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THORN FORKING, WEAK NORMALITY, AND THEORIES WITH
SELECTORS

DANIEL MAX HOFFMANN AND ANAND PILLAY

Abstract. We discuss the role of weakly normal formulas in the theory of thorn forking, as part of a
commentary on the paper [5]. We also give a counterexample to Corollary 4.2 from that paper, and in the
process discuss “theories with selectors.”

§1. Introduction. This work comes out of our reading of the paper [5].
A superficial look at [5] may give the impression (as it gave to the authors) that
the results in that paper shed some light on the stable forking conjecture. We point
out that it is a stronger version of stability, weak normality, which is relevant, more
or less by definition, although there is still no real connection with the stable forking
conjecture. We also point out a counterexample to Corollary 4.2 of [5] which claims
that strong dividing of φ(x, c) can be witnessed by parameters from dcl(c).

We will work as usual in a saturated model M̄ = M̄ eq of a complete first-order
theory T in language L. (Namely we assume that T = Teq .) We could mean by this
a κ-saturated and strongly κ-homogeneous model (for some large κ). On the other
hand a recent note [6] makes precise the justification for the widespread practice of
assuming the existence of saturated models in the strict sense of κ-saturated and of
cardinality κ (for arbitrarily large κ). So we feel free to assume M̄ to be saturated
in the strict sense. This is relevant to Section 4, where we prove completeness of a
theory T+. However in all cases, back and forth arguments inside saturated models
in the weaker sense will be enough, as we will mention.

Our basic model-theoretic notation is as in [8]. x, y, z, ... denote (finite tuples of)
variables, and a, b, c, ... (finite tuples of) elements of the ambient model. Definability
means with parameters. Remember that a definable set X is said to be “almost
over A” iff X has finitely many images underAut(M̄/A) iff the canonical parameter
of X is in acl(A). We typically identify a set A of parameters with its definable
closure. Following a request from the referee, let us be more precise about canonical
parameters of definable sets. Given a definable set X, let φ(x, y) be an L-formula
and c a parameter such that φ(x, c) defines X. Relative to this choice of φ(x, y) we
obtain a canonical parameter for X : let Eφ(y1, y2) be the ∅-definable equivalence
relation ∀x(φ(x, y1) ↔ φ(x, y2)). Then the equivalence class c/Eφ of c is a canonical
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THORN FORKING, WEAK NORMALITY, AND THEORIES WITH SELECTORS 1355

parameter for X, and note that we can find a formula with parameter c/Eφ which
defines X. Any other choice of L-formula φ gives another canonical parameter for X,
but all canonical parameters are interdefinable over ∅.

We will be assuming a basic knowledge of notions from stability theory, such as
forking, dividing, and canonical bases of stationary types, although we will repeat
some of the definitions below. In addition to [8] one could refer to [4].

Thorn forking was introduced by Onshuus [7] as an account of a general theory
of independence, which subsumes nonforking in stable theories, and also in simple
theories assuming elimination of hyperimaginaries, but also includes “dimension-
independence” in o-minimal theories. A very nice account and explanation of thorn
forking appears in [1]. The stable forking conjecture says that stable formulas are
responsible for forking in simple theories. Here by a stable formula we mean an
L-formula φ(x, y) where the free variables of φ are partitioned into x, y and φ(x, y)
does not have the order property. And to say that stable formulas are responsible for
forking means that whenever p(x) ∈ S(B) forks over C ⊆ B , then there is a stable
L-formula φ(x, y) and an instance φ(x, b) of φ(x, y) which is in p(x) and such that
φ(x, b) forks over C.

The aim of this paper is to clarify the content of [5], so we will first say what
the paper appears to be about (even though there is a typographical error in the
main Definition 1.2 of stable dividing with parameters). We will, for the sake of
completeness, recall the basic notions. A formula φ(x, b) is said to divide over A if it
is consistent, and there is k and an infinite sequence (bi : i < �) of realizations
of tp(b/A) such that {φ(x, bi) : i < �} is k-inconsistent (for every choice of
i1 < ··· < ik < �, the set {φ(x, bi1 ), ... , φ(x, bik )} is inconsistent), equivalently there
is an indiscernible sequence (bi : i < �) of realizations of tp(b/A) such that
{φ(x, bi) : i < �} is inconsistent. φ(x, b) is said to strongly divide over A, if φ(x, b)
is not almost over A and for some k, the set of all A-conjugates of φ(x, b) is
k-inconsistent. The formula φ(x, b) thorn divides over A, if for some tuple d of
parameters, φ(x, b) strongly divides over (A, d ). A complete type p(x) ∈ S(B)
(thorn) divides over A ⊆ B if p contains a formula which (thorn) divides over A.

