}(X Y)=\operatorname{tr}(Y X) \quad[7$, Corollary 3.8].

If $H$ is finite dimensional, then every commutator, that is, operator of the form $A X-X A$, has zero trace. In fact by the Shoda Albert and Muckenhoupt result [2], an operator on a finite dimensional Hilbert space is a commutator if and only if it has trace 0 . If, however $H$ is infinite dimensional, and $A X-X A$ is in $C_{1}$, then tr ( $A X-X A$ ) may not be zero even though $A$ is a normal operator. For example, if $U$ is the unilateral shift operator, if $A=a U+b U^{*}$ where $|a|=|b| \neq 0$, and if $X=U$, then $A X-X A=b\left(1-U U^{*}\right)$ is a rank one operator, hence in $C_{1}$, but $\operatorname{tr}(A X-X A)=b$. But if $A$ is assumed to be diagonalizable, and $X$ is in $B(H)$ such that $A X-X A \in C_{1}$, then $\operatorname{tr}(A X-X A)=0$ (just evaluate the trace using the eigenvectors of A). Also if $X$ is required to be compact and $A$ is a self - adjoint operator such that $A X-X A \in C_{1}$ then $\operatorname{tr}(A X-X A)=0$, a result which is due to Helton and Howe [3, Lemma 1.3].

In [8], G. Weiss proved that if $N$ is a normal operator, and $X$ is a Hilbert-Schmidt operator such that $N X-X N \in C_{1}$, then $\operatorname{tr}(N X-X N)$ $=0$.

The purpose of this note is to extend the result of Weiss to nonnormal cases, and the result of Helton and Howe to non self-adjoint cases. For other extensions the reader is refered to [4]. In [8] the question as to whether Weiss' theorem remains true under the weaker assumption that $X \in K(H)$ was raised. Namely, if $N$ is a normal operator and $X$ is a compact operator such that $N X-X N \in C_{1}$, must $\operatorname{tr}(N X-X N)=0$ ? In [9] it was observed that if $C_{1}$ possessed the generalized Fuglede
property (that is for normal $N$ and $X \in B(H), N X-X N \in C_{1}$ implies $N^{*} X-X N^{*} \in C_{1}$ ), then the answer to this question would be yes.

Motivated by the work in [5] we now present the following generalizations of Weiss' result.

THEOREM 1. Let $A \in B(H)$ be subnormal with $A^{*} A-A A^{*} \in C_{1}$. If $X \in C_{2}$ and $A X-X A \in C_{1}$, then $\operatorname{tr}(A X-X A)=0$.

Proof. By assumption there exists a Hilbert space $H_{1}$ and there exists a normal operator $N$ on $H \otimes H_{1}$ such that $N=\left[\begin{array}{ll}A & R \\ 0 & A_{1}\end{array}\right]$. Let $Y=\left[\begin{array}{ll}X & 0 \\ 0 & 0\end{array}\right]$. Then $Y \in C_{2}$ as an operator acting on $H \oplus H_{1}$. Now $N Y-Y N=\left[\begin{array}{cc}A X-X A & -X R \\ 0 & 0\end{array}\right] \cdot N$ being normal implies that $A^{*} A-A A^{*}=R R^{*} \in C_{1}$. Thus $R \in C_{2}$ and so $X R \in C_{1}$. Hence $N Y-Y N \in C_{1}$. Weiss' result now implies that $\operatorname{tr}(N Y-Y N)=0$. But $\operatorname{tr}(N Y-Y N)=\operatorname{tr}(A X-X A)$. Therefore $\operatorname{tr}(A X-X A)=0$ as required.

COROLLARY. Let $A \in B(H)$ be a subnormal and rationally cyclic operator. If $X \in C_{2}$ and $A X-X A \in C_{1}$, then $\operatorname{tr}(A X-X A)=0$.

Proof. The conclusion follows from Theorem 1 and the fact that if $A$ is a rationally cyclic hyponormal operator, then $A^{*} A-A A^{*} \in C_{1}[1]$.

If $A \in B(H)$ is a hyponormal contraction, and if $1-A A^{*} \in C_{1}$, then. $1-A^{*} A \in C_{1}$. In fact it follows from the hypothesis that $1-A A^{*} \geq 0,1-A^{*} A \geq 0$, and $\left(\left(1-A^{*} A\right) f, f\right) \leq\left(\left(1-A A^{*}\right) f, f\right)$ for any vector $f \in H \quad[5$, Lemma 1$]$.

