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EXPLICIT FORMULAS FOR LOCAL FACTORS:
ADDENDA AND ERRATA

PAUL FEIT

Introduction

In [3], the author studied certain local integrals derived from Fourier coeffi-
cient computations on Eisenstein series. Members of a family of Dirichlet series
were characterized as a product of an explicit term with a mysterious polynomial
factor. In a recent letter to the author, Professor Shoyu Nagaoka asked specific
questions concerning the polynomial factor. Several of these questions can be
answered by the techniques in [3]. In Part I of that paper, the relevant term is de-
scribed precisely; however, in Part II, the term is described as a mysterious, albeit
finite, sum. The present paper complete [3] by recording what little is known of
that sum.

We illustrate our tables by settling one of the questions raised in Professor
Nagaoka's letter. Let F is a totally real number field and let K/F be a purely im-
aginary quadratic extension. Let @ be the discriminant of K/F, and let & € P
For a finite prime & of F,

m a (s [po])=a-ama-g@da- 6@¢ 7 (Zd),

where the a-series derives from Eisenstein series for the hermitian modular group
of genus 2, ¢ is the ideal character of K/F (normalized to be 0 if % ramifies),
g = N?, and #’ devides the ideal (h)P while #"*" does not.

1. The a-series

Let F be a local of any characteristic except 2 and let R be (a choice of) the
ring of integers of F. Let & be the prime of R, and put

(2) q = NP.
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Let A be a semi-simple finite dimensional F-algebra, and let B be the correspond-
ing maximal order of A. For k € N, let B be the right B-module of £k X 1 col-
umn vectors. For k, » € N such that k¥ = 7, an » X k matrix M with entries in B
is called primitive if there is a (k — #) X k matrix N such that

( N

M) € GL,(B).

If Lis a B-module and K & L is a submodule, let [L: K] be the cardinality of
|L/K|. 1f L and K are B-submodules of A* for some k € N, then define
[L:Kl1=I[L:LNKIIK:LNK]if each index on the right is finite. For
k € N, define v : GL,(4) — Q by

(3) ¢" =I[B*: T B".

In practice, the function qvm is | di(T) |gfd, where dt is some sort of reduced
norm function GL,(A) — F, ||g, is a normalized valuation at % and d is a positive
constant. In [3] and in what follows, we work with the function v instead of deter-
minants and valuations. For this reason, our a-series differ by a constant expo-
nent from the usual ones, as used in [1] or [4]. We will comment on this later.

Let £ € N. For T € M,(A), define j(T) by

(4) qj(T) — [TBk + Bk . Bk]

Another interpretation for j(T) is as follows. Express 7= D~'C where (C D) is
a primitive k X (2k) matrix. Then j(T) = v(D). Again, in other treatments, the
j-factor is typically replaced by | d#(D) |g>—1.

Fix a non-trivial group character ) from the additive group of F to the unit
circle of C. For our present purposes, any character will do. When we refer to
Professor Nagaoka's question, we adopt the standard choice. Extend x to
M, (A) for each kK € N by composing the original character with the reduced
trace, as described in [3].

Let o be an involution for A/F. Let U(p) be the set of B-units & such that
e’ = 1. For ¢ € U, a (o, €)-hermitian lattice is a free B-module M of finite rank
paired with an R-bilinear form (,) : M X M — A such that for x, y € M and

b,c € B.
(5.a) (bzx, cy) = b (z, y) - ¢,
(5.b) (z, y = ey, °.

Let kK € N. For each ¢ € U, put
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(6) Sk, e) ={T€ M) : T=e(T"),
2k, e, B) = 2(k, &) N M,(B),
and also
(7) Ske, B#={Te Z(k, &) x(T-Z(k, e, B)) = {1}}.

The lattice 2 (k, €) obviously corresponds to all (o, &) -hermitian forms on B*.
We refer to its members as being (o, €)-hermitian. The function which takes
Te 2(k, e B)# to the function X— x(TX) identifies the additive group of
2.(k, &, B) # with the character group of 2.(k, &, B) ; for that reason, we refer
to the former as the dual lattice.