Finally, one says that a complete typep(x) ∈ S(B) (thorn) forks over A if p implies
a finite disjunction of formulas each of which (thorn) divides over A. We freely use
the obvious (by compactness) fact that p(x) ∈ S(B) does not (thorn) fork over A
if and only if for any B̂ ⊇ B , p(x) has an extension to a complete type q(x) over B̂
which does not (thorn) divide over A.

Theorem 4.1 of [5] says that thorn-forking is unchanged if one redefines a formula
φ(x, b) to thorn divide over A, if for some tuple d ∈ dcl(A, b), φ(x, b) strongly
divides over (A, d ). Corollary 4.2 of [5] is supposed to follow immediately from
Theorem 4.1 and states that if φ(x, b) thorn divides over A then the additional
parameters d witnessing strong dividing can be found in dcl(A, b). We give a
counterexample to this Corollary 4.2 which suggests to us that Theorem 4.1 is
also false.

Theorem 3.3 of [5] depends on a notion of stably dividing with parameters
(Definition 1.2 in [5]). After correcting a typographical error, we restate the
definition as follows: Let X be a definable set and A a set of parameters. Then
X stably divides with parameters (w.p), over A, if there is a set B of parameters,
such that:
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(1) For some stableLB -formula φ(x, y) and parameter c, X is defined by φ(x, c),
and

(2) X divides over A ∪ B .

One recovers as before a notion “p(x) ∈ S(B) stably forks with parameters,”
over A. Theorem 3.3 states that thorn forking coincides with stable forking with
parameters.

As mentioned above, and we point out below in Proposition 3.1, it is rather a
special case of stable formulas, namely weakly normal formulas, which are relevant,
and this is essentially immediate from the definition of thorn forking. In any case
we also give an independent proof of Theorem 3.3 of [5].

Before continuing, let us mention some apparent deficiencies in the formulations
in [7], especially concerning strong dividing, which reappear in [5]. The actual
definition in [7] depends on the particular formula φ(x, b) rather than the set it
defines, and says that φ(x, b) strongly divides over A if b /∈ acl(A) and the set
of formulas φ(x, b′), as b′ ranges over all distinct realizations of tp(b/A) is k-
inconsistent, for some k. Let us also recall that φ(x, b) thorn divides over A if φ(x, b)
strongly divides over Ad for some finite tuple d. So adding dummy parameters to
b can preserve the definable set, but change strong dividing (for different reasons).
On the other hand, if we define thorn forking with this definition of a formula thorn
dividing, we do get the same notion as when we want b to be a canonical parameter
of φ(x, b), so nothing is really lost.

In any case, in the current paper we use the correct functorial definitions,
depending only on the definable set, not the choice of a formula defining it.

We would like to thank the referee for a very helpful report, pointing out errors
and issues requiring clarification.

§2. Weak normality. As in Chapter 4 of [8] we call a definable (with parameters)
set X weakly normal if X is nonempty, and for any a ∈ X there are only finitely many
Aut(M̄ ) conjugates of X which contain a. When X is already defined over acl(∅)
this condition trivially holds. Consider a canonical parameter e for the set Xe := X .
Weak normality is equivalent to saying that for every e′ sharing with e its type over
the empty set, and for every a ∈ Xe′ (the shift of Xe) we have that e′ ∈ acl(a). The
condition that X is not over acl(∅) means that e /∈ acl(∅).

We can relativise weak normality to any (small) set A of parameters: X is weakly
normal relative to A if X is weakly normal in the expansion of M̄ by adding constants
for elements of A. This corresponds to saying that for every e′ ≡A e and every
a ∈ Xe′ it must be that e′ ∈ acl(A, a). The “nontriviality condition,” over A, means
that e /∈ acl(A). By compactness we obtain the following characterization of weak
normality.

Remark 2.1. Assume that X is a definable set. The definable set X is weakly
normal relative to a set C if and only if there exists a natural number k > 0 such that
for every k-many distinct C-conjugates of X, the intersection of these C-conjugates
is empty (in particular, if the number of distinct C-conjugates of X is finite).

Hence the definable set X strongly divides over C iff X is weakly normal relative
to C and is not almost over C.
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Remark 2.2. Let X be a definable set which is weakly normal relative to a set C.
Then X divides over C iff X is not almost over C.

Proof. Clearly dividing over C implies not being almost over C (for any definable
set X, weakly normal relative to C or not). Conversely suppose that X is weakly
normal relative to X and that X is not almost over C. Then by Remark 2.1, the set
X k-divides over C for some k. 


Remark 2.3. Suppose we are given a tuple a and sets C ⊆ B . Then the following
are equivalent:

(i) There is b in dcl(B) which is in acl(a,C ) \ acl(C ).
(ii) For some weakly normal relative to C, definable set X in tp(a/B), X is not

almost over C.

