RIGID AND FINITELY V-DETERMINED GERMS OF C^{∞} -MAPPINGS

JACEK BOCHNAK AND TZEE-CHAR KUO

1. The result. Let \mathscr{E} (respectively $\mathscr{E}_{[\mu]}, 0 \leq \mu \leq \infty$) denote the ring of germs at $0 \in \mathbb{R}^n$ of all C^{∞} functions (respectively C^{μ} functions) from \mathbb{R}^n to \mathbb{R} . For a given $\varphi = (\varphi_1, \ldots, \varphi_p) \in \mathscr{E}^p, p \leq n$, where \mathscr{E}^p is the space of all germs of C^{∞} mappings $\mathbb{R}^n \to \mathbb{R}^p$, let $J(\varphi)$ denote the ideal in \mathscr{E} generated by $\varphi_1, \ldots, \varphi_p$ and the Jacobian determinants

$$\frac{D(\varphi_1\ldots,\varphi_p)}{D(x_{i_1},\ldots,x_{i_p})},$$

where $1 \leq i_1 < \ldots < i_p \leq n$. Let

$$\mathscr{M}^{\,\infty}=\{arphi\in\,\mathscr{E}^{lpha}:D^{lpha}arphi(0)\,=\,0,\,|lpha|\,=\,0,\,1\,\ldots\}.$$

Clearly, \mathscr{M}^{∞} is an ideal in \mathscr{E} and $\mathscr{M}^{\infty} = \bigcap_{s=1}^{\infty} \mathscr{M}^{s}$, where \mathscr{M} is the (unique) maximal ideal of \mathscr{E} . For $\varphi \in \mathscr{E}^{p}$ and $s \leq \infty$ denote by

$$j^{s}(\varphi) = \left(\sum_{|\alpha|=0}^{s} \frac{1}{\alpha!} D^{\alpha} \varphi_{1}(0) x^{\alpha}, \ldots, \sum_{|\alpha|=0}^{s} \frac{1}{\alpha!} D^{\alpha} \varphi_{p}(0) x^{\alpha}\right)$$

the Taylor's expansion of φ at 0 up the order *s*, called the *s*-jet of φ , and for $\varphi = (\varphi_1, \ldots, \varphi_p) \in \mathscr{E}_{[\mu]}^p$ let $\mathscr{E}_{[\mu]}(\varphi)$ denote the ideal in $\mathscr{E}_{[\mu]}$ generated by $\varphi_1, \ldots, \varphi_p$.

Definition. We call a given germ $\varphi \in \mathscr{E}^p$ finitely V-determined (respectively C^{μ} -rigid) if there exists a positive integer s for which the following holds: for any $\psi \in \mathscr{E}^p$ with the same s-jet $j^s(\varphi) = j^s(\psi)$, the germs of the varieties $\varphi^{-1}(0)$ and $\psi^{-1}(0)$ are homeomorphic (respectively, one can find a local C^{μ} diffeomorphism $\tau : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ such that $\mathscr{E}_{[\mu]}(\varphi \circ \tau) = \mathscr{E}_{[\mu]}(\psi)$.

For $\varphi \in \mathscr{E}^p$ write

$$Z_{\varphi}(x) = \sum_{i=1}^{p} \varphi_i^{2}(x) + \sum \left[\frac{D(\varphi_1, \ldots, \varphi_p)}{D(x_{i_1}, \ldots, x_{i_p})} (x) \right]^2,$$

the second summation being taken for $1 \leq i_1 < \ldots < i_p \leq n$.

THEOREM 1. For $\varphi \in \mathscr{E}^p$, the following conditions are equivalent:

- (a) For each $\mu \in \mathbf{N}$, φ is C^{μ} -rigid;
- (b) φ is finitely V-determined;
- (c) $Z_{\varphi}(x) \geq c|x|^{\alpha}$ in a neighborhood of 0, where c and α are positive constants; (d) $\mathscr{M}^{\infty} \subset J(\varphi)$.

Received February 29, 1972.

We are merely interested in those φ with $\varphi(0) = 0$; Theorem 1 reduces to triviality if $\varphi(0) \neq 0$.