Because most of the work in [3] deals with dual lattices, we set the problem in
a manner in which the members of the dual lattice are (o, €)-hermitian. For this
reason, we set up the a-series as a sum over 2 (k, €”) instead of 2 (k, €).

Let o be an involution of A, let ¢ € U(p), let m € N and let N € 2 (m, ¢,
B) # . Define the a-series for this data by
(8) alN, t) = by x (Nz) -,

xeZ(m,ef)/Z(m,e°,B)

where t is a formal variable. This is the correct form of [3; (5.10)], with B playing
the role of S. The Dirichlet a-series used by Nagaoka [1] or Shimura [4] have the

form
9) a(N, s) = a(N, g%,
where the constant d is the exponent factor characterized by qvm = | d(T) |g>_d

Tautologically, for any # € GL,(B), a(uN-'u’, t) = a(N, t)

Analysis of the a-series divides into two cases. First, suppose A =4 @ 4°,
where 4 is a simple F-algebra and 4 is its opposite, and o is defined by (b, ¢) —
(¢, b). In this case, the involution o and the choice of ¢ is irrelevant. The a-series
(8) can be rephrased as an infinite sum over M,(4). The reformulation is analy-
zed in [3; Part I]. The analysis is complete, and we will make no additions to it
here.

2. Hermitian lattices
With the split case settled, all other situations reduce to the hypothesis

(10) A is a division F-algebra,
F is the fixed field of p on the center of A.
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Under assumption (10), we hereafter denote A by 4 and the ring B by S. Fix
e € U(p). From now on, for T a square matrix, put
T ="', and
T7*=(T"7" if Tis invertible.
For k € N, N € M,(4) and C € GL,(4), put N[C] = C"' NC™*,

Let m be the maximal ideal of S, and let = be a generator of m. Define a
logarithmic valuation [ on 4% = 4 — {0} by

(11)

(12) vre A*, 7%z € S —m.

We adopt the convention that [(0) = oo, For X € 4 a non-empty set, put
1(X) = infli(x) : x € X}.

For M a hermitian lattice, define

(13) sM) =1{(x, ) :x,y € M}).

For n € Z, put

(14) 4,={de€ 4:1d) = n},

A, ={b+eb’:be4,).
Put
(15) PD={ded:vbe S, x(bd + b°d") =1},

0=19D).

For n € Z, let Cat(p, &, n) be the class of all (p, €)-hermitian lattices M such
that
(16) s(M) = n,

Yoe M, (v, v) € A,.

In [3; Section 8], we define a notion of morphism between members of Cat(p, ¢, ),
and turn the class into a category. That structure is technical, and is omitted here.
Certain lattices in this category have a special property, and are called n-modular;
again, the precise definition is omitted, and we refer the reader to [3] for proof of
the properties of n-modular lattices which we need. The hyperbolic lattices of de-
nominator — »n are n-modular.

Parameters @, a, 0,, 0;, 0, and g5 are defined in [3; (5.8) and (5.9)]. Except
for o,, these are usually trivial to calculate. To get g,, use the fact {3; Lemma 5.1]
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(17) o,+o0,+o0,=0,+ 0.

Depending on these parameters and on #, the category Cat(p, €, #) is classified as
one of four types, in [3; (8.19)]. The category relevant to our calculation is Cat(p,
g, 0). It is also a consequence of [3; Lemma 5.1] that, for k € N, X (k, €°, S) # is
the set of all matrices which correspond to member of Cat(p, ¢, d) of rank k.

The function v,, on square, invertible matrices, is introduced in [3; Definition
7.1]. The only comments that we make here are (a) v; depends on p and ¢, and
(b) like v, v,(T) has the form | dt(T) lg,_d‘ where d,; is some constant dependent
on the raw data.

3. Definite exponents

For the next part of the argument, fix m € N. Fix N€ X(m, ¢, ) # N
GL,,(4). Express

(18) m = 2g, + A, where g, € Z and 4, € {0,1}.
We now add a parameter not in [3]. Depending on the type of Cat(p, ¢, §), define
A, as
Ao for Type I,
(19) A =10 for Type II or IV,
1 for Type IIL
Let

(20) Y(N) = {C € GL,,(H) N M,(S) : NIC] € Z(m, ¢, S) #}.