Proof. Let b ∈ dcl(B) be as in (i). We can then find L-formulas φ(x, y, z) and
�(y,w), c in C and b0 ∈ B such that |= φ(a, b, c) ∧ �(b, b0):

• φ(x, y, z) implies (∃=ny′)φ(x, y′, z) for some n > 0
• and �(y,w) implies (∃=1y′)�(y,w).

Let X be the set defined by (∃y) (φ(x, y, c) ∧ �(y, b0)). So X is in tp(a/B). Note
that X = φ(M̄ , b, c).

It follows from the properties of φ(x, y, z) and �(y,w) that X is weakly
normal relative to C. We have to check that X is not almost over C. Suppose
for a contradiction that X is almost over C. As b ∈ acl(C ), choose an infinite
sequence fi ∈ Aut(M̄/C ), i < �, such that all fi(b)’s are distinct. Without loss
of generality, we have fi(X ) = f1(X ) � f1(a) for infinitely many i < � and so
|= φ(f1(a), fi(b), c) for infinitely many i < � which contradicts the choice of φ.
The implication from (ii) to (i) follows by definition, when we choose b to be a
canonical parameter of X. 


Remark 2.4. Let X be a definable set, defined by formula φ(x, e) where φ(x, y)
is an L-formula and e is the canonical parameter of X. Let C be a set of parameters.
The following are equivalent:

(i) X is weakly normal relative to C.
(ii) There is a formula �(y) ∈ tp(e/C ) (so with parameters in C) such that the

formula �(x, y) := φ(x, y) ∧ �(y) has the property that for any a there are
only finitely many (up to equivalence) instances �(x, e′) of �(x, y) such that
|= �(a, e′) In particular the LC -formula �(x, y) is stable.

Proof. (ii) implies (i) is immediate, as C-conjugates of X are instances of �(x, y).
(i) implies (ii) is a compactness argument. 

Let’s note that formulas �(x, y) in (ii) above are not only stable but are also

equations in the sense of Srour [9].

§3. Thorn forking. Here is our characterization of thorn forking in terms of
weakly normal sets relative to parameters. It is basically tautological.

Proposition 3.1. Given tuple a and sets C ⊆ B , tp(a/B) does not thorn fork
over C iff there is some extension of tp(a/B) to a complete type p(x) over some
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(|T | + |C |)+-saturated model M, such that whenever X is a definable set in p(x)
and C ⊆ C ′ ⊆M and X is weakly normal relative to C ′ then X is almost over C ′

(equivalently X does not divide over C ′).

Proof. By definition tp(a/B) does not thorn fork over C if and only if for all
B̂ ⊇ B , tp(a/B) has an extension to a complete type p over B̂ which does not thorn
divide over C. Let M be a (|T | + |C |)+-saturated model containing B. 


Claim 1. The type tp(a/B) does not thorn fork over C iff tp(a/B) has an extension
to a complete type p(x) over M which does not thorn divide over C.

Proof of Claim 1. Clearly left implies right. Now, suppose the right-hand side
holds. Let p0(x) = tp(a/B). Consider B̂ ⊇ B and set Γ(x) = p0(x) ∪ {¬�(x, b) :
�(x, y) an L-formula, b ∈ B̂ and φ(x, b) thorn divides over C}. We will show that
Γ is consistent. Let Γ0(x) be a finite subset of Γ and let B0 be the finite set of
parameters from B̂ which appear in Γ0. We can realize tp(B0/C ) in M by B ′

0 in
such a way that the elements of B0 which are in B are realized by themselves. Let
Γ′

0 be the copy of Γ0 over B ′
0. Then Γ′

0 ⊆ p(x). So Γ′
0 is consistent, hence also Γ0

is consistent. Thus Γ is consistent as well and extends to a complete type over B̂
extending p0 and which does not thorn divide over C. 


Claim 2. Let p(x) ∈ S(M ). Then p does not thorn divide over C iff for every
�(x) ∈ p(x), � does not strongly divide over any set (C, d ) where d is a tuple from M.

Proof of Claim 2. By definition, p does not thorn divide over C iff for every
�(x) ∈ p there is no tuple d such that �(x) strongly divides over C, d . Now if
�(x) ∈ p and � strongly divides over C together with some tuple d, then by saturation
of M let d ′ ∈M realize the type of d over C together with the parameters from �,
so � strongly divides over (C, d ′). This suffices.

To finish the proof of the proposition from Claim 2, we just have to note that if X
is a definable set, and C ′ a set of parameters, then X strongly divides over C ′ if and
only if X is weakly normal relative to C ′ and is not almost over C ′, which is stated
after Remark 2.1.

Let us finally remark that the proof above of 3.1 is roughly the content of
Proposition 4.7 of [1]. 