Observe that if $\varphi \in \mathscr{E}^p$ is finitely *V*-determined then, by definition, the germ of $\varphi^{-1}(0)$ is homeomorphic to the germ of an algebraic variety; if φ is C^{μ} -rigid then the variety $\varphi^{-1}(0)$ can be transformed under a local C^{μ} diffeomorphism of \mathbf{R}^n onto an algebraic variety. For general φ , however, there is no criterion for (the germ of) $\varphi^{-1}(0)$ to be homeomorphic with an algebraic variety. Thom has conjectured that if φ is analytic then this is the case.

The problems concerning sufficiency of jets and finitely determined mappings have been considered by several authors [1; 2; 3; 4; 5; 6; 7; 8; 9; 12; 13]. We recall the definition. Denote by $J^r(n, p)$ the space of *r*-jets of mappings from \mathbf{R}^n to \mathbf{R}^p (this space can be identified with the space of all *p*-tuples $w = (w_1, \ldots, w_p)$ of polynomials w_i of degree $\leq r$ in *n* variables). A jet $w \in J^r(n, p)$ is called *V*-sufficient (respectively C^{μ} -sufficient, $r \leq \mu \leq \infty$) in \mathscr{E}^p if for any $\varphi \in \mathscr{E}^p$ with $j^r(\varphi) = w$, the germs of varieties $w^{-1}(0)$ and $\varphi^{-1}(0)$ are homeomorphic (respectively, there exists a local C^{μ} diffeomorphism τ , such that $\varphi \circ \tau = w$). A germ $\varphi \in \mathscr{E}^p$ is called *finitely* C^{μ} determined if there exists a positive integer *r* such that $j^r(\varphi)$ is C^{μ} -sufficient in \mathscr{E}^p .

Many problems concerning V- and C^{μ} -sufficiency in $J^{r}(n, 1)$ (p = 1) have been solved. In particular, for $\varphi \in \mathscr{E}$, it has been proved in [3] (compare also [1] and [13]) the equivalence of the following four conditions:

(α) For each $\mu \in \mathbf{N}$, φ is finitely C^{μ} -determined;

(β) φ is finitely V-determined:

(γ) $|\text{grad } \varphi(x)| \ge c|x|^{\alpha}$ for $|x| < \delta$, where c, α, δ are positive constants;

(δ) $\mathscr{M}^{\infty} \subset \mathscr{P}(\varphi)$, where $\mathscr{P}(\varphi)$ is the ideal in \mathscr{E} generated by the partial derivatives $\partial \varphi / \partial x_1, \ldots, \partial \varphi / \partial x_m$.

Observe that for $\varphi \in \mathscr{E}^p$, p > 1, conditions (α) and (β) are not equivalent. The fact that φ is finitely V-determined does not even imply that φ is finitely C^0 -determined.

Counterexample (Mather). Let $\varphi(x, y) = (x, y^3)$. It is easy to see that $j^3(\varphi)$ is V-sufficient. But φ is not finitely C⁰-determined. For any $s \in \mathbf{N}$, $\psi_s = (x, y^3 + yx^{2s+1})$ is a realization of $j^3(\varphi)$. But φ and ψ_s have different topological types, since φ is a homeomorphism, while ψ_s is not.

Remarks 1. One can prove that $\varphi \in \mathscr{E}^p$ is C^{∞} -rigid if and only if $J(\varphi)$ is the ideal of definition of \mathscr{E} , i.e. there exists a positive integer s such that $\mathscr{M}^s \subset J(\varphi)$ [4, Theorem 4(b); 13].

2. Observe that if $\varphi \in \mathscr{E}^p$ is an analytic mapping then each of the conditions (a), (b), (c) and (d) in Theorem 1 is equivalent (by Lojasiewicz inequality) to the condition.

(e) In a neighborhood of zero, $Z_{\varphi}(x) = 0$ implies x = 0.

This generalizes Theorem 5 in [8].

2. Proof of Theorem 1. We shall assume that $p \ge 2$. The case p = 1 was explained above. In fact, our proof would not work in the case p = 1.

(a) \Rightarrow (b). This is trivial.

