SYSTEMS OF EQUATIONS AND GENERALIZED CHARACTERS IN GROUPS

I. M. ISAACS

Let F be the free group on n generators X_{1}, \ldots, X_{n} and let G be an arbitrary group. An element $\omega \in F$ determines a function $x \rightarrow \omega(x)$ from n-tuples $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in G^{n}$ into G. In a recent paper [5] Solomon showed that if $\omega_{1}, \omega_{2}, \ldots, \omega_{m} \in F$ with $m<n$, and K_{1}, \ldots, K_{m} are conjugacy classes of a finite group G, then the number of $x \in G^{n}$ with $\omega_{i}(x) \in K_{i}$ for each i, is divisible by $|G|$. Solomon proved this by constructing a suitable equivalence relation on G^{n}.

Another recent application of an usual equivalence relation in group theory is in Brauer's paper [1], where he gives an elementary proof of the Frobenius theorem on solutions of $x^{k}=1$ in a group.

In this paper we define an equivalence relation on G^{n} which reduces to Brauer's when $n=1$. This relation is quite similar to Solomon's, and using it together with some of Solomon's methods and a crucial lemma from Brauer's paper, the following common generalization of Frobenius' and Solomon's results is proved.

Theorem A. Let G be a finite group and suppose that $\omega_{1}, \omega_{2}, \ldots, \omega_{m} \in F$ with $m<n$. Let K_{i} and L_{j} be conjugacy classes of G for $1 \leqq i \leqq m$ and $1 \leqq j \leqq n$. Suppose that $k\left||G|\right.$. Then the number of $x=\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$ with $\omega_{i}(x) \in K_{i}$ and $x_{j}{ }^{k} \in L_{j}$ for all i and j is divisible by k.

Finally, using Brauer's characterization of characters, we prove the following result which was conjectured by Solomon and proved by him for "special" ω_{i}. (See the definition preceding Lemma 4.)

Theorem B. Let G, ω_{i}, and K_{i} be as in Theorem A. For $1 \leqq j \leqq n$ and $t \in G$, let $\theta_{j}(t)$ be the number of $x=\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$ with $x_{j}=t$, such that $\omega_{i}(x) \in K_{i}$ for each i. Then θ_{j} is an R-linear combination of characters of G, where $R=\mathbf{Z}[\epsilon]$, ϵ a primitive $|G|$ th root of 1 .

1. In this section, let G be an arbitrary group and fix a subgroup $H \subseteq G$. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in G^{n}$ set $H_{x}=\left\{h \in H \mid h^{x_{j}}=h^{x_{1}}\right.$ for $\left.1 \leqq j \leqq n\right\}$. Thus if $n=1$, we have $H_{x}=H$. For $x \in G^{n}$, write $\langle x\rangle=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \subseteq G$. Define

$$
N_{x}=\bigcap_{g \in\langle x} H_{x}{ }^{g}
$$

Received January 12, 1970.

We have then $\langle x\rangle \subseteq \mathbf{N}\left(N_{x}\right)$ and $N_{x} \subseteq H_{x} \subseteq H$. Note that H_{x} and N_{x} are subgroups of G. For $x=\left(x_{1}, \ldots, x_{n}\right)$ and $t \in G$, write $x t=\left(x_{1} t, x_{2} t, \ldots, x_{n} t\right)$. Now, for $x, y \in G^{n}$, write $x \equiv y$ if there exists $t \in N_{x}$ with $y=x t$. To emphasize the dependence on H, we will sometimes write $x \equiv_{H} y$.