Remark 3.2. A few years ago, Ludomir Newelski asked about absoluteness of
the notion of the thorn forking, i.e., whether this notion depends on the choice of the
model of set theory. Using the Proposition 3.1 (or alternatively some parts of [1]),
one can show that indeed the notion of the thorn forking does not depend on the
choice of the monster model. This was discussed with Newelski during a talk on this
paper.

Following the referee’s request, we will give a self-contained proof of Theorem 3.3
of [5] (which we understand to be the main result of [5]). Recall from [5] (and
our introduction) that for A ⊆ B and p(x) ∈ S(B), p is said to “stably fork with
parameters” over A if p implies a finite disjunction of formulas�i(x) (over additional
parameters) each of which “stably divides with parameters” over A. Where again
�i(x) stably divides with parameters, over A, if there is some tuple d of parameters
and a formula �(x, z) with parameters from d which is stable (does not have the
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order property) and such that �i(x) is equivalent to �(x, c) for some c, and such
that �i(x) divides over (A, d ).

Proposition 3.3. LetA ⊆ B . tp(a/B) thorn forks over A iff tp(a/B) “stably forks
with parameters” over A.

Proof. First by the routine methods discussed earlier, it is enough to fix some
(|T | + |A|)+-saturated model M containing B, let p(x) be a complete type over M,
and prove that
(*) p thorn divides over A iff p stably divides with parameters, over A. (Also in both
cases we know by saturation that additional parameters witnessing strong dividing
or stable dividing with parameters, can be found in M.) 


The “left implies right” direction of (*) follows immediately from the “right
implies left” direction of Proposition 3.1 (taking B =M ). This is because if A ⊆
C ⊆M and X is a definable set in p which is not almost over C and is weakly
normal relative to C, then first X divides over C by Remark 2.2, and secondly X is
an instance of an LC -formula �(x, y) which is stable, by Remark 2.4. So p stably
forks with parameters, over A.

The “right implies left” direction is proved in [5] using Theorem 5.1.1 in [7]. Our
upcoming proof of “right implies left” will give another, fairly explicit, account of
this Theorem 5.1.1 of [7]. So let us assume the right-hand side of (*). Let d ∈M , let
φ(x, y) be a formula over d which is stable, let φ(x, c) ∈ p(x) for some c ∈M and
suppose that φ(x, c) divides over (A, d ). We want to find a formula in p(x) which
thorn divides over A. We make use of local stability as in Chapter 1 of [8]. Although
the formula φ(x, y) is not over ∅, everything works as long as we make sure to
work over the parameters d, which we do. We consider p|φ, the restriction of p to a
completeφ(x, y)-type. Sop|φ divides over (A, d ). Let e be the canonical base ofp|φ,
so e /∈ acl(Ad ). By Lemma 1.2.(ii) in Chapter 1 of [8], there are a1, ... , an ∈M such
that ai+1 realizes the restriction of (the complete type) p to (A, d, e, a1, ... , ai) and
such that e ∈ acl(A, d, a1, ... , an). Choose n minimal witnessed by a1, ... , an ∈M .
Let d ′ = (a1, ... , an–1). Hence e /∈ acl(A, d, d ′), but e ∈ acl(A, d, d ′, a) whenever a
realizes p|(A, e, d, d ′). By compactness there is a formula �(x) ∈ p(x)|(A, e, d, d ′)
such that�(x) implies that e ∈ acl(A, d, d, x). Working back in the original language
L, let e′ be the canonical parameter of �(x) and without loss �(x) is of the form
�(x, e′) for some L-formula �(x,w). So e′ ∈ dcl(A, e, d, d ′).

Claim 1. e′ /∈ acl(A, d, d ′).

Suppose otherwise that e′ ∈ acl(A, d, d ′). So, as e /∈ acl(A, d, d ′), it is easy to
find some realization a′ of �(x, e′) with e /∈ acl(A, d, d ′, a′), a contradiction. So
Claim 1 is established.

Claim 2. For any realization a′ of �(x, e′), e′ ∈ acl(A, d, d ′, a′)
Proof of Claim 2. By choice of �(x, e′), for any realization a′ of �(x, e′), e ∈

acl(A, d, d ′, a′). But e′ ∈ dcl(A, e, d, d ′), hence, e′ ∈ acl(A, d, d ′, a′). 

Claims 1 and 2 say that �(x, e′) strongly divides over A, d, d ′. So �(x, e′) thorn

divides over A. As �(x, e′) ∈ p(x) this means that p(x) thorn divides over A,
completing the proof.
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Finally we discuss Corollary 4.2 of [5]. This states that if φ(x, b) thorn divides
over C, then a tuple d such that φ(x, b) strongly divides over (C, d ) can be found in
dcl(C, b).