Note that GL,,(S) acts on Y on the right, and the quotient Y(N) /GL,,(S) is fi-
nite. Following Siegel, our first major result is that @(N, 9 is a sum of terms, one
for each C € Y/GL,,(S). The term for C has to do with the structure of N[C] in
Cat(p, ¢, 0).

For

(21) g, heNUI{0}, 4 e {0,1} and p € {— 1,1},
define a polynomial in the indeterminate ¢ by
g+h+i-1

(22) R(g, h, A, mou;0= T Q- g%

j=0

% [(1 + _ @+ agta+a-a Lo ST 103+0,+0,~0 03
n(1l —wq t9 I (Q+gq £,

i=1

https://doi.org/10.1017/5S0027763000004797 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004797

182 PAUL FEIT

where the bracketed part is set equal to 1 if g + 2 = 0. Equation (22) is the cor-
rect form of (9.22) in [3]. We only consider this function when g < h, n =1 if
A=1landA=0ifu=1

The significance of (22) is as follows. Let M € X (m, &, S) # N GL,,(4). Re-
gard M as a hermitian structure on S™. Then M is isomorphic to an orthogonal
sum L L D where L is d-modular and s(D) > 4. Define (g, k, A, 1, ) = (g(M),
hMD, 2A(M), n(M), u(M)) to be the unique tuple which satisfies (21) and

(23) rank(L) = 2g + 4,

rank(D) = h

n = — 1 if and only if L has even rank and is not hyperbolic,

u is the defect of D.
The defect is defined in [3; Definition 8.3], and generalizes the classical notion of
defect in quadratic forms over fields of characteristic 2. It occurs only for Type
IV situations. Define

(24) RM ;) = R(gM), h(M), 2(M), n(M), p(M) ; D).
Now for C € Y(N) /GL,(S), put RN, C; ) = R(NIC]; B. Then
25) alN, B = 5 IO O BN oy

CeY(N)/GL,(S)

We shall isolate the greatest common divisor of the summands in (25).

If there is C € Y(IN) such that N[C] is modular, define 1, = 1,(N) to be 1
unless N[C] has even rank and is not hyperbolic; in the latter case, define 7, =
— 1. If NIC] is not modular for any C, put 5, = 0. For each C € Y(N), define

g+h+2-1

P(N, C : t) — q(r—l)v(c)+v1(C) tZ-u(C) I (1 . qjo3 ta3)

j=8¢t+Ao

1 + 1 . (g+h—10o3+0y t03 grh—2 otor
X[( (;7:" [fg){({l)o+o 0) )] x I (1+q 3+4t3) lf"]o*O, or
T]Oq 0 3 4t 3

(26) e
g+h+i—-1 N
P(N, C : t) — q(r—l)v(CH-vl(C) tz-v(C) I (1 _ qwa tu3)

j=gp+1

h—

g+h-2 ;
% [(1 + 7](1 _ #)q(g+h—1>03+04 t03) I (1 + qws+v4 taz)} i No = 0’

i=g4+A;

where, in the second formula, the bracketed expressionis 1 if g+ h— 1< g, +
A, In fact, P(N, C; D is R(N, C; #) divided by the greatest common factor of
all polynomials R(N, C";#). Define P(N ;) be the sum of P(N,C ;D as C
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varies over Y(N) /GL,,(S). Essentially, P(N ; #) is the troublesome generaliza-
tion of the o-functions that appear in the Eisenstein series for SL,(Q).