Lemma 1. The relation \equiv is an equivalence relation on G^{n}.
Proof. First we show that if $x \equiv y$, then $N_{y} \supseteq N_{x}$. We have $y=x s$ for $s \in N_{x}$. Let $h \in N_{x} \subseteq H_{x}$. Then $h^{x_{j}^{s}}=h^{x_{1} s}$ and $h \in H_{y}$. Thus $N_{x} \subseteq H_{y}$. Now $\langle y\rangle \subseteq\langle\langle x\rangle, s\rangle \subseteq \mathbf{N}\left(N_{x}\right)$. Hence, if $g \in\langle y\rangle$, then $H_{y}{ }^{g} \supseteq N_{x}{ }^{g}=N_{x}$. Therefore $N_{y}=\cap H_{y}{ }^{g} \supseteq N_{x}$.

Now \equiv is clearly reflexive. If $x \equiv y$, then $y=x s$ for $s \in N_{x} \subseteq N_{y}$, and so $x=y s^{-1}$ and $s^{-1} \in N_{y}$. Thus $y \equiv x$. Also $N_{x}=N_{y}$.

Finally, if $y=x s$ and $z=y t$ with $s \in N_{x}$ and $t \in N_{y}=N_{x}$, then $z=x s t$ and $s t \in N_{x}$, so that \equiv is transitive. The proof is complete.

For $\omega \in F$, we define the length $l(\omega)$ to be the sum of the absolute values of the exponents in a reduced word defining ω. We have for $\omega \neq 1, \omega=X \omega_{0}$, where $X=X_{j}$ or $X=X_{j}^{-1}$ and $l\left(\omega_{0}\right)=l(\omega)-1$.

Lemma 2. Let $\omega \in F$. Then there exist $\omega_{i} \in F$ for $1 \leqq i \leqq l(\omega)$ and $\epsilon_{i}= \pm 1$ such that

$$
\omega(x t)=\omega(x) \prod_{i}\left(t^{\epsilon_{i}}\right)^{\omega_{i}(x)}
$$

for all $x \in G^{n}$ and $t \in G$.
Proof. By induction on $l(\omega)$. The lemma is trivial when $l(\omega)=0$. Suppose then that $\omega=X \omega_{0}$, where $X=X_{j}$ or X_{j}^{-1} and $l\left(\omega_{0}\right)=l(\omega)-1$. By the inductive hypothesis, ω_{i} and ϵ_{i} can be defined for ω_{0}, with $2 \leqq i \leqq l(\omega)$ and

$$
\omega_{0}(x t)=\omega_{0}(x) \prod_{i=2}^{l(\omega)}\left(t^{\epsilon_{i}}\right)^{\omega_{i}(x)}
$$

Suppose that $X=X_{j}$. Then

$$
\omega(x t)=x_{j} t \omega_{0}(x t)=x_{j} t \omega_{0}(x) \prod_{i=2}^{l(\omega)}\left(t^{\epsilon_{i}}\right)^{\omega_{i}(x)} .
$$

However, $t \omega_{0}(x)=\omega_{0}(x) t^{\omega 0}(x)$ and we may take $\omega_{1}=\omega_{0}$ and $\epsilon_{1}=1$ to prove the result in this case. If we have $X=X_{j}^{-1}$, then

$$
\omega(x t)=\left(x_{j} t\right)^{-1} \omega_{0}(x t)=t^{-1} x_{j}^{-1} \omega_{0}(x) \prod_{i=2}^{l(\omega)}\left(t^{\epsilon i}\right)^{\omega_{i}(x)}=\omega(x)\left(t^{-1}\right)^{\omega(x)} \prod_{i=2}^{l(\omega)}\left(t^{\epsilon i}\right)^{\omega_{i}(x)}
$$

and the result follows if we take $\omega_{1}=\omega$ and $\epsilon_{1}=-1$.
Corollary 3. Let $\omega \in F$ and let $x \equiv y$. Then $\omega(y)=\omega(x)$ sfor some $s \in N_{x}$.
Proof. We have $y=x t$ with $t \in N_{x}$. By Lemma 2, we may take $s=\Pi_{i}\left(t^{\epsilon i}\right)^{\omega_{i}(x)}$. However, $\omega_{i}(x) \in\langle x\rangle \subseteq \mathbf{N}\left(N_{x}\right)$ so that $s \in N_{x}$ and the result follows.

