
J. Functional Programming 7 (2): 183–217, March 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

183

Equals – a fast parallel implementation of a lazy

language

OWEN KASER
Department of Mathematics, Statistics and Computer Science,

University of New Brunswick at Saint John,

Saint John, New Brunswick NB E2L 4L5, Canada

C. R. RAMAKRISHNAN, I. V. RAMAKRISHNAN
Department of Computer Science, SUNY at Stony Brook,

Stony Brook, NY 11794-4400, USA

R. C. SEKAR
Department of Computer Science,

Iowa State University, Ames, IA 50010, USA

Abstract

This paper describes Equals, a fast parallel implementation of a lazy functional language

on a commercially available shared-memory parallel machine, the Sequent Symmetry. In

contrast to previous implementations, we propagate normal form demand at compile time as

well as run time, and detect parallelism automatically using strictness analysis. The Equals

implementation indicates the effectiveness of NF-demand propagation in identifying signifi-

cant parallelism and in achieving good sequential as well as parallel performance. Another

important difference between Equals and previous implementations is the use of reference

counting for memory management, instead of mark-and-sweep or copying garbage collection.

Implementation results show that reference counting leads to very good scalability and low

memory requirements, and offers sequential performance comparable to generational garbage

collectors. We compare the performance of Equals with that of other parallel implemen-

tations (the 〈ν, G〉-machine and GAML) as well as with the performance of SML/NJ, a

sequential implementation of a strict language.

Capsule Review

Implicitly parallel functional languages have been a popular area of research for many

years. Effective detection of implicit parallelism is a particularly important problem in lazy

languages. In this paper, the authors describe Equals, a lazy functional system that uses

ee-strictness analysis to exploit more parallelism than conventional strictness analysis. By

detecting when expressions need to be fully reduced, the system can evaluate them to a

greater extent than weak- head normal form. Another novel feature is the use of reference

counting for memory management.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


184 O. Kaser et al.

1 Introduction

It is well known that functional languages offer a conceptually simple vehicle for

programming parallel computers. The main reason for this is that expressions may

be evaluated in any order, due to the absence of side-effects. Therefore, detection

as well as exploitation of parallelism is much simpler than in imperative languages.

This fact has been exploited in many previous parallel implementations such as

ALICE (Darlington and Reeve, 1981), FLAGSHIP (Watson and Watson, 1987),

GRIP (Peyton Jones et al., 1987), Buckwheat (Goldberg, 1988a), the 〈ν, G〉-machine

(Augustsson and Johnsson, 1989) and GAML (Maranget, 1991). Whereas ALICE,

FLAGSHIP and GRIP make use of specialized hardware, the other three imple-

mentations are based on commercially available shared-memory multiprocessors. In

this paper, we focus on the latter approach and describe Equals, a fast parallel

implementation of a lazy functional language.

Buckwheat (Goldberg, 1988a) was among the earliest parallel implementations of

lazy functional languages, and demonstrated the feasibility of parallel implementa-

tion, but was not tuned for performance. On the other hand, the 〈ν, G〉-machine and

GAML showed performance improvement over sequential implementations such as

LML (Augustsson, 1984), starting from two processors. Both these implementations

were able to reduce parallel overheads, and consequently their performance contin-

ued to improve even when the number of processors was increased to ten or more.

However, these implementations do not satisfactorily exploit one of the primary

advantages of functional languages for parallel evaluation, namely, automatic de-

tection of parallelism. The 〈ν, G〉-machine and GAML use program annotations as

the only means to identify parallelism, and the generation of these annotations was

not addressed in these systems. In contrast, Buckwheat automatically identified par-

allelism using strictness information. However, the strictness information was based

only on weak head-normal forms (WHNF), and little parallelism can be identified

in many programs using strictness information based only on WHNF (as we show

in section 2). To alleviate this problem, assumptions such as cons and append being

strict are typically made, and this clearly runs counter to the goals of lazy evaluation.

Another issue that was left open in both the 〈ν, G〉-machine and GAML im-

plementations concerns the use of scalable memory management techniques. The

〈ν, G〉-machine implementation reported by Augustsson and Johnsson (1989) used a

sequential garbage collector. The GAML implementation (Maranget, 1991) used a

parallelized garbage collector, but the overhead due to the collector severely limits

scalability (e.g. see Maranget, 1991, Figure 8).