(b) \Rightarrow (c). Observe firstly that if $\varphi \in \mathscr{E}^p$ is finitely V-determined then the (germ of) $\varphi^{-1}(0) \setminus \{0\}$ is either empty or a topological submanifold of codimension p in \mathbb{R}^n . Indeed, suppose the *s*-jet $w = j^s(\varphi)$ of φ is V-sufficient, choose a system of p homogeneous polynomials $h = (h_1, \ldots, h_p)$ of degree s + 1 in such a way that $Z_{w+h}(x) \neq 0$ for all x in a neighborhood of $0 \in \mathbb{R}^n$, $x \neq 0$ (this is possible, for example by [4, Proposition 1(b)]). By assumption, the germs of $\varphi^{-1}(0)$ and $(w + h)^{-1}(0)$ are homeomorphic, but it is clear that $(w + h)^{-1}(0) \setminus \{0\}$ is either empty or a smooth submanifold of \mathbb{R}^n of codimension p.

Now assume that (c) is false, we shall derive a contradiction. We shall find an application $\tilde{\varphi} \in \mathscr{E}^p$ such that $j^{\infty}(\varphi) = j^{\infty}(\tilde{\varphi})$ and the germ of $\tilde{\varphi}^{-1}(0) \setminus \{0\}$ is not a topological manifold (and is not empty). The idea is similar to that in [1] and [8] and is due to S. Lojasiewicz.

Since (c) is false, we can find a sequence $\{a_i\}_{i\in\mathbb{N}}$, $a_i \in \mathbb{R}^n$, $a_i \neq 0$, $a_i \rightarrow 0$, such that for each $s \in \mathbb{N}$,

(*)
$$Z_{\varphi}(a_i) = o(|a_i|^s).$$

For p vectors u_1, \ldots, u_p in \mathbb{R}^n write $d(u_1, \ldots, u_p) = \min\{\alpha_1, \ldots, \alpha_p\}$, where α_k denotes the distance from u_k to the linear subspace of \mathbb{R}^n spanned by the vectors $u_j, j \neq k$, and let $\operatorname{Vol}(u_1, \ldots, u_p)$ denote the p-dimensional volume of the parallelotope with edges u_1, \ldots, u_p . Then $\operatorname{Vol}(u_1, \ldots, u_p) \geq$ $(d(u_1, \ldots, u_p))^p$. Moreover if we write $u_k = (u_{k1}, \ldots, u_{kp})$ then

$$\sum \left| \frac{u_{1i_1}, \ldots, u_{1i_p}}{\ldots \ldots \ldots} \right|^2 = (\operatorname{Vol}(u_1, \ldots, u_p))^2,$$

where $1 \leq i_1 < \ldots < i_p \leq n$. The above formula can be verified by checking the axioms for a volume (see for example [11]).

Now consider $u_k = \text{grad } \varphi_k$ at a_i ; without loss of generality, we may assume that for all $i \in \mathbb{N}$

$$d(\operatorname{grad} \varphi_{1}(a_{i}), \ldots, \operatorname{grad} \varphi_{p}(a_{i})) = \delta_{i}$$

where δ_i = the distance from grad $\varphi_p(a_i)$ to the subspace spanned by grad $\varphi_1(a_i), \ldots$, grad $\varphi_{p-1}(a_i)$. Since

$$Z_{\varphi}(a_i) = \sum_{k=1}^p \varphi_k^2(a_i) + (\operatorname{Vol}(\operatorname{grad} \varphi_1(a_i), \ldots, \operatorname{grad} \varphi_p(a_i))^2 \ge \sum_{k=1}^p \varphi_k^2(a_i) + \delta_i^{2p},$$

condition (*) implies that

(1) $|\varphi_k(a_i)| = o(|a_i|^s)$, for all $s \in \mathbb{N}$ and $1 \leq k \leq p$;

(2)
$$\delta_i = o(|a_i|^s)$$
, for all $s \in \mathbb{N}$.

To complete the proof we need the following

J. BOCHNAK AND T. KUO

LEMMA. Let $\{u_i^{(1)}, \ldots, u_i^{(p)}\}_{i \in \mathbb{N}}$ be a sequence of p-tuples of vectors in \mathbb{R}^n . Suppose there is a sequence of positive numbers $\alpha_i, \alpha_i \to 0$ such that for all $s \in \mathbb{N}$

$$\delta_i = o(\alpha_i^s),$$

where δ_i = the distance from $u_i^{(p)}$ to the linear subspace spanned by $u_i^{(1)}, \ldots, u_i^{(p-1)}$.

