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RIGID AND FINITELY ^-DETERMINED GERMS OF 
Cra-MAPPINGS 

JACEK BOCHNAK AND TZEE-CHAR KUO 

1. The result. Let ê (respectively <f [M], 0 ^ \x ^ oo) denote the ring of 
germs at 0 Ç Rw of all C00 functions (respectively £> functions) from Rw to R. 
For a given <p = (<pi, . . . , <pp) £ S>v, p ^ n, where S>v is the space of all 
germs of C°° mappings Kn —* Rp, let J(cp) denote the ideal in $ generated by 
<pi, . . . , <pp and the Jacobian determinants 

D (<pi. . . , (pp) 

D^Xii, . . . ,Xip) 

where 1 ^ i\ < . . . < ip ^ n. Let 

^ ^ = {y ç <f : D«<p(0) = 0,\a\ = 0, 1 . . .}. 

Clearly, ^#°° is an ideal in S and^^°° = n?= i^^ s, where ̂ # is the (unique) 
maximal ideal of S. For cp £ (fp and 5 ^ co denote by 

f(<p) = ( È ^^1(0)*",..., É ^Z?V,(OK) 
\ | a | = 0 « ! | a | = 0 « ! / 

the Taylor's expansion of <p at 0 up the order s, called the s-jet of <p, and for 
<p = (^i, . . . , cpp) £ S)

[M]P let ^[M](^) denote the ideal in <̂ [M] generated by 

Definition. We call a given germ <p £ <fp finitely V-determined (respectively 
C^-rigid) if there exists a positive integer 5 for which the following holds: 
for any \p £ Sv with the same s-]etjs(<p) = js(\p), the germs of the varieties 
<P-1(0) and ^ - 1(0) a r e homeomorphic (respectively, one can find a local 
O diffeomorphism r : (Rw, 0) -> (Rw, 0) such that <S? [M](?OT) = «MMIWO). 

For y £ (op write 

the second summation being taken for 1 ^ ii < . . . < ip S n. 

THEOREM 1. For ip £ $*, the following conditions are equivalent: 
(a) For each n £ N, <p is C^-rigid; 
(b) ip is finitely V-determined; 
(c) Z„(x) ^ c|x|a w a neighborhood of 0, ^/zere c a?zd a are positive constants; 
( d ) ^ œ C / ( < > ) . 
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We are merely interested in those ip with <p(0) = 0 ; Theorem 1 reduces to 
triviality if <p(0) ^ 0. 

Observe tha t if <p G S>p is finitely F-determined then, by definition, the 
germ of <p~l(0) is homeomorphic to the germ of an algebraic var ie ty ; if ç is 
O-rigid then the var ie ty <p-1(0) c a n be transformed under a local O diffeo-
morphism of Rw onto an algebraic var ie ty. For general <p, however, there is no 
criterion for (the germ of) <p_1(0) to be homeomorphic with an algebraic 
var ie ty . Thorn has conjectured t h a t if <p is analyt ic then this is the case. 

T h e problems concerning sufficiency of je ts and finitely determined mappings 
have been considered by several au thors [1 ; 2 ; 3 ; 4; 5; 6; 7; 8; 9; 12; 13]. W e 
recall the definition. Denote by Jr(n, p) the space of r-jets of mappings from 
Rn to Rp (this space can be identified with the space of all £-tuples 
w = (wi, . . . , wp) of polynomials wt of degree ^r in n variables) . A jet 
w G Jr(n,p) is called V-sufficient (respectively O'-sufficient, r :g fx ^ oo ) in 
(fp if for any ç G S>p with jr(<p) = w, the germs of varieties ze;_1(0) and <p-1(0) 
are homeomorphic (respectively, there exists a local O diffeomorphism r, such 
t h a t ip o r = w). A germ <p G S)p is called finitely CM determined if there exists 
a positive integer r such t h a t j r ( p ) is O-sufficient in <ov. 

M a n y problems concerning V- and O-sufficiency in Jr(n, 1) (p = 1) have 
been solved. In part icular, for <p G # , it has been proved in [3] (compare also 
[1] and [13]) the equivalence of the following four condit ions: 

(a) For each ju G N, <p is finitely O-determined ; 
(/3) <p is finitely F-determined ; 
(7) |grad <p(x)\ ^ c|x|a for \x\ < d, where £, a, ô are positive cons tants ; 
( 5 ) J ^ ° ° C &(#), where ^(<p) is the ideal in <? generated by the par t ia l 

derivatives dp/dxi, . . . , d<p/dxm. 
Observe t h a t for <p G S>p, p > 1, conditions (a) and (/3) are not equivalent . 

T h e fact t h a t <p is finitely F-determined does not even imply t ha t <p is finitely 
C°-determined. 

Counterexample (Ma the r ) . Le t <p(x, y) = (x,ys). I t is easy to see t h a t 
jsM is F-sufficient. Bu t <p is no t finitely C°-determined. For a n y 5 G N , 
*As = (x, yz + ;yx2s+1) is a realization of j3(<p). Bu t <p and ^ have different 
topological types, since <p is a homeomorphism, while 1/̂  is not . 

Remarks 1. One can prove t h a t <p G <S>P is C°°-rigid if and only if 7(<p) is the 
ideal of definition of <o , i.e. there exists a positive integer s such t h a t 
UK9 C /(*>) [4, Theorem 4 ( b ) ; 13]. 

2. Observe t h a t if ^ G $>p is an analyt ic mapping then each of the conditions 
(a) , (b) , (c) and (d) in Theorem 1 is equivalent (by Lojasiewicz inequal i ty) 
to the condition. 

(e) In a neighborhood of zero, Z<p{x) = 0 implies x = 0. 

This generalizes Theorem 5 in [8]. 
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2. Proof of Theorem 1. We shall assume that p è 2. The case p = 1 was 
explained above. In fact, our proof would not work in the case p = 1. 

(a) =» (b). This is trivial. 
(b) => (c). Observe firstly that if <p G $p is finitely F-determined then the 

(germ of) <p-1(0)\{0} is either empty or a topological submanifold of codimen-
sion p in Rw. Indeed, suppose the s-jet w = js(<p) of cp is F-sufficient, choose a 
system of p homogeneous polynomials h = (hi, . . . , hv) of degree 5 + 1 in 
such a way that Zw^.fl(x) 9^ 0 for all x in a neighborhood of 0 G Rw> x ^ 0 
(this is possible, for example by [4, Proposition 1(b)]). By assumption, the 
germs of ^(0) and (w + h)_1(0) are homeomorphic, but it is clear that 
(w + /0_1(0)\{0} is either empty or a smooth submanifold of Rw of codimen-
sion /?. 

Now assume that (c) is false, we shall derive a contradiction. We shall find 
an application <p G S*v such that jœ(<p) = jœ(<p) and the germ of <£_1(0)\{0} 
is not a topological manifold (and is not empty). The idea is similar to that in 
[1] and [8] and is due to S. Lojasiewicz. 

Since (c) is false, we can find a sequence {al\ Î(EN, a* G Rn, at 9e 0, at —> 0, 
such that for each s G N, 

(*) Z9(at) = *(M')-
For £ vectors Ui, . . . ,uP in Rw write d(ui, . . . , 2fp) = minfai, . . . , ap), 

where ak denotes the distance from uk to the linear subspace of Rw spanned 
by the vectors ujy j 9e- k, and let Vol(^i, . . . , up) denote the ^-dimensional 
volume of the parallelotope with edges ui, . . . , up. Then Vol(«i, . . . , up) è 
(d(ui, . . . , up))

p. Moreover if we write uk = (uki, . . . , ukp) then 

Uiil1 . . . , U\i 

= (Vol(wi, . . . ,up))\ 
^piu • • • > Up ip I 

where 1 ^ i\ < . . . < ip ^ n. The above formula can be verified by checking 
the axioms for a volume (see for example [11]). 