THEOREM 2. Let $A \in B(H)$ be a hyponormal contraction with $1-A A^{*} \in C_{1}$. If $X \in C_{2}$ and $A X-X A \in C_{1}$, then $\operatorname{tr}(A X-X A)=0$.

Proof. Let $U=\left[\begin{array}{lr}A & \left(1-A A^{*}\right)^{\frac{1}{2}-} \\ \left(1-A^{*} A\right)^{\frac{1}{2}} & -A^{*}\end{array}\right]$ on $H \oplus H$. Then $U$ is
unitary [2]. Let $Y=\left[\begin{array}{ll}X & 0 \\ 0 & 0\end{array}\right]$. Then $U Y-Y U=\left[\begin{array}{cc}A X-X A & -X\left(1-A A^{*}\right)^{\frac{1}{2}} \\ \left(1-A^{*} A\right)^{\frac{3}{2}} X & 0\end{array}\right]$ Since $1-A A^{*} \epsilon C_{1}$, it follows that $1-A^{*} A \in C_{1}$. Thus both $\left(1-A A^{*}\right)^{\frac{\pi}{2}}$ and $\left(1-A^{*} A\right)^{\frac{\pi}{2}}$ lie in $C_{2}$. But $X \in C_{2}$ implies that $\left(1-A A^{*}\right)^{\frac{1}{2}} X \in C_{1}$ and $\left(1-A^{*} A\right)^{\frac{3}{2}} X \in C_{1}$. Since $A X-X A \in C_{1}$, it follows that $U Y-Y U \in C_{1}$. Now Weiss' result implies that $\operatorname{tr}(U Y-Y U)=0$ since $U$ is unitary and $Y \in C_{2}$. But $\operatorname{tr}(U Y-Y U)=\operatorname{tr}(A X-X A)$ and so the proof is complete.

THEOREM 3. Let $T \in B(H)$ be such that $T^{2}$ is normal and $T^{*} T-T T^{*} \in C_{1}$. If $X \in C_{2}$ and $T X-X T \in C_{1}$, then $\operatorname{tr}(T X-X T=0$.

Proof. Since $T^{2}$ is normal, it follows by Radjavi's and Rosenthal's structure theorem [6] that $T=\left[\begin{array}{ccc}A & 0 & 0 \\ 0 & B & C \\ 0 & 0 & -B\end{array}\right]$, where $A, B$ are normal operators, $C \geq 0$ and one - to - one, $B C=C B$, and $\sigma(B)$ is contained in the closed upper half - plane. Now $T^{*} T-T T^{*} \in C_{1}$ implies that $C^{2} \in C_{1}$. Hence $C \in C_{2}$. Therefore $T=N+K$, where $N=\left[\begin{array}{ccc}A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & -B\end{array}\right]$ is normal and $K=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & C \\ 0 & 0 & 0\end{array}\right] \in C_{2}$. Thus $T X-X T=N X-X N+K X-X K$. Since $K X$ and $X K$ both lie in $C_{1}$ and $T X-X T \in C_{1}$, it follows that $N X-X N \in C_{1}$, from which it follows by Weiss' result that $\operatorname{tr}(N X-X N)=0$. Since $\operatorname{tr}(K X-X K)=0$, it follows that $\operatorname{tr}(T X-X T)=0$ as required.

THEOREM 4. Let $T \in B(H)$ be such that $T^{2}$ and $T^{3}$ are normal. If $X \in C_{2}$ and $T X-X T \in C_{1}$, then $\operatorname{tr}(T X-X T)=0$.