Then we can find a sequence $\{\lambda_i^{(2)}, \ldots, \lambda_i^{(p)}\}_{i \in \mathbb{N}}$ of (p-1)-tuples of vectors in \mathbb{R}^n , satisfying the following three conditions:

(i) For all $s \in \mathbf{N}$, $|\lambda_i^{(k)}| = o(\alpha_i^s)$, $2 \leq k \leq p$;

(ii) For each $i \in \mathbf{N}$, $u_i^{(2)} + \lambda_i^{(2)}, \ldots, u_i^{(p)} + \lambda_i^{(p)}$ are linearly independent; (iii) For each $i \in \mathbf{N}$, $u_i^{(1)}$ belongs to the subspace spanned by $u_i^{(k)} + \lambda_i^{(k)}$, $2 \leq k \leq p$.

Proof of the Lemma. Let $v_i^{(p)}$ denote the orthogonal projection of $u_i^{(p)}$ to the subspace spanned by $u_i^{(1)}, \ldots, u_i^{(p-1)}$, and let $v_i^{(k)} = u_i^{(k)}, k \leq p-1$. Then $|v_i^{(k)} - u_i^{(k)}| = o(\alpha_i^s), 1 \leq k \leq p$. For each *i*, the vectors $v_i^{(1)}, \ldots, v_i^{(p)}$ are linearly dependent; the subspace L_i spanned by them has dimension $\leq p-1$. Now we can choose $w_i^{(1)}, \ldots, w_i^{(p)}$, where $w_i^{(1)} = v_i^{(1)}, |w_i^{(k)} - v_i^{(k)}| = o(\alpha_i^s)$, such that a subset of linearly independent vectors $\{w_i^{(2)}, \ldots, w_i^{(p)}\}$ is a basis of L_i . Consequently, $w_i^{(1)} = u_i^{(1)}$ is a linear combination of $w_i^{(2)}, \ldots, w_i^{(p)}$. Now put $\lambda_i^{(k)} = w_i^{(k)} - u_i^{(k)}, 2 \leq k \leq p$.

With this Lemma, we now complete the proof that (b) \Rightarrow (c). With $u_i^{(k)} = \operatorname{grad} \varphi_k(a_i)$ and $\alpha_i = |a_i|$, choose $\lambda_i^{(k)}$ as in the above Lemma. We may assume $|a_{i+1}| < \frac{1}{2}|a_i|$. Let $\psi : \mathbb{R}^n \to [0, 1]$ be $C^{\infty}, \psi(x) = 1$ in a neighborhood of $0 \in \mathbb{R}^n$ and $\psi(x) = 0$ for $|x| \ge \frac{1}{4}$. Put

$$\eta_1(x) = \sum_{i=1}^{\infty} \psi\left(\frac{x-a_i}{|a_i|}\right) (\varphi_1(a_i) + \epsilon_i |x-a_i|^2), \quad \epsilon_i > 0,$$

$$\eta_k(x) = \sum_{i=1}^{\infty} \psi\left(\frac{x-a_i}{|a_i|}\right) (\varphi_k(a_i) - \lambda_i^{(k)}(x-a_i)), \quad k = 2, \dots, p.$$

Observe that

(a) If we choose $\epsilon_i > 0$ such that for each $s \in \mathbf{N}$, $\epsilon_i = o(|a_i|^s)$ then $\eta = (\eta_1, \ldots, \eta_p)$ is of class C^{∞} ;

(β) η is (infinitely) flat at the origin;

(γ) For each $i \in \mathbf{N}$, $(\varphi - \eta)(a_i) = 0$.

Now put $\tilde{\varphi} = \varphi - \eta$. We shall show that ϵ_i , $(\epsilon_i = o(|a_i|^s))$, can be chosen in such a way that near each $a_i, \varphi^{-1}(0)$ is not a topological manifold.