In fact the role of C is also problematic. Remember that φ(x, b) is defined to thorn
divide over C if there is C ′ ⊇ C such that φ(x, b) strongly divides over C ′ (φ(x, b)
is not almost over C ′ and the set of C ′-conjugates of φ(x, b) is k-inconsistent for
some k). But then, if φ(x, b) thorn divides over C, it also thorn divides over ∅, and
so Corollary 4.2 of [5] would yield that we can find d ∈ dcl(b) such that φ(x, b)
strongly divides over d.

Translating into the weakly normal language we obtain, via Remark 2.1.

Question 3.4. Let X be a definable set with canonical parameter e. Suppose that
for some set of parameters C, X is weakly normal, relative to C, and e /∈ acl(C ). Can
one find such a set of parameters C ⊆ dcl(e)?

We first give a couple of examples related to Question 3.4 and its context. We start
with an example giving a positive answer for strongly minimal theories, to a slightly
weaker question. This slightly weaker question, in the context of stable theories,
states: suppose p(x) is a stationary type which forks over ∅. Is there a definable
set (formula) X in p, with canonical parameter e, such that for some C ⊆ dcl(e),
e /∈ acl(C ), and X is weakly normal relative to C?

We will work with Morley rank which corresponds to algebraic independence
dimension for tuples in strongly minimal sets.

Lemma 3.5. Suppose T is a 1-sorted strongly minimal theory with elimination of
imaginaries. Let p(x̄) be a stationary complete type over a tuple ē where ē is the
canonical base of p. Suppose that p forks over ∅. Then there is a formula (definable
set) X in p with canonical parameter ē and some c̄ ∈ dcl(ē) such that ē /∈ acl(c̄) and
X is weakly normal relative to c̄.

Proof. Thanks to the referee for the suggestions which gave rise to the following
correct proof.

Let ā realize p. By our elimination of imaginaries assumption ē can be taken to
be a (finite) tuple from the strongly minimal home sort. Let c̄ be a subtuple of ē
which is a basis of ē over ā. Hence:

Claim i. ē ∈ acl(ā, c̄).

Note that c̄ is independent from ā over ∅̄, so as ā is not independent from ē over
∅ we have:

Claim ii. ē /∈ acl(c̄).

Let ȳ be a tuple of variables of length that of ē and let z̄ be the subtuple of ȳ
corresponding to the subtuple c̄ of ē. By Claim I and compactness we can find a
L-formula φ(x̄, ȳ) in tp(ā, ē) such that:

Claim iii. φ(x̄, ȳ) implies ȳ ∈ acl(x̄, z̄).

We may also assume that RM (φ(x̄, ē)) = RM (p(x̄)) = n, say, and
dM (φ(x̄, ē)) = 1 where RM is Morley rank, and dM is Morley degree.

Claim iv. ē is a canonical parameter of the set X defined by φ(x̄, ē).
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Proof of Claim iv. This follows from ē being the canonical base of p and from
the assumptions on Morley rank and degree. Here are some details. Working in a
suitably saturated model M let ē′ have the same type as ē over ∅ and with ē′ = ē.
Suppose for a contradiction that φ(x̄, ē) is equivalent to φ(x̄, ē′). Let p′(x̄) ∈ S(M )
be the unique nonforking extension of p over M. Note that p′ is the unique complete
type over M with Morley rank n and which contains the formula φ(x̄, ē). Let f
be an automorphism of M with f(ē) = ē′. Then f(p′) is the unique complete
type over M of Morley rank n and containing φ(x̄, ē′). But as the latter formula
is equivalent to φ(x̄, ē), f(p′) = p′, contradicting the characteristic property of
ē being the canonical base of p′. We have proved that an automorphism (of an
ambient saturated model) fixes ē if and only if it fixes X setwise, as required. 


Now (III) above as well as (IV) implies that X is weakly normal relative to c̄.
Together with Claim II, this completes the proof of the lemma, bearing in mind that
c̄ is a subtuple of ē. 


The next example is where both the hypothesis and conclusion of Question 3.3
fail, but the hypothesis“almost” holds.

We will take as T the theory of the free pseudoplane. See Example 6.1 in Chapter
4 of [8] as well as Section 2 of [3] for some more details. This is also called the infinite
forest in [1]. The language consists of a single binary relation I, and the axioms for T
say that I is symmetric, irreflexive, for each a there are infinitely b such that I (a, b),
and there are no “loops,” namely for each n ≥ 3 there do not exist a0, a1, ... , an
such that I (ai , ai+1) (for all i = 0, ... , n – 1), the ai for i ≤ n – 1 are distinct, and
a0 = an. T is complete, and �-stable, where the Morley rank of the home sort is �.
A saturated model of T consists of infinitely many connected components. In [3] it
is pointed out that T has weak elimination of imaginaries.

Fix a (saturated) model M̄ , leta ∈ M̄ , then the formula I (x, a) isolates a complete
type pa(x) over a. a is the canonical base of pa as well as the canonical parameter
of the formula I (x, a).