For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in G^{n}$, let $\bar{x}=\left(x_{1}, x_{1}, \ldots, x_{1}\right)$. For $\omega \in F$, define the degree, $d(\omega)$, to be the algebraic sum of the exponents of a reduced word for ω. If $\omega(\bar{x})=1$ for all $x \in G^{n}$, we shall call ω special. Clearly, ω is special if $d(\omega)=0$.

Lemma 4. Let $t \in N_{x}$ and $\omega \in F$. Then $t^{\omega(x)}=t^{\omega(\bar{x})}$.
Proof. Use induction on $l(\omega)$. If $l(\omega)=0$, the result is trivial. Assume that $l(\omega)>0$ and write $\omega=\omega_{0} X$ where $X=X_{j}$ or X_{j}^{-1} and $l\left(\omega_{0}\right)=l(\omega)-1$. We have $t^{\omega}(x)=t^{\omega_{0}(x) x_{j} \epsilon}=t^{\omega_{0}(\bar{x}) x^{\epsilon}}$, where $\epsilon= \pm 1$. Now $s=t^{\omega_{0}(\bar{x})} \in N_{x}$ and $t^{\omega(\bar{x})}=t^{\omega 0}(\bar{x}) x_{1}{ }^{\epsilon}=s^{x_{1}{ }^{\epsilon}}$. It thus suffices to show $s^{x_{j}{ }^{\epsilon}}=s^{x_{1}{ }^{\epsilon}}$. If $\epsilon=+1$, this is immediate since $s \in N_{x} \subseteq H_{x}$. Now $s^{x_{j}-1} \in N_{x}$ and hence

$$
s^{x_{1}-1 x_{1}}=s=\left(s^{x_{j}-1}\right)^{x_{j}}=s^{x_{j}-1 x_{1}} .
$$

Thus $s^{x_{1}-1}=s^{x_{j}^{-1}}$ and the lemma follows.
Lemma 5. Let $\omega \in F$ be special and suppose that $x \equiv y$. Then $\omega(x)=\omega(y)$.
Proof. We have $y=x t$ for $t \in N_{x}$ and thus

$$
\omega(y)=\omega(x) \Pi\left(t^{\epsilon} i\right)^{\omega i(x)}=\omega(x) s .
$$

Since $t^{i} \in N_{x}$, it follows by Lemma 4 that $s=\Pi\left(t^{\epsilon i}\right)^{\omega_{i}(\bar{x})}$. Therefore, $\omega(\bar{y})=\omega(\bar{x}) s$ by Lemma 2. However, since ω is special, we have $\omega(\bar{x})=$ $\omega(\bar{y})=1$ and thus $s=1$ and the result follows.

Now any automorphism σ of G permutes the elements of G^{n} by

$$
x^{\sigma}=\left(x_{1}, \ldots, x_{n}\right)^{\sigma}=\left(x_{1}{ }^{\sigma}, \ldots, x_{n}{ }^{\sigma}\right) .
$$

If σ fixes H and $x \equiv_{H} y$, then clearly $x^{\sigma} \equiv_{H} y^{\sigma}$ and thus σ permutes the \equiv_{H} conjugacy classes. In particular, conjugation by elements of H permutes these classes and we shall denote by \sim_{H} the equivalence relation on G^{n} whose classes are the unions of sets of \equiv_{H} classes, conjugate under the action of H. If there is no danger of ambiguity we shall write \sim instead of \sim_{H}. Note that $x \sim y$ if and only if there exists $t \in N_{y}$ and $h \in H$ with $x=(y t)^{h}$.

Corollary 6. Let $\omega \in F$ be special and suppose that $x \sim y$. Then $\omega(y)=\omega(x)^{h}$ for some $h \in H$.