Proof. Since $T^{2}$ is normal, it follows that $T=\left[\begin{array}{rrr}A & 0 & 0 \\ 0 & B & C \\ 0 & 0 & -B\end{array}\right]$
as in the proof of Theorem 3 above, where $A, B$ are normal operators, $C \geq 0$ and one - to - one and $B C=C B$.
Now $T^{3}=\left[\begin{array}{ccc}A^{3} & 0 & 0 \\ 0 & B^{3} & B^{2} C \\ 0 & 0 & -B^{3}\end{array}\right]$. But $T^{3}$ being normal implies that $B *^{3} B^{3}=B^{3} B *^{3}+B \star^{2} B^{2} C^{2}$. Hence $B \star^{2} B^{2} C^{2}=0$. Since $C$ is one - to one, it follows that $B^{*} B^{2}=0$. Thus $B^{2}=0$ and so $B=0$ since it is normal. Therefore $T=\left[\begin{array}{lll}A & 0 & 0 \\ 0 & 0 & C \\ 0 & 0 & 0\end{array}\right]$. Let $X=\left[X_{i, j}\right](i, j=1,2,3)$
be the corresponding matrix representation of $X$. Then
$T X-X T=\left[\begin{array}{ccc}A X_{11}-X_{11} A & A X_{12} & A X_{13}-X_{12} C \\ C X_{31}-X_{21} A & C X_{32} & C X_{33^{-}} X_{22} C \\ -X_{31} A & 0 & -X_{32} C\end{array}\right]$. Since $T X-X T \in C_{1}$, it follows that every entry of this matrix is in $C_{1}$. Therefore $\operatorname{tr}(T X-X T)=$ $\operatorname{tr}\left(A X_{11}-X_{11} A\right)+\operatorname{tr}\left(C X_{32}\right)-\operatorname{tr}\left(X_{32} C\right)$. Since $A$ is normal and $X_{11} \in C_{2}$, it follows that $\operatorname{tr}\left(A X_{11}-X_{11} A\right)=0$. Now $C X_{32}$ and $X_{32} C$ both 1ie in $C_{1}$. Thus $\operatorname{tr}\left(C X_{32}\right)=\operatorname{tr}\left(X_{32} C\right)$ and so $\operatorname{tr}(T X-X T)=0$ as required.

Before focusing our attention on the Helton - Howe result, we give the following related result.

THEOREM 5. Let $V \in B(H)$ be an iscmetry of finite multiplicity. If $X \in K(H)$ and $V X-X V \in C_{1}$, then $\operatorname{tr}(V X-X V)=0$.

Proof. By the observation in [9]it is sufficient to show that $V^{*} X-X V^{*} \in C_{1}$. Since $1-V V^{*}$ is of finite rank, it follows that $V V^{*}=1+C$ for some finite rank operator $C$.

Now $V^{*}(V X-X V) V^{*} \in C_{1}$. Thus $X V^{*}-V^{*} X V V^{*} \in C_{1}$ and so $X V^{*}-$ $V^{*} X(1+C) \in C_{1}$. Therefore $V^{*} X-X V^{*} \in C_{1}$ as required.

Remark. The unilateral shift and unitary operators are important special cases for which Theorem 5 holds.

Our first generalization of the Helton - Howe result can be stated as follows.

THEOREM 6. Let $A \in B(H)$ be self-adjoint. If $f=p / q$ is a rational function with poles off $\sigma(A)$, and $X \in K(H)$ with $S=f(A) X-$ $X f(A) \in C_{1}$, then $\operatorname{tr}(q(A) S q(A))=0$.

Proof. We consider the following cases.
Case (i) If $f$ is constant, then the result holds trivially.
Case (ii) If $f(t)=t^{n}(n \geq 1)$, then

$$
\begin{aligned}
f(A) X-X f(A) & =A\left(\sum_{k=0}^{n-1} A^{n-1-k} X A^{k}\right)-\left(\sum_{k=0}^{n-1} A^{n-1-k} X A^{k}\right) A \\
& =A Y-Y A \text { for some } Y \in K(H) . \text { Hence the result in }
\end{aligned}
$$

this case follows from the Helton - Howe lemma.

Case (iii). If $f$ is a polynomial, then the result follows from case (ii) by addition.

Case (iv). If $f(t)=p(t) / q(t)$, where $p, q$ are polynomials and $q$ has no zeros on $\sigma(A)$, then by the spectral mapping theorem it follows that $q(A)$ is invertible.

Now $P(A) X q(A)-q(A) X P(A)=q(A) S q(A) \in C_{1}$ and so
$q(A) S q(A)=[P(A)(X q(A))-(X q(A)) P(A)]-[q(A)(X P(A))-(X P(A)) q(A)]$. By case (iii) we obtain that $q(A) S q(A)=(A Y-Y A)-(A Z-Z A)$, where $Y$ and $Z$ are compact operators. Hence $q(A) S q(A)=A(Y-Z)-(Y-Z) A$, and so $\operatorname{tr}(q(A) S q(A))=0$ by the Helton - Howe lemma.