Lemma 3.6. (i) I (x, a) is not weakly normal (i.e., relative to ∅).
(ii) There is no c ∈ M̄ eq such that a /∈ acl(c) and I (x, a) is weakly normal relative

to c.

Proof. (i) Fixing b such that I (a, b), I (b, y) is infinite and isolates a complete
type over b (as mentioned above). So a /∈ acl(b).

(ii) Choose c ∈ M̄ eq such that a /∈ acl(c) and we want to show that I (x, a) is not
weakly normal relative to c. By the weak elimination of imaginaries we may assume
that c is a real tuple. The assumption that a /∈ acl(c) implies that there are no two
elements c1, c2 from the tuple c such that the unique shortest path from c1 to c2 goes
via a. It follows that there is (unique) b such that I (a, b) and such that all elements of
c are on (shortest) paths from a which go through b (or in different components of
the model). Now choosing this unique b realizing I (x, a), we see that a /∈ acl(b, c),
because there are infinitely many a′ such that I (b, a′) and a′ is not on a path from
b to any element of c, and all such a′ have the same type over b, c. 


Lemma 3.7. Let I (b, a). Let φ(x) be the formula I (x, a) ∧ x = b. Then for any b′

realizing φ(x) we have that a ∈ acl(b, b′).
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Proof. a is in the unique shortest path between b and b′. 


However note that the canonical parameter of the formula φ(x) from Lemma 3.7
is (a, b) and the lemma says that φ(x) is weakly normal with respect to b.

§4. Theories with selectors. In this section we give a family of negative answers to
Question 3.4 (so counterexamples to 4.2 of [5]). (In [5] there is also a Theorem 4.1
from which their Corollary 4.2 is deduced without proof, and we assume that our
examples also give negative answers to Theorem 4.1 of [5] although we did not, and
do not want to, check details.)

It is a simple construction (maybe known) which for any theory T produces a
“mild expansion” (in the sense of also adding a new sort) TS , which for any infinite
definable set X in T with canonical parameter e yields some d not in dcl(e) such that
X is not almost over d and X is weakly normal relative to d in TS . The construction
is related to but distinct from the generic variations of [2].

We fix a complete theory T in a language L, which we assume, for simplicity, to be
relational. There is no harm in assuming T to be 1-sorted. We will define a language
L+ and complete L+-theory T+, and a language LS and complete LS -theory TS ,
all depending on T, and with L+ ⊆ LS .

Roughly speaking T+ is the theory of a set equipped with an equivalence relation
E with infinitely many classes, such that each E-class has structure making it a model
of T, this is uniform across the E-classes, and moreover any interaction (on the level
of the language L) between distinct E-classes is forbidden. Model-theoretically T+

is quite transparent, but one should give a definite formalism, which we do now.
We discuss the language L+ and theory T+ simultaneously, sometimes mixing

up syntax and semantics. There will be two sorts in L+, a sort P equipped with an
equivalence relation E, and the second sort is just P/E, and we have the canonical
function fE : P → P/E, in the language L+.

For a of sort P, a/E denotes the equivalence class of a as an element of the sort
P/E. And [a]E denotes the equivalence class of a as a subset of the sort P.

For each n-ary relation symbol R of the language L, we will have an (n + 1)-ary
relation symbol R+(z, x1, ... , xn) where z is a variable of sort P/E and x1, ... , xn
variables of sort P. In addition to the equality symbols on the two sorts, this is
the language L+. The axioms of T+ say that fE is what it should be, that for any
z ∈ P/E,R+(z, x1, ... , xn) implies that thexi are in the equivalence class determined
by z, and that each E-class C is a model of T. Where the E-class [a]E is viewed as
an L-structure by defining R(b1, ... , bn) to hold in C iff R+(a/E, b1, ... , bn) holds in
the ambient L+-structure.

To summarise, L+ is the language with sorts P and P/E, and symbols E, fE and
the R+ for R ∈ L.

Lemma 4.1. (i) T+ is complete.
(ii) Assuming that T has quantifier elimination (i.e., is Morleyized ), then T+ has

quantifier elimination too.
(iii) P/E is an indiscernible set in T+.

Proof. (i) is clear as a model of T+ is just a family of models of T indexed
by P/E, and any two saturated (in the strict sense) models will be isomorphic.
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For if M is κ-saturated of cardinality κ (where κ > |L+|) then there will be
κ E-classes and moreover each E-class will be a κ-saturated model of T of
cardinality κ. Alternatively (without using the existence of saturated models in
the strict sense) one can just do a back-and-forth between any two �-saturated
models of T+.

(ii) follows by either observing that if M is κ-saturated of cardinality κ then
any permutation of the P/E sort extends to an automorphism of M, or doing a
back-and-forth argument between �-saturated models (or in a fixed �-saturated
model). 