Proof. We have $x \equiv z$ and $y=z^{h}$ for some $z \in G^{n}$ and $h \in H$. Then

$$
\omega(y)=\omega\left(z^{h}\right)=\omega(z)^{h}=\omega(x)^{h}
$$

where the last equality follows by Lemma 5.
Lemma 7. Assume that H is finite and let $x \in G^{n}$. Then the class of x under \sim has cardinality $|H|$ and is the union of $\left|H: N_{x}\right|$ classes under \equiv.

Proof. Let \mathscr{C} be a class under \equiv, and let $\mathscr{O}=\left\{\mathscr{C}^{h} \mid h \in H\right\}$. Then the \sim class containing \mathscr{C} has cardinality $|\mathscr{O}||\mathscr{C}|$. Let $x \in \mathscr{C}$, so that $|\mathscr{C}|=\left|N_{x}\right|$.

Let $T=\left\{h \in H \mid \mathscr{C}^{h}=\mathscr{C}\right\}$. We claim that $T=N_{x}$ and thus $|\mathscr{O}|=\left|H: N_{x}\right|$ and the result will follow.

First, $N_{x} \subseteq T$ for if $t \in N_{x}$ then $x_{j}{ }^{t}=t^{-1} x_{j} t=x_{j}\left(t^{-1}\right)^{x_{i}} t=x_{j}\left(t^{-1}\right)^{x_{1}} t$. Now $s=\left(t^{-1}\right)^{x} t \in N_{x}$ is independent of j and so $x^{t}=x s \equiv x$. Thus $\mathscr{C}^{t}=\mathscr{C}$.

Conversely, suppose that $s \in T$. Then $x^{s}=x t$ for some $t \in N_{x}$. Thus $x_{j}{ }^{s}=x_{j} t$ and we obtain $s^{x_{i}}=s t^{-1}$ and is independent of j. Thus $T \subseteq H_{x}$. Furthermore, $s t^{-1} \in T$ and the equation $s^{x_{j}}=s t^{-1}$ shows that $x_{j} \in \mathbf{N}(T)$. Thus $\langle x\rangle \subseteq \mathbf{N}(T)$ and hence

$$
T \subseteq \bigcap_{o \in\{x\rangle} H_{x}^{g}=N_{x}
$$

The proof is complete.
2. The results already accumulated are sufficient to prove the theorems when only special $\omega \in F$ are involved. In this section we discuss a slight refinement of Solomon's method of treating the general situation.

For $\omega \in F$, we define a row vector $[\omega]$ over the integers, Z. Set $[\omega]=\left(r_{1}, \ldots, r_{n}\right)$ where r_{j} is the sum of the exponents of X_{j} in a reduced word for ω. In particular then, the sum of the entries of $[\omega]$ is $d(\omega)$. For any group G, ω defines a map $G^{n} \rightarrow G$. Taking $G=F$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in F^{n}$, we have $\omega(\alpha) \in F$. It is clear that $[\omega(\alpha)]$ is given by $[\omega] M$, where $M=M(\alpha)$ is the $n \times n$ matrix whose i th row is [α_{i}].

Again let G be an arbitrary group. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in F^{n}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$. We define $\alpha \cdot x=\left(\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{n}(x)\right) \in G^{n}$. In particular, if $F=G$, this defines a product on F^{n}. If $\alpha, \beta \in F^{n}$, then the i th row of $M(\alpha \cdot \beta)$ is $\left[\alpha_{i}(\beta)\right]=\left[\alpha_{i}\right] M(\beta)$. It follows that $M(\alpha \cdot \beta)=M(\alpha) M(\beta)$.