These open issues are addressed in the Equals implementation as follows:

• Parallelism is automatically detected and exploited by propagating exhaustive

(normal form, or NF) demand as far as possible, at compile time as well as run

time. Parallelism is detected by using ee-strictness analysis1 developed in Sekar

et al. (1990). Our results show that sequential performance is comparable to

1 A function is said to be ee-strict in an argument if we need to normalize this argument to
normalize any application of the function.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 185

SML/NJ, one of the fastest functional language implementations. Further-

more, the results indicate that significant parallelism can be detected and

exploited automatically, obviating the need for mandatory user annotations.

The parallel performance of Equals is similar to that of the 〈ν, G〉-machine,

even though Equals times include memory management whereas the 〈ν, G〉-
machine times do not.

• Memory management is based on reference counting. Our implementation results

show that the reference-counting mechanism scales well. Furthermore, this

scheme has low memory requirements, good locality and good sequential

performance. As a result, the overall performance of Equals is comparable to

systems that use modern generational garbage collectors.

A brief overview of the Equals system is presented below.

1.1 Implementation overview

The Equals system consists of a compiler and a runtime support system. The runtime

support system is broadly divided into subsystems for I/O, memory management,

and task management. The I/O subsystem reads an input term from the user, parses

it, and creates an initial graph structure. After the input term has been evaluated to

normal form, the subsystem invokes a pretty-printer to display the result. Since such

support facilities are straightforward, they will not be discussed further. Instead,

the remainder of the paper describes the compiler, memory management and task

management, beginning with an overview of each of these modules.

The Equals compiler uses ee-strictness analysis to detect parallelism, and the

information obtained is used in compiling the source program into a combinator-

based intermediate language. The goal of this compiled code is to normalize a given

input expression, and if multiple subterms must be evaluated to accomplish this goal,

these subterms can be evaluated in parallel. Thus, the intermediate language includes

constructs for creating parallel tasks and synchronizing among them. Subterms that

are evaluated in parallel are taken up by individual tasks, which execute compiled

code on their private stacks. Since there may be many more parallel tasks than the

resources available (e.g. processors, shared memory), tasks are created only when

they are deemed useful. Some of these decisions are made at compile time itself;

for instance, the compiler will never emit code to create a new task, unless it can

generate code for work to be done concurrently by the existing task. At runtime,

on the other hand, opportunities for additional parallelism will be passed up, if

sufficient parallel resources are not available.

Although these tasks can be executed as UNIX processes, it is very expensive to do

so. Equals implements a mechanism for managing light-weight tasks, where tasks are

executed under the control of evaluator processes (one per processor). All runnable

tasks are placed in a global ready queue. If a task needs the value of a subterm

that is currently being evaluated by another task, then the first task is suspended,

awaiting the evaluation of the subterm. The evaluator then begins execution of a

task from the ready queue. Once the evaluation of a term is completed, all tasks

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


186 O. Kaser et al.

awaiting its evaluation are put back in the global queue. The size of the global ready

queue is used to guide the sharing and balancing of the system load.

Heap space needed for evaluation of a task is allocated out of a block of free

space maintained by the corresponding evaluator. When an evaluator runs out of

free space, it allocates a block from a global pool. Heap space freed by a task

is released into the free space of the corresponding evaluator. When an evaluator

accumulates more than a preset amount of free space, it returns the excess to the

global pool. Stacks and other structures used by the tasks are also allocated and

freed in the same manner.

The rest of this paper is organized as follows. The next section elaborates on the

issues of parallelism detection and memory management. The Equals compiler is

described in section 3. Sections 4 and 5 describe the memory and task management

schemes used in Equals and the refinements that were made when the initial system

was redesigned to improve performance. A detailed discussion of the performance

of Equals is presented in section 6. Concluding remarks appear in section 7.

2 Issues in parallelism

The novelty in the Equals implementation lies in the detection and control of

parallelism and in memory management. In this section, we elaborate on these

issues.

2.1 Detection of parallelism

There have been two approaches to identifying parallelism in lazy languages. One

approach, used in the 〈ν, G〉-machine and GAML, requires programs to be annotated

for parallelism. These annotations are different from strictness annotations, and to

ensure that laziness is not compromised, the task scheduler typically needs to have a

mechanism to ensure that the normal-order branch of computation makes progress.