Of course we can assume that T has QE, so we obtain complete understanding of
definability in models of T+. Note that if M is a saturated model of T (in the weak
or strong sense) then the model M+ of T+ where E has κ-many classes and each
class is isomorphic (as an L-structure) to M, is also saturated, in the appropriate
sense. We write P(M+) and (P/E)(M+) for the corresponding sorts inM+.

One immediate observation which will be useful for us later is:

Lemma 4.2. Let X ⊂ P(M+) be definable in M+ over a from P(M+). Let C be
the E-class (as a subset of P(M+)) of a. Then X = X1 ∪ X2 where X1 is a subset of
C definable over a in L, and X2 is the union of a family of uniformly ∅-definable (in L)
subsets (maybe empty) of the classes other than C. Moreover if a is the canonical
parameter of X1 in C (as a model of T), then a is the canonical parameter of X in T+.

We now introduce the language LS and theory TS . LS is L+ together with a
new sort Q and function symbol � : P/E ×Q → P. TS can be described in two
equivalent ways. First take any model M of T and expandM+ to an LS structure
MS by letting the sort Q(MS) consists of all “selectors” from the equivalence
classes, and �(MS) the obvious thing. Namely,Q(MS) is the collection of all choice
functions or sections s corresponding to the mapfE : P → P/E and �(z, s) = s(z).
Put TS = Th(MS).

Alternatively TS is the LS -theory expanding T+ which says: for y1, y2 ∈ Q,
y1 = y2 iff �(z, y1) = �(z, y2) for all z, together with the axiom fE(�(z, y)) = z,
as well as the axiom which says that for all d ∈ Q, z ∈ P/E and a ∈ P in the class
named by z, there is d ′ ∈ Q such that �(z, d ′) = a and �(z ′, d ′) = �(z ′, d ) for all
z ′ = z.

Iterating the last axiom, it implies that for any d in Q and finitely many E-classes
we can find d ′ ∈ Q such that the value of �(–, d ′) on these finitely many classes is
anything one wants, but for the other classes is the same as the value of �(–, d ).
(And in a κ-saturated model we can do it for < κ many equivalence classes instead
of only finitely many.)

Remark 4.3. The theory TS as defined by the axioms and observation in the last
two paragraphs is complete with quantifier elimination, from which it follows that
TS is indeed equal to Th(MS) as defined earlier where M is any model of T.

Proof. This follows by a back-and-forth argument between any two�-saturated
models of the axioms. 


Lemma 4.4. Let N be a model of T+ and ā, b̄ tuples of the same length (and in
appropriate sorts) from N such that tpN (ā) = tpN (b̄). Let N ′ be an expansion of N
to a model of TS . Then tpN ′(ā) = tpN ′(b̄).
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Proof. We will prove the special case where ā (and b̄) are singletons from P. The
general case is similar. We may assume that everybody is saturated. First suppose
that a and b are in the same E-class C say. So viewing C as a model of T, there is an
automorphism f of C taking a to b. Then f extends to an automorphism of N by
fixing P/E pointwise and fixing pointwise every E-class C ′ ⊆ P other than C. We
will call this automorphism f too. We now want to extend f to an automorphism f′

of N ′ by defining the action on Q. For each d ∈ Q, let f′(d ) be the unique element
d ′ ∈ Q such that �(a/E, d ′) = f(�(a/E, d )) and �(z, d ′) = �(z, d ) for all z = a/E
(where d ′ is given to us by the axioms above). It is then easy to see that f′ is a
bijection of Q with itself and is an automorphism of N ′. So a and b have the same
type in N ′.

Now suppose that a and b are in different E-classes. The quantifier elimination
result earlier for T+ implies that not only do a and b have the same types in N
but (a, b) and (b, a) have the same types in N. So there is an automorphism f of
N taking (a, b) to (b, a) (so also switching a/E and b/E) and fixing pointwise all
other elements of P/E and all E-classes C other than [a]E and [b]E . As in the first
paragraph, f extends to an automorphism f′ ofN ′. So in this case (a, b) and (b, a)
have the same type in N ′. 


It follows that:

Corollary 4.5. The (relativised ) reduct T+ of TS is “weakly stable embedded”
in the sense that for subsets of Cartesian products of the P/E and P, ∅-definability in
T+ coincides with ∅-definability in TS . In particular the sort P/E is an indiscernible
set in the theory TS .

On the other hand T+ is not “stably embedded” in TS , as there will be sets in the
T+-sorts which are definable with parameters in the Q sorts but not in the T+ sorts.
In fact:

Proposition 4.6. TS has both the strict order property and the independence
property, all witnessed on the P/E sort (which remember is an indiscernible set in
T+).

Proof. Let N be any model of TS (saturated if one wishes), and fix d ∈ Q(N )
which gives a section �(–, d ) from (P/E)(N ) to P(N ). For any finite subset S
of P/E, we can (by the axioms for example) find an element dS ∈ Q(N ) such
that �(z, d ) = �(z, dS) precisely for those z /∈ S. Namely finite subsets of P/E are
uniformly definable, giving both the strict order property and the independence
property. 


We now point out a general result which will be useful in our (counter) examples.
Note that by 4.4 there is a unique 1-type of an element of P/E in TS .

Proposition 4.7. Suppose that there is a unique 1-type (over ∅) in T. Then (working
in a saturated model of TS), for every a ∈ P, there is d ∈ Q such that �(a/E, d ) = a,
a /∈ acl(d ) and d /∈ acl(a).

Proof. It is enough to work in a model MS as described above where M is
a κ-saturated, strongly κ-homogeneous model of T (κ > |T |), M+ is the model
of T+ consisting of κ many “copies” of M, and MS is the expansion of M+ to
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a model of TS by adding all selectors (or sections) as Q(MS). Note that using
quantifier-eliminationMS is also κ-saturated.

First, as there are infinitely many d ∈ Q(MS) such that �(a/E, d ) = a we may
choose such d /∈ acl(a). Let e = a/E. Let e′ = e in (P/E)(MS). And let b =
�(e′, d ). Viewing [a]E and [b]E as models of T there is an isomorphism f between
them taking a to b (by our assumptions). Thenf ∪ f–1 extends to an automorphism
of M+ fixing all E-classes pointwise, other than [a]E and [b]E . This induces a
bijection from Q(MS) to itself which fixes d, hence an automorphism f′ of MS.
Hence a and b have the same type over d inMS. As e′ = e was arbitrary this shows
that a /∈ acl(d ) inMS. 


The results of this section lead to many examples yielding negative answers to
Question 3.4. We will mention two of them. Let us begin with T = DLO the theory
of dense linear orderings without endpoints in the language {<}. The theory T
is complete with quantifier elimination and a unique 1-type over ∅. T also has
elimination of imaginaries. Let M be a (saturated) model of T and a ∈M and
consider the formula x > a and the set X it defines in M. Then X is not weakly
normal. Moreover, a is a canonical parameter for X and the only element in dcl(a)
is a, hence X is not weakly normal relative to any set C such that X is not almost
over C.

Now letMS be the model of TS built from M as at the beginning of the proof of
Proposition 4.7. Fix an E-class C ⊂ P(MS) which we identify with M and let X be
as above, now considered as a definable set inMS.

Proposition 4.8. Working inMS |= TS and X as above:
The canonical parameter of X is a. For no e ∈ dcl eq(a) do we have that X is weakly
normal relative to e and a /∈ acl(e). But there is d ∈MS such that X is weakly normal
relative to d and a /∈ acl(d ).

Proof. First, by Proposition 4.7 we find d ∈ Q such that �(a/E, d ) = a and
a /∈ acl(d ) and d /∈ acl(a). In particular for any b ∈ X , a ∈ dcl(b, d ). Hence X
is weakly normal relative to d, and a /∈ acl(d ). (All in the sense of TS .) Now we
want to check that a is a canonical parameter of X in the sense of TS . This follows
immediately from the fact that TS is an expansion of T and that a is a canonical
parameter of X in T.

Now, we want to check that: for no e ∈ dcl eq(a) do we have that X is weakly
normal relative to e and a /∈ acl(e). So suppose e ∈ dcl eq(a) in MS , so h(a) = e
for some ∅-definable function h in (MS)eq . But then h(x) = h(y) is an LS -formula
φ(x, y) on the sort P. And clearly the canonical parameter of the formula φ(x, a)
is interdefinable with e. We will now use Corollary 4.5 and Lemma 4.2. First by
Corollary 4.5, φ(x, a) is defined in M+ over a by a formula which we still call
φ(x, a), and moreover a canonical parameter of φ(x, a) is a canonical parameter
for it inTS . Let C be the E-class of a. By 4.2 the canonical parameter ofφ(x, a) inT+

is the same as the canonical parameter of φ(x, a) ∩ C in the model C of T = DLO
(where φ(x, a) ∩ C is definable in C |= DLO by a quantifier-free formula with
parameter a). Clearly the canonical parameter inDLO of this definable set is a or ∅.
So we have shown that e is interdefinable with either a or ∅ in TS . In the first case
of course a ∈ acl(e). In the second case, as X is not weakly normal in T it is not
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weakly normal inT+, hence (by 4.4 or 4.5) not weakly normal inTS (i.e., all relative
to ∅). 


Bearing in mind our discussion of the theory T of the free pseudoplane at the end
of Section3, and choosing now X to be defined by I (x, a) in a saturated model M
of T, an identical proof to that of Proposition 4.8 yields a definable set X in MS

giving also a negative answer to Question 3.4 (and a counterexample to 4.2 of [5]).
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