By condition (iii) in the Lemma, grad $\varphi_1(a_i)$ is a linear combination of grad $\varphi_k(a_i) + \lambda_i^{(k)}, k \ge 2$, say

grad
$$\varphi_1(a_i) = \sum_{k=2}^p \xi_{ki} (\text{grad } \varphi_k(a_i) + \lambda_i^{(k)}), \quad \xi_{ki} \in \mathbf{R}.$$

Choose $\epsilon_i = o(|a_i|^s)$ such that each a_i is a non-degenerate critical point of

$$\rho(x) = \varphi_1(x) - \eta_1(x) + \sum_{k=2}^p \xi_{k\,i}(\eta_k(x) - \varphi_k(x))$$

In a neighborhood of any a_i , for fixed i,

$$\begin{split} \tilde{\varphi}^{-1}(0) &= \{ x \in \mathbf{R}^n : \varphi_1(x) - \eta_1(x) = \ldots = \varphi_p(x) - \eta_p(x) = 0 \} \\ &= \{ x \in \mathbf{R}^n : \rho(x) = \varphi_2(x) - \eta_2(x) = \ldots = \varphi_p(x) - \eta_p(x) = 0 \}. \end{split}$$

Hence, near a_i , $\tilde{\varphi}^{-1}(0)$ is homeomorphic to the intersection of the locus of a non-degenerate quadratic form $\rho^{-1}(0)$ (Morse Lemma) with the (p-1)-codimensional differentiable submanifold of \mathbf{R}^n , defined by $\varphi_2(x) - \eta_2(x) = \ldots = \varphi_p(x) - \eta_p(x) = 0$; thus $\tilde{\varphi}^{-1}(0)$ is not a manifold near a_i .

(c) \Leftrightarrow (d). This follows easily from the following theorem.

THEOREM 2 (Tougeron-Merrien). An ideal I of \mathscr{E} is elliptic if and only if I is finitely generated and $\mathscr{M}^{\infty} \subset I$.

Recall (compare [13]) that I is called *elliptic* if it contains an element f having the property that $|f(x)| \ge c|x|^{\alpha}$ in a neighborhood of $0 \in \mathbb{R}^n$, where α and c are positive constants. Such a function f is also called elliptic.

It is easy to see that if I is elliptic and generated by f_1, \ldots, f_q then the element $f_1^2 + \ldots + f_q^2$ is elliptic. Hence (c) \Leftrightarrow (d) follows from Theorem 2, because Z_{φ} is the sum of squares of generators of $J(\varphi)$.

We now prove Theorem 2. Let f be an elliptic element of I. Let $\psi \in \mathscr{M}^{\infty}$ be any element; then $\eta(x) = \psi(x)/f(x)$, $\eta(0) = 0$, is a germ of a C^{∞} function. Hence $\psi = \eta f \in I$ and $\mathscr{M}^{\infty} \subset I$. To show that I is finitely generated choose C^{∞} functions $\varphi_1, \ldots, \varphi_k$ so that their formal Taylor's expansions $j^{\infty}(\varphi_1), \ldots, j^{\infty}(\varphi_k)$ generate the ideal $j^{\infty}(I)$ in the ring of formal power series. Here $j^{\infty}(I)$ consists of all formal Taylor's expansions of elements of I. Then $\{\varphi_1, \ldots, \varphi_k, f\}$ is clearly a set of generators of I.

Conversely, suppose I is generated by f_1, \ldots, f_q and $\mathscr{M}^{\infty} \subset I$. Choose an open neighborhood W of 0 at \mathbb{R}^n and representations $\tilde{f}_i \in C^{\infty}(W)$ of f_i such that for any $h \in C^{\infty}(W)$ with $D^{\alpha}h(0)$, $|\alpha| = 0, 1, 2, \ldots$, there exist $g_1, \ldots, g_q \in C^{\infty}(W)$ for which $h = \sum_{i=1}^q \tilde{f}_i g_i$.

This choice is possible. We can certainly choose \tilde{f}_i defined in a neighborhood W of 0, such that $\bigcap_{i=1}^{q} \tilde{f}_i^{-1}(0) = \{0\}$. Then by applying a partition of unity, it is easy to fulfill the above requirement.