Lemma 8. For $\alpha \in F^{n}, \omega \in F$, and $x \in G^{n}$, we have $\omega(\alpha \cdot x)=(\omega(\alpha))(x)$.
Proof. Let π be the homomorphism from F into G with $\pi\left(X_{j}\right)=x_{j}$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. Then $\pi(\omega)=\omega(x)$ for any $\omega \in F$. Then $(\omega(\alpha))(x)=\pi(\omega(\alpha))=\omega\left(\pi\left(\alpha_{1}\right), \ldots, \pi\left(\alpha_{n}\right)\right)=\omega\left(\alpha_{1}(x), \ldots, \alpha_{n}(x)\right)=\omega(\alpha \cdot x)$.

Corollary 9. For $\alpha, \beta \in F^{n}$ and $x \in G^{n}$, we have $\alpha \cdot(\beta \cdot x)=(\alpha \cdot \beta) \cdot x$. Also, the product defined on F^{n} is associative.

Proof. The first statement follows by applying Lemma 8 to $\alpha_{i}(\beta \cdot x)$. The second follows by taking $G=F$.

Let $I=\left(X_{1}, \ldots, X_{n}\right) \in F^{n}$. Then $\alpha \cdot I=\alpha=I \cdot \alpha$ for all $\alpha \in F^{n}$. Let (5) $\subseteq F^{n}$ consist of those elements which are invertible in the semigroup F^{n}, so that (5) is a group. The permutations of F^{n} given by $\beta \rightarrow \alpha \cdot \beta$ for $\alpha \in(5)$ are called Neilsen transformations (see [4, Chapter 3]) and have been studied as part of the theory of free groups. The next result is essentially [4, Corollary 3.5.1].

Lemma 10. The restriction of the mapping M to (5) is a homomorphism of (5) onto $\mathrm{GL}(n, \mathbf{Z})$.

Proof. We have already seen that $M(\alpha \cdot \beta)=M(\alpha) M(\beta)$ for all $\alpha, \beta \in F^{n}$. Since $M(I)$ is the identity in $\operatorname{GL}(n, \mathbf{Z})$, it follows that M maps (B_{5} into $\mathrm{GL}(n, \mathbf{Z})$. It suffices to show that a set of generators for $\mathrm{GL}(n, \mathbf{Z})$ lies in $M\left((6)\right.$. For a permutation π of $\{1,2, \ldots, n\}$, let $\alpha_{\pi}=\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right) \in F^{n}$. Clearly, $\alpha_{\pi} \in(6)$ and $M\left(\alpha_{\pi}\right)$ is the permutation matrix associated with π. Let $\beta=\left(X_{1} X_{2}, X_{2}, \ldots, X_{n}\right)$ and $\gamma=\left(X_{1}^{-1}, X_{2}, \ldots, X_{n}\right)$. Now $\left.\beta \in \mathbb{F}\right)$ since $\beta^{-1}=\left(X_{1} X_{2}{ }^{-1}, X_{2}, \ldots, X_{n}\right)$ and $\gamma^{-1}=\gamma$ so that $\gamma \in$ (5. By [2, p. 85], $M(\beta), M(\gamma)$, and the permutation matrices generate $\operatorname{GL}(n, \mathbf{Z})$.

Lemma 11. Let $\omega_{1}, \omega_{2}, \ldots, \omega_{m} \in F$ with $m<n$. Then there exists $\alpha \in$ (3) such that $d\left(\omega_{i}(\alpha)\right)=0$ for $1 \leqq i \leqq m$.

Proof. Let A be the $m \times n$ matrix with rows [ω_{i}]. Since $m<n$, the columns of A are linearly dependent. Let V be the n-dimensional column space over \mathbf{Z} so that there exist $v \in V$ with $A v=0$ but $v \neq 0$. Let $V_{0}=\{v \in V \mid A v=0\}$ so that V_{0} is a pure submodule of V and thus is a direct summand of V. Let V_{1} be the set of $v \in V$ with all entries equal. Then V_{1} is also a pure submodule of V and hence a direct summand. It follows that for some $B \in \operatorname{GL}(n, \mathbf{Z})$ and $v_{0} \in V_{0}, v_{1} \in V_{1}$ with $v_{1} \neq 0$, that $B v_{1}=v_{0}$. Then $(A B) v_{1}=A v_{0}=0$. It follows that each row sum in the matrix $A B$ is 0 and the i th row of $A B$ is $\left[\omega_{i}\right] B$. Now $B=M(\alpha)$ for some $\alpha \in(5)$ and $\left[\omega_{i}\right] B=\left[\omega_{i}\right] M(\alpha)=\left[\omega_{i}(\alpha)\right]$. It follows that $d\left(\omega_{i}(\alpha)\right)=0$.
3. In this section we prove three consequences of our lemmas, including the two theorems stated in the introduction. Let G be a finite group and let $\omega_{1}, \omega_{2}, \ldots, \omega_{m} \in F$, the free group on n generators. Assume either that $m<n$ or that all ω_{i} are special. Let $K_{1}, K_{2}, \ldots, K_{m}$ be normal subsets of G. We shall say that $x \in G^{n}$ is a solution if $\omega_{i}(x) \in K_{i}$ for all $i, 1 \leqq i \leqq m$.

Lemma 12. There exists $\alpha \in(5)$ such that if x is a solution and $\alpha^{-1} \cdot x \sim_{H} \alpha^{-1} \cdot y$ for any subgroup $H \subseteq G$, then y is a solution.

Proof. Choose $\alpha \in(\oiint)$ such that $\omega_{i}(\alpha)$ is special for $1 \leqq i \leqq m$. (If $m<n$, this can be done by Lemma 11; otherwise, by hypothesis, each ω_{i} is special and we may take $\alpha=I$.) For any $z \in G^{n}$ we have (using Lemma 8)

$$
\omega_{i}(\alpha)\left(\alpha^{-1} \cdot z\right)=\omega_{i}\left(\alpha \cdot\left(\alpha^{-1} \cdot z\right)\right)=\omega_{i}(I \cdot z)=\omega_{i}(z)
$$

In particular, $\omega_{i}(\alpha)\left(\alpha^{-1} \cdot x\right) \in K_{i}$. By Corollary 6 ,

$$
\omega_{i}(y)=\omega_{i}(\alpha)\left(\alpha^{-1} \cdot y\right) \in K_{i}{ }^{h}=K_{i}
$$

for some $h \in H$. The proof is complete.
Theorem 13. Let $H \subseteq G$ and let k_{j} be an integer for $1 \leqq j \leqq n$. Then the number of solutions $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with the additional property that $x_{j}{ }^{{ }_{j}} \in H$ for all j, is divisible by $|H|$.

Proof. Choose $\alpha \in(5)$ as in Lemma 12. Suppose that x is a solution with $x_{j}{ }^{k_{i}} \in H$. Let $\mathscr{S}=\left\{y \in G^{n} \mid \alpha^{-1} \cdot x \sim_{H} \alpha^{-1} \cdot y\right\}$. By Corollary 9, it follows
that the functions $u \rightarrow \alpha \cdot u$ and $u \rightarrow \alpha^{-1} \cdot u$ are inverses on G^{n} and thus $|\mathscr{S}|=|H|$ since the \sim_{H} class of $\alpha^{-1} \cdot x$ contains exactly $|H|$ elements by Lemma 7. By Lemma 12, each $y \in \mathscr{S}$ is a solution and the proof will be complete when we show that $y_{j}{ }^{k_{j}} \in H$ for $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathscr{S}$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, and let $u=\alpha^{-1} \cdot x, v=\alpha^{-1} \cdot y$ and $u \equiv_{H} w, v=w^{h}$ with $h \in H$. Then $y_{j}=\alpha_{j}(v)=\alpha_{j}\left(w^{h}\right)=\alpha_{j}(w)^{h}$ and $y_{j}{ }^{h-1}=\alpha_{j}(w)=\alpha_{j}(u) t$ for some $t \in N_{u}$ by Corollary 3. Now $x_{j}=\alpha_{j}(u) \in\langle u\rangle \subseteq \mathbf{N}\left(N_{u}\right)$ and thus $\left(y_{j}{ }^{h-1}\right)^{k_{j}}=\left(x_{j} t\right)^{k_{j}} \in x_{j}{ }^{k_{i}} N_{u} \subseteq H$. It follows that $y_{j}{ }^{k_{i}} \in H$, and the proof is complete.

Theorem 14. Let $k\left||G|\right.$ and let $L_{1}, L_{2}, \ldots, L_{n}$ be conjugacy classes of G. Then the number of solutions $\left(x_{1}, \ldots, x_{n}\right)=x$ with the additional property that $x_{j}{ }^{k} \in L_{j}$ is divisible by k.

Proof. Choose α as in Lemma 12. Let $p^{a} \mid k$ for prime p. We show that the number of $x \in G^{n}$ satisfying the conditions is divisible by p^{a}. Since $p^{a}| | G \mid$, we may choose $H \subseteq G$ so that $|H|=p^{a}$. Let x be a solution satisfying $x_{j}{ }^{k} \in L_{j}$ for all j and let $\mathscr{S}=\left\{y \in G^{n} \mid \alpha^{-1} \cdot x \sim_{H} \alpha^{-1} \cdot y\right\}$. Then as before, $|\mathscr{S}|=|H|=p^{a}$ and every $y \in \mathscr{S}$ is a solution. Our proof will be complete if we show for $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathscr{S}$, that $y_{j}{ }^{k} \in L_{j}$. Suppose that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and let $u=\alpha^{-1} \cdot x, v=\alpha^{-1} \cdot y$ and $u \equiv_{H} w, w^{h}=v$ for $h \in H$. Then, as in the previous proof, $y_{j}{ }^{h^{-1}}=x_{j} t$ with $t \in N_{u}$ and $x_{j} \in \mathbf{N}\left(N_{u}\right)$. Consider the group $B=\left\langle N_{u}, x_{j}\right\rangle$. By the lemma of Brauer's paper [1] applied to B, it follows that $x_{j}{ }^{\nu}$ and $\left(x_{j} t\right)^{\nu}$ are conjugate in B, where $\nu=\left|N_{u}\right|$ divides k. Thus $x_{j}{ }^{k}$ and $y_{j}{ }^{k}$ are conjugate in G and the result follows.

Theorem 15. Let $R=\mathbf{Z}[\epsilon]$, where ϵ is a primitive $|G|$ th root of 1 . Suppose that the K_{j} are conjugacy classes of G. Let $\mathscr{S}_{j}(g)=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in G^{n} \mid x\right.$ is a solution and $\left.x_{j}=g\right\}$. Set $\theta_{j}(g)=\left|\cdot \mathscr{S}_{j}(g)\right|$. Then θ_{j} is an R-linear combination of characters of G.

Proof. By Brauer's theorem on induced characters, every character of G is a Z-Linear combination of induced characters of linear characters of subgroups of G (see [3, Theorem 40.1]). By Frobenius reciprocity, it suffices to show, for $H \subseteq G$ and λ a linear character of H, that

$$
\frac{1}{|H|} \sum_{h \in H} \theta_{j}(h) \lambda(h) \in R .
$$

Fix a particular subgroup H and linear character λ and denote the above sum by ξ. Choose $\alpha \in\left(\mathfrak{j}\right.$ as in Lemma 12 and let $\mathscr{T}_{j}(g)=\left\{\alpha^{-1} \cdot x \mid x \in \mathscr{S}_{j}(g)\right\}$. Then if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, we have $g=\alpha_{j}(y)$ for $y \in \mathscr{T}_{j}(g)$. Since $\theta_{j}(g)=$ $\left|\mathscr{T}_{j}(g)\right|$, we have

$$
\begin{aligned}
\xi & =\frac{1}{|H|} \sum_{n \in H} \sum_{y \in \mathscr{F}_{j}(h)} \lambda\left(\alpha_{j}(y)\right) \\
& =\frac{1}{|H|} \sum_{y \in \mathscr{F}_{j}} \lambda\left(\alpha_{j}(y)\right)
\end{aligned}
$$

where $\mathscr{T}_{j}=\bigcup_{h \in H} \mathscr{T}_{j}(h)$. Clearly, $y \in \mathscr{T}_{j}$ if and only if $\alpha \cdot y$ is a solution and $\alpha_{j}(y) \in H$. Suppose that $y \in \mathscr{T}_{j}$ and $y \sim_{H} z$. Then $\alpha \cdot z$ is a solution and $\alpha_{j}(z)=\left(\alpha_{j}(y) s\right)^{h}$ for some $s \in N_{y}$ and $h \in H$ by Corollary 3. Since $\alpha_{j}(y) \in H$, it follows that $\alpha_{j}(z) \in H$ and $z \in \mathscr{T}_{j}$. Therefore, \mathscr{T}_{j} is a union of classes under \sim_{H}. Let \mathscr{C} be the class of y under \equiv_{H} and let

$$
\eta=\frac{1}{\left|N_{y}\right|} \sum_{z \in \mathscr{G}} \lambda\left(\alpha_{j}(z)\right)
$$

If \mathscr{C} is replaced by \mathscr{C}^{h} for any $h \in H$, then the value of η remains unchanged since

$$
\lambda\left(\alpha_{j}\left(z^{h}\right)\right)=\lambda\left(\alpha_{j}(z)^{h}\right)=\lambda\left(\alpha_{j}(z)\right)
$$

Since the \sim_{H} class \mathscr{C}^{*}, containing y, is the union of $\left|H: N_{y}\right|$ such conjugates of \mathscr{C}, by Lemma 7 , it follows that

$$
\eta=\frac{1}{|H|} \sum_{z \in \mathscr{G}^{*}} \lambda\left(\alpha_{j}(z)\right) .
$$

Thus ξ is a sum of quantities of the form η and it suffices to show that $\eta \in R$.
Apply Lemma 2 to α_{j} and pick $\omega_{i} \in F$ and $\epsilon_{i}= \pm 1$ with $\alpha_{j}(y t)=$ $\alpha_{j}(y) \Pi\left(t^{\epsilon i}\right)^{\omega_{i}(y)}$. Since $\mathscr{C}=\left\{y t \mid t \in N_{y}\right\}$, we have

$$
\eta=\frac{\lambda\left(\alpha_{j}(y)\right)}{\left|N_{y}\right|} \sum_{i \in N_{y}} \lambda\left(\Pi\left(t^{\epsilon_{i}}\right)^{\omega_{i}(y)}\right)
$$

Now $\omega_{i}(y) \in \mathbf{N}\left(N_{y}\right)$ and thus $\mu(t)=\lambda\left(\Pi\left(t^{\epsilon i}\right)^{\omega_{i}(y)}\right)$ defines a linear character of N_{y}. It follows that $\eta=\lambda\left(\alpha_{j}(y)\right)$ if $\mu=1$ and $\eta=0$ otherwise. In any case, $\eta \in R$, and the proof is complete.

References

1. R. Brauer, On a theorem of Frobenius, Amer. Math. Monthly 76 (1969), 12-15.
2. H. S. M. Coxeter and W. O. Moser, Generators and relations for discrete groups, Second Ed. (Springer-Verlag, New York, 1965).
3. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience, New York, 1962).
4. W. Magnus, A. Karrass, and D. Solitar, Combinational group theory (Interscience, New York, 1966).
5. L. Solomon, The solution of equations in groups, Arch. Math. 20 (1969), 241-247.

University of Wisconsin,
Madison, Wisconsin