Notice that the Helton - Howe lemma becomes a special case of Theorem 6 upon taking $p(t)=t$ and $q(t)=1$.

We conclude with the following result.
THEOREM 7. Let $A \in B(H)$ be self-adjoint. If $f$ is a function that is onalytic on same neighbourhood of the closed disc
$\{z:|z| \leq||A||\}$ and $X \in K(H)$ with $T=f(A) X-X f(A) \in C_{1}$, then $\operatorname{tr} T=0$.

Proof. Without loss of generality, we may assume that $||A|| \leq 1$ and $||X|| \leq 1$. Thus $f$ is analytic on the disc $D=\{z:|z|<1+r\}$
for some $r>0$. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be the power series expansion of $f$. Let $f_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$. Then $f_{n}(z) \longrightarrow f(z)$ uniformly on the closed unit disc and so $f_{n}(A) \longrightarrow f(A)$. Therefore

$$
\begin{aligned}
T= & \lim _{n \rightarrow \infty} f_{n}(A) X-X \lim _{n \rightarrow \infty} f_{n}(A) \\
= & \lim _{n \rightarrow \infty}\left(f_{n}(A) X-X f_{n}(A)\right) \\
= & \lim _{n \rightarrow \infty}\left(A X_{n}-X_{n} A\right), \text { where }\left\{X_{n}\right\} \text { is a sequence of compact }
\end{aligned}
$$

operators as shown in case (iii) of Theorem 6. In fact it is not hard to see that $X_{n}=a_{1} X+a_{2}(A X+X A)+\ldots+a_{n}\left(\sum_{k=0}^{n-1} A^{n-k-1} X A^{k}\right)$. For $n>m$ we have
$X_{n}-X_{m}=a_{m+1}\left(\sum_{k=0}^{m} A^{m-k} X A^{k}\right)+a_{m+2}\left(\sum_{k=0}^{m+1} A^{m+1-k_{X A}} A^{k}\right)+\ldots+a_{n}\left(\sum_{k=0}^{n-1} A^{n-k-1} X A^{k}\right)$
and so $\left|\left|X_{n}-X_{m}\right|\right| \leq(m+1)\left|a_{m+1}\right|+(m+2)\left|a_{m+2}\right|+\ldots+n\left|a_{n}\right|$. since $f$ is analytic on $D$, it follows that $\sum_{k=m+1}^{n} k\left|a_{k}\right| \rightarrow 0$ as $n, m \rightarrow \infty$. Therefore $\left\{X_{n}\right\}$ is a Cauchy sequence of compact operators, hence it is convergent to some compact operator $Y$. Now $T=A Y-Y A$. Since $A$ is self - adjoint and $Y$ is compact and $T \in C_{1}$, it follows by the Helton Howe lemma that $\operatorname{tr} T=0$ as required.

We would like to remark here that $f(A)$ as described in Theorem 7 is normal operator but it need not be self - adjoint.

## Refererices

[1] C. A. Berger and B. I. Shaw, "Self - commutators of multicyclic hyponormal operators are always trace class", BulZ. Amer. Math. Soc. 79 (1973), 1193 - 1199.
[2] P. R. Halmos, A Hilbert space problem book, (Springer - Verlag, New York, 1982).
[3] J. Helton and R. Howe, "Traces of commutators of integral operators, Acta Math. 135 (1975), 271 - 305.
[4] F. Kittaneh, "Inequalities for the Schatten p-norm", Glasgow Math.J. 26 (1985). 141-143.
[5] F. Kittaneh, "On generalized Fuglede - Putnam theorems of Hilbert Schmidt type", Proc. Amer. Math. Soc. 88 (1983), 293 - 298.
[6] H. Radjavi and P. Rosenthal, "On roots of normal operators", J. Math. Anal. Appl. 34 (1971), 653-664.
[7] B. Simon, Trace ideals and their applications, Cambridge University Press, (1979).
[8] G. Weiss, "The Fuglede commutativity theorem modulo the Hilbert Schmidt class and generating functions for matrix operators" I, Trons. Amer. Math. Soc. 246 (1978), 193-209.
[9] G. Weiss, "The Fuglede commutativity theorem modulo operator ideals", Proc. Amer. Math. Soc. 83 (1981), 113 - 118.

Department of Mathematics
United Arab Emirates University
Al-Ain
United Arab Emirates.