Now consider uk = grad <pk at a*; without loss of generality, we may assume 
that for all i G N 

d(grad 0>j(aO, . . . , grad ^ ( a , ) ) = ôt, 

where dt = the distance from g r a d u a * ) to the subspace spanned by 
grad (pi(at), . . . , grad (pp-i(at). Since 

V V 

Z<p(ai) = ]C <Pk2(a>i)+ (Vol(grad <pi(at), . . . , grad ipp(at))
2 ^ ^ <Pk2(flt) + àt

2p, 

condition (*) implies that 
(1) \çk(at)\ = o(\at\

s), for all s G N and 1 ^ k ^ p; 
(2) ôt = o(\ai\s), for all s G N. 

To complete the proof we need the following 
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LEMMA. Let \u£l\ . . . , ut^
v)) t€N be a sequence of p-tuples of vectors in Rw. 

Suppose there is a sequence of positive numbers auat--^0 such that for all s G N 

àt = o(at
s), 

where b% = the distance from u^ to the linear sub space spanned by 

Then we can find a sequence {A*(2), . . . , Xz
(p)} *€N of (p — I)-tuples of vectors 

in Rw, satisfying the following three conditions: 
(i) For all s G N, |X,<*>| = o(at

8), 2 S k g p; 
(ii) For each i G N, ut

(2) + X*(2), . . . , uz
iP) + X/p) are linearly independent; 

(iii) .For mcA i 6 N, w*1 belongs to the subspace spanned by u%
{1c) + X/*0, 

2 g & g p. 

Proof of the Lemma. Let Vt{p) denote the orthogonal projection of ut
(p) to 

the subspace spanned by %*(1), . . . , u£p~l), and let vt
i1c) = u^, k S p — 1. 

Then |z;,:
(/i;) — ^(A;)| = 0 (a / ) , 1 ^ & ^ £. For each i, the vectors Vi{l\ . . . , z/i(p) 

are linearly dependent; the subspace Lt spanned by them has dimension 
^p — 1. Now we can choose wt

a\ . . . , wt
iP\ where wt

(l) = vt
{l\ 

\w^k) — v^k)\ = o(ais), such that a subset of linearly independent vectors 
{Wi(2), . . . , Wi{p)} is a basis of Lt. Consequently, w^l) = u^l) is a linear com
bination of w<2\ . . . , w7

(p). Now put \<k) = «/,<*> - utw, 2 ^ k ^ p. 

With this Lemma, we now complete the proof that (b) =» (c). With 
uxv = g rad <pk(a,i) and af = |<z€|, choose X*(À:) as in the above Lemma. We may 
assume |a*+i| < i\at\. Let ^ : Rn —> [0, 1] be C°°, ^(#) = 1 in a neighborhood 
of 0 Ç Rw and $(x) = 0 for |x| ^ J. Put 

171W = ]£ ^ In—r 1 ) tateO + e*l* - a<l2)» €* > o, 
z=i \ \a>i\ I 

i= i \ \Q>i\ I 

Observe that 
(oc) If we choose tf > 0 such that for each s Ç N, et = o(\at\

s) then 
^ = (vu •>., rip) is of class C00; 

(J3) 7] is (infinitely) flat at the origin; 
(7) For each i £ N, (<p — rj) (at) = 0. 
Now put <p = <p — 77. We shall show that eu (et = o(\ai\s)), can be chosen 

in such a way that near each aiy <p-1(0) is not a topological manifold. 
By condition (iii) in the Lemma, gradç?i(a*) is a linear combination of 

grad <pk(di) + X*(*\ k ^ 2, say 

grad pi(a<) = 13 £t<(grad ^ ( a , ) + X/*0), £** £ R. 
* = 2 
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Choose €i = o(\at\s) such t ha t each at is a non-degenerate critical point of 

V 

p(x) = <pi(x) - rn(x) +Y1 %Jci(vk(x) - <Pk(x)). 
k=2 

In a neighborhood of any au for fixed i, 

<£-1(0) = {x G Rn : <fi(x) — rn(x) = . . . = <pP(x) — rjpM = 0} 

= {% G Rw : P W = <Pi(x) - T)2(X) = . . . = <pp(x) - riP(x) = 0}. 

Hence, near au <£-1(0) is homeomorphic to the intersection of the locus of a 
non-degenerate quadrat ic form p_ 1(0) (Morse Lemma) with the (p — 1)-
codimensional di f ferent ia te submanifold of Rw, defined by <p%(x) — r)i{x) = 
. . . = <fp(x) — rjp(pc) = 0; thus <£_1(0) is not a manifold near at. 

(c) <=> (d) . This follows easily from the following theorem. 

T H E O R E M 2 (Tougeron-Merrien). An ideal I of S is elliptic if and only if I 
is finitely generated and^^ C I-

Recall (compare [13] ) t ha t I is called elliptic if it contains an element / 
having the proper ty t ha t | / ( x ) | ^ c\x\a in a neighborhood of 0 G Kn, where a 
and c are positive constants . Such a function / is also called elliptic. 

I t is easy to see tha t if I is elliptic and generated by fu . . . ,fq then the 
element fi2 + . . . + f2 is elliptic. Hence (c) <=> (d) follows from Theorem 2, 
because Zç is the sum of squares of generators of J(<p). 

We now prove Theorem 2. Let / be an elliptic element of I. Let \p G ^ °° 
be any element; then rj(x) = ^(x)/f(x), rj(0) = 0, is a germ of a C°° function. 
Hence \p = rjf G / and ^ °° C I- To show tha t I is finitely generated choose 
C00 functions <pi, . . . , (pk so t ha t their formal Taylor ' s expansions 

Jœ(^i)» • • • » J°°(^fc) generate the i d e a l / " ( J ) in the ring of formal power series. 
Here j œ ( I ) consists of all formal Taylor ' s expansions of elements of I. Then 
{(pi, . . . , <pk,f } is clearly a set of generators of / . 

Conversely, suppose I is generated b y / i , . . . ,/ff a n d ^ ° ° C / . Choose an 
open neighborhood W of 0 a t Rn and representations /* G Cœ(W) of /* such 
t ha t for any h G C°°(W0 with Dah(0), \a\ = 0, 1, 2, . . . , there exist 
gi,...,gQe Cœ(W) for which h = TU fig. 

This choice is possible. We can certainly choose f x defined in a neighborhood 
W of 0, such t ha t nQi=i f T1 (0) = {0}. Then by applying a part i t ion of unity, 
it is easy to fulfill the above requirement. 

Hence, by construction, the ideal I of Cœ(W) generated b y / z , 1 ^ i ^ q, 
of which the zero set reduces to {0}, contains all functions in C°°(W) which 
are infinitely flat a t 0. Now by [10, Proposition 1], 

± (/<(*))» k c\x\" 

near 0 for some c, a positive. 
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Remark. Theorem 2 has been communicated to the first author by J. Mather 
who has also given a slightly different proof. 

(d) => (a). This has been proved by Tougeron [13, p. 220]. For any subset 
/ in $ and \x £ N, let <^[M]C0 denote the ideal generated by I in < [̂M]. Now 
-^#°° dJ((p) implies that for any ju G N, there exists s Ç N such that 

[M+i] (J(<p)). Indeed, since Z ,̂ is elliptic, xa/Z<p(x) is of class 0 + 1 , 
where a = (ah . . . , an) is any multi-index with \a\ = s, s large. Hence 
r G ^ i ] ( / W ) a n d ^ s C AM+I] (/(*>))• 

We now show that j2s((f) is (>-rigid in <#X Let ^ £ S)p be any element with 
j2*(^) = j2^(^). Then S> (<p - ^) C ^ 2 S + 1 , hence 

Now applying Tougeron's theorem [4, Theorem 1(b)], the proof is complete. 
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