Hence, by construction, the ideal \tilde{I} of $C^{\infty}(W)$ generated by \tilde{f}_i , $1 \leq i \leq q$, of which the zero set reduces to $\{0\}$, contains all functions in $C^{\infty}(W)$ which are infinitely flat at 0. Now by [10, Proposition 1],

$$\sum_{i=1}^{q} \left(\tilde{f}_i(x) \right)^2 \ge c |x|^{\alpha}$$

near 0 for some c, α positive.

Remark. Theorem 2 has been communicated to the first author by J. Mather who has also given a slightly different proof.

(d) \Rightarrow (a). This has been proved by Tougeron [13, p. 220]. For any subset I in \mathscr{E} and $\mu \in \mathbb{N}$, let $\mathscr{E}_{[\mu]}(I)$ denote the ideal generated by I in $\mathscr{E}_{[\mu]}$. Now $\mathscr{M}^{\infty} \subset J(\varphi)$ implies that for any $\mu \in \mathbf{N}$, there exists $s \in \mathbf{N}$ such that $\mathcal{M}^{s} \subset \mathscr{E}_{[\mu+1]}(J(\varphi))$. Indeed, since Z_{φ} is elliptic, $x^{\alpha}/Z_{\varphi}(x)$ is of class $C^{\mu+1}$, where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is any multi-index with $|\alpha| = s$, s large. Hence $x^{\alpha} \in \mathscr{E}_{[\mu+1]}(J(\varphi)) \text{ and } \mathscr{M}^{s} \subset \mathscr{E}_{[\mu+1]}(J(\varphi)).$ We now show that $j^{2s}(\varphi)$ is C^{μ} -rigid in \mathscr{E}^{p} . Let $\psi \in \mathscr{E}^{p}$ be any element with

 $j^{2s}(\psi) = j^{2s}(\varphi)$. Then $\mathscr{E}(\varphi - \psi) \subset \mathscr{M}^{2s+1}$, hence

$$\mathscr{E}(\varphi-\psi) \subset [\mathscr{E}_{[\mu+1]}(\mathscr{M})][\mathscr{E}_{[\mu+1]}(J(\varphi))]^2.$$

Now applying Tougeron's theorem [4, Theorem 1(b)], the proof is complete.

REFERENCES

- 1. J. Bochnak and S. Lojasiewicz, A converse of the Kuiper-Kuo theorem, Proc. of Liverpool Singularities - Symp. I, Lectures Notes in Math. 192 (1971), 254-261.
- 2. J. Bochnak and T.-C. Kuo, Different realization of a non sufficient jet, Indag. Math. 34 (1972), 24 - 31.
- 3. J. Bochnak, Jets suffisants et germes de determination finie, C.R. Acad. Sci. Paris Sér. A-B 271 (1970), 1162-1164.
- 4. — Relevements des jets, Séminaire Pierre Lelong (Analyse), 1971, Lectures Notes in Math. 275, Springer-Verlag (1972), 106-118.
- 5. N. Kuiper, C¹-equivalence of functions near isolated critical points, Symp. Infinite Dimensional Topology, Baton Rouge, Ann. of Math. Studies 69 (Princeton Univ. Press, 1972). 199-218.
- 6. T.-C. Kuo, On C⁰-sufficiency of jets of potential functions, Topology 8 (1969), 167-171.
- 7. A complete determination of C^{0} -sufficiency in $J^{r}(2, 1)$, Invent. Math 8 (1969), 226 - 235.
- 8. Characterization of V-sufficiency of jets, Topology 11 (1972), 115–131.
- 9. J. Mather, Stability of C[∞]-mappings. III, Publication I.H.E.S. 35 (1969), 278-308.
- 10. J. Merrien and J. C. Tougeron, Idéaux de fonctions différentiables. II, Ann. Inst. Fourier (Grenoble) 20 (1970), 179-233.
- 11. O. Schreier and E. Sperner, Introduction to modern algebra and matrix theory (Chelsea, New York, 1951).
- 12. R. Thom, Local topological properties of differentiable mappings, Differential Analysis, Bombay Colloquim 1964 (Oxford Univ. Press, Oxford, 1965).
- 13. J. C. Tougeron, Idéaux de fonctions différentiables. I, Ann. Inst. Fourier (Grenoble) 18 (1968), 177-140.

Université de Paris, 91-Orsay, France; Institut des Hautes Études Scientifiques, 91-Bures-sur-Yvette, France