4. Hermitian matrices of all ranks
Suppose N, € 2 (m, €°, S) # has the form

N 0]’

27 A

where rEN, N€ 2 (r, &°, S) # N GL,(A). If N, = 0, adopt the convention that
=0 and a(N, ® = 1; all of the formulas that follow will then be valid. Now

(28) a(N,, ) =F,,,® -alN,q""t
where
m—r—1 m—r—1 .
H (1 + qw3+a4 taB) I—I (1 _ qma t03)
(29) F,,) = —"—

(1 _ q(m—1+j)03+05 tzaa)

Define g,, A, 4, and 7, as in the previous section, for the matrix N. (If » = 0, put
g = A, = A, = 0 and 1, = 1) Then a(N,, #) is the product of P(N, ¢ '#) times

m=8ydo2 0440, ,03 m gl __ igy 403
o0 Q+g¢q ) I A —q7 )
1=0 i=0

mr-l (m~1+j)03+0; ,20.
H (1 — q 3 st 3)
j=0

% (1 + Mo q(m—go—10—1)03+a4 t03) if o # 0 and go + 0'

(30)
m—2,—-1 ) m-1
II() (1 + qza3+a4 tas) HO (1 _ qxa3 t03)
[ m_ﬁ_l (1 4 q(m—1+j)03+05 tzaa) ] i 7o 7 0 and £ O’
1=0
m—go—Ag+i~1 m—gy—Ay .
I (1 + qw3+a4 ta3) I (1 _ qw3 t03)

_ﬁ‘l (1 + gm1+os+os 205y
=0

Table (30) is the correct form of [3; Theorem 5.3].
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5. On a question by Professor Nagaoka

Let F, be a totally real number field, let K,/F, be a purely imaginary
quadratic extension field and let o, be the Galois involution of K,/F,. Let ¢ be
the ideal character of K,/F, Let % be a finite prime of F,, let F be the localiza-
tion of Fy at #, and let K = K, &, F and o = p, ®F°1F. Let @ be a local gener-
ator of ®, and put ¢ = N®. To normalize our series, we need to compare v(w)
with |w ]y = ¢.

Let p be the rational prime which divides ¢, and let  be a generator of the
discriminant of F/Q, On Q,, define x, by x,() = ¢™ for r € Q any rational
such that » + ¢t € Z,. Define xr to be the composition of x, with the trace func-
tion of F/Q,. If M is any square matrix over K whose trace f lies in F, define
x (M) = xp (D).

Let /2 be a non-zero member of the different of F'/Q,— that is, the fraction-
al ideal generated by 6 ' — and let b € N U {0} such that &’ divides %6 while
"™ does not. We claim that

6y a(s, [ﬁ g]) = 1-¢1 = ¢@qgHA - ¢(@)q2‘3>‘1(§ 7).

where the a-series derives from Eisenstein series for the hermitian modular group
of genus 2 asin [1] or [4). Here, m =2, r=1land e = ¢’ = 1.

The justification of (31) depends on the behavior of ¥ in K. Different factor-
izations for % in S require different tables.

Case I. @ splits.
This is the situation not discussed in the present addendum. Here, K = F P F,
and [3; Part I] applies. Inspection shows that v(w) = 1, so

(s [g o)) =ellg ol )

Although the discriminant is not mentioned by name in [3; Part 1], it is referred to
in its role as genarator of the fractional ideal

I={seF:xR-s ={1}}.

The indexing set for the polynomial p(E, P defined in [3; (2.4)] for the 1 X 1 mat-
rix (0h) can be represented by {w’};_,. Thus,

(32) 2, D=3 F.
=0
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Using [3; (2.6)] for parameters k=#7=2,m =1 and o (as defined in [3;
Theorem 2.1]) equal to 1, we get

Mw-

(33) c‘t?(s, [h O]) =1-¢0-¢"90- q2_s)_1<

7(3—5)
00 1 ) :

[

W

7

Since ¢(®) =1, (33)is (31).

All remaining cases refer to the new tables. Let us make some general com-
ments.

Hereafter, we assume K is a field extension of F. Let S be its ring of integers,
and let Jx be its discriminant as a Q,-extension. Let 7 be a generator of the prime
of S.

We begin with a minor issue of normalization. For M a square matrix over K,
define (M) to be the image of M's trace under the trace map of K/F. Now [3;
Part II] consider matrix characters of the form {°7. The character used in [1] or
[4] is not xp°7. Because the character is evaluated only on matrices whose trace is
in F, there is no need to apply the trace of the extension K/F. However, we can
describe this standard character as x’° 7 where x'(x) = xz(x/2)! Thus, the
series of [3; Part II] do emulate the standard local integrals.

As in Case I, the discriminant 0 plays a role. Let k¥ € N. The dual lattice
>k, &, S) # consists of all k X k (o, 1)-hermitian matrices whose diagonal en-
tries lie in the fraction F-ideal generated by 6~ and whose off-diagonal entries
lie in the fractional K-ideal generated by 0y . Again, we fix # € § 'R.

The key parameters specialize as

(34 06=2,0,=10,=0,0,=2,0,=1, 0,=2,

v(n) = 2, v(x) = 2 if # is unramified,
c6=2,00=10,=0,0,=1,0,=0, 0,=1,
vim) =1, py(m) =1 if # ramifies.

The unramified situation will divide into two cases.

Regardless of ramification, ¢ > g, + 0,. Thus, Cat(p, 1, d) is of Type I or
Type III. In particular, the defect of any hermitian lattice will be 0. Classically,
the defect is a concept related to quadratic forms rather than hermitian forms. Its
present irrelevance is not surprising.

Regardless of ramification, v(w) = 2. This means that we wish to replace the
variable f by q—S/2 to get the appropriate Dirichlet series. In general, the exponen-
tial constant factor will be 1 /0.

We generate the polynomial for the matrix N = (k). In this calculation,
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g, =0 and 4, = 1. The n term for N[C] will always be 1, while 5, could be 0 or
1, depending on h.

Case II: P is unvamified, b = 2y is even.

The polynomial P(N ;) is a sum indexed by matrices ¢ = (w”") for 0 < x
< y. When 2 =y, Nlcl is modular, hence, 5, = 1, and P(N, " ; ) = ¢”t*. For
0 < x <y, the key parameters are g =0, 2=1, A =0, 7 =1 and ¢ = 0, which

yields
P(N, wz; t) — qzz t41(1 + qtz) — qutm + q21+1 t2(21+1).
Consequently,
Y
PN ;b= ‘_Zo qt’.
(35) ”

W3 0 NN
PN ;qt) =2q¢"t"=Z(qg t).
i=0 j=0

The extra factor (30) works out to be

A+gHA -0 -¢"F) _ QA+gHA 1)
1 -q'th A+qt)

Now replace ¢ by q_S/2 and combine the terms to get
b

(36) (1 _ q—S)(l + ql—S) (1 + qZ—S)—l {Z q](3_S)}_
=0

This is exactly (31) after replacing ¢(P) = — 1.

Case 11I: P unramified, b = 2y + 1 is odd
In this case, 7, = 0, and we use different formulas. Since the relevant categ-
ory is Type I or Type III, the parameter A, must be 1. For 0 < x < y, the para-
metersare g =0, h=1,4A=0,n=1, £ =0, and
PN, &"; ) = ¢™ t*.

The combined factor is

A+¢HA+HA-HA -4 ) {i qajtu]
a—q'th i=0
&7 Q+q¢tH0 -1
q - 3,0y & 6j,44
= 14+4¢°¢t) 2q7't
i Naranger)
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_(a+ (1 — 9 [a 37,2
=1 (1q+q2t2) & o

=0
Again after substitution t = ¢~ we get (31) with ¢(®) = — 1.

Case IV: P is ramified

We may choose that w = mx”. Since # is ramified, Cat(p, 1, 0) is Type IIL
Thus, g =0, 4, =1 and 1, =0. For each 0 <x < b, P(N, n;# has para-
meters g =0, h=1,A=0,n =1 and g = 0. We get

b b .
(38) PNt =3¢ t¥ and PN ; g0 = ¢7t7.
=0 j=0
Happily, the extra factor (30) simplifies:
1+H00+g)Q —8HA — gt
( ) (1 + gt) ( ) ( q)z(l—tz).

a-4t

The net rational factor becomes

(39) 1—8) 5.

1=0

/

After substitution t = ¢q~° 2 we get (31) with Q@) = 0.
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