This requires preemption of resources such as the processor, heap and stacks. An

alternative approach is to derive parallelism annotations based on strictness, and is

used in Equals. Since strictness identifies only those computations that are needed

for the input expression to be normalized, no additional mechanism is necessary to

ensure progress of normal-order branches. This approach has been used in earlier

implementations such as those reported by George (1989) and Goldberg (1988b).

However, the strictness information used in these early implementations deals only

with head-normal forms, i.e. it provides information about which arguments of

a function are to be head-normalized in order to head-normalize the function

application. This strictness information is not sufficient (as shown below) to detect

significant parallelism in many programs. To get sufficient parallelism, they assume

that even non-strict functions such as cons and append are strict.

To illustrate why strictness based on WHNF alone is not sufficient to identify

parallelism, consider the QuickSort example shown in figure 1. In that example, the

function split partitions a list (first argument) based on a pivot (second argument)

into two lists. The function qs1 takes these partitioned lists, sorts the individual lists

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 187

qs(x : xs) = qs1(split(xs, x, nil, nil))

qs(nil) = nil

split(x : xs, y, u, v) = if x > y then split(xs, y, x : u, v)

else split(xs, y, u, x : v)

split(nil, y, u, v) = 〈u, y, v〉
qs1(〈x, y, z〉) = append(qs(x), y : qs(z))

append(x : xs, y) = x : append(xs, y)

append(nil, y) = y

Fig. 1. The program QuickSort.

and puts them together using append. Thus qs(l) first splits the list into l1 and l2
and subsequently calls append(qs(l1), qs(l2)). Hence, a WHNF demand on qs results

in a WHNF demand on append. By the definition of append, a WHNF demand

on its output results in a WHNF demand on its first argument and no demand on

its second argument. Hence, qs(l2) would be invoked only after qs(l1) is completely

evaluated. All the parallelism in QuickSort arises from sorting both the partitioned

lists in parallel, and propagating WHNF demand alone is unable to extract any of

this parallelism.

Even declaring append as strict in both arguments (under WHNF demand) does

not lead to any significant parallelism, since not only is the WHNF strictness

insufficient to extract much parallelism, but the WHNF evaluation mechanism is

unable to exploit the parallelism. If append is strict in both arguments then qs(l1) and

qs(l2) could be invoked in parallel. However, qs(l2) would be evaluated in parallel

with qs(l1) only until their WHNFs are obtained. Evaluation of qs(l2) would then

be suspended until append consumes all of its first argument – i.e. until qs(l1) is

completely evaluated. Hence little parallelism results even when append is declared

to be strict. To exploit all the parallelism in QuickSort while performing repeated

WHNF evaluations alone, one has to take the extreme measure of annotating cons

as strict – a step which clearly runs counter to the goals of lazy evaluation.

2.2 Propagating NF demand and its merits

In Equals, we propagate normal form (NF) demand and use normal form evaluation

as long as such propagation does not affect the termination properties of the

program. This contrasts with most other implementations, which are based primarily

on weak-head-normal form evaluation. Specifically, in Equals we identify two

extents to which a term may be evaluated – to WHNF or to NF – based on the

context of evaluation (the demand). Observe that if the output of append (or cons)

is demanded in NF, then both its arguments are needed in NF. In other words,

append and cons are ee-strict (see Sekar et al. (1990) for details) in their arguments.

By propagating NF demand in this manner and utilizing ee-strictness information,

we are able to identify parallelism in the all examples discussed in this paper.

Another advantage of NF-demand propagation is that it can increase task gran-

ularity, leading to lower parallel overheads. In previous implementations, tasks

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


188 O. Kaser et al.

compute weak head-normal forms of terms. (Henceforth, we use ‘terms’, ‘graphs’

and ‘expressions’ interchangeably.) However, WHNF tasks are typically fine grained

and therefore can easily lead to significant overheads. This problem can be alleviated

to a large extent by a careful design of task management, as done in the implemen-

tations of the 〈ν, G〉-machine and GAML. Nevertheless, it is advantageous to use

larger grained tasks. Use of NF demand (also called exhaustive or e-demand) helps

achieve this, since it bundles many WHNF evaluations within a single task.

Propagating exhaustive demand also increases the efficