Eighth Meeting, Friday, June 14th, 1895.

John M‘Cowan, Esq., M.A., D.Sc., President, in the Chair.

A Summary of the Theory of the Refraction of their approxi. mately Axial Pencils through a Series of Media bounded by coaxial Spherical Surfaces, with Applications to a Photographic Triplet, \&c.

By Professor Cimrystal.
[The Paper will be published in the next Volume.]

On a Diophantine Equation.
By R. F. Davis, M.A.
In the cousideration of Question 12612 appearing in the Educational Times for January of this year, proposed by the Rev. Dr. Haughton, F.R.S., of Trinity College, Dublin, the following Diophantine Equation suggests itself:

$$
\text { What values of } x \text { make } 8 r^{3}-8 c+16=\square \text { ? }
$$

Since it may be written $8 x\left(\cdot e^{2}-1\right)+16=\square$ it is obvious that $x=0_{1} \pm 1$ are solutions. Also that $r=2$ is a solution. Moreover $x=-\frac{3}{2}$ when substituted gives $-27+12+16=1$ and is therefore a solution,--marking approximately a limit to the negative root.
I. Put $8 x^{3}-8 x+16=\left(p x^{2}+x-4\right)^{2}$; then after reduction and division by $x^{2}$, we have

$$
p^{1} x^{2}-2 x(4-p)+1-8 p=0 \quad \ldots \quad \ldots \quad \ldots \quad(\mathrm{~A})
$$

It will be found that the roots of this equation are real and rational when $8 p^{3}-8 p+16-\square$
which is the same Diophantine Equation as that with which we started.

Hence the values of $x$ obtained by experiment may be used for $p$ in the equation (A) with the certainty of obtaining one or more fresh solutions.

$$
\begin{aligned}
& \text { Thus put } p=0 \text { and we get }-8 x+1=0 \quad x=\frac{1}{8} \\
& \text { " }, p=1, ", \quad x^{2}-6 x+7=0 \quad x=-1 \text { or } 7 \\
& \text { " }, p=1 \quad, \quad, \quad, x^{2}-10 x+9=0 \quad x=+1 \text { or } 9 \\
& " \quad, \quad p=2 \quad, \quad, \quad, 4 x^{2}-4 x+15=0 \quad x=\frac{5}{2}, \frac{3}{2},
\end{aligned}
$$

all depending on the fact that if one root of a quadratic equation be real and rational, so is the other root.
II. The equation (A) may be written

$$
\begin{aligned}
(p x+1)^{2} & =8(x+p) \\
& =16 a^{2}, \quad \text { say } ;
\end{aligned}
$$

whence

$$
p x+1=4 u, \quad \text { and } \quad x+p=2 a^{2}
$$

Thus

$$
\begin{gather*}
x\left(2 a^{2}-x\right)-4 a+1=0 \\
x^{2}-2 a^{2} x+4 a-1=0 \tag{B}
\end{gather*}
$$

and the roots of this equation are real and rational when

$$
a^{4}-4 a+1=\square .
$$

Any value of $x$ satisfying the original problem will, if substituted in (B), give two real and rational values of a. If one of these values of $a$ be substituted in (B) and the equation then solved as regards $x$ we get the original value of $x$ and another value.

Thus we are led (somewhat blindly it is true) to an interminable series of solutions: such as

$$
\begin{gathered}
0,1,-1,2,7,9,15,496 \\
\frac{5}{2},-\frac{3}{2}, \frac{1}{8}, \frac{26}{9},-\frac{7}{9}, \frac{17}{25},-\frac{38}{25}, \frac{39}{49},-\frac{55}{49}, \frac{71}{81}, \text { etc. }
\end{gathered}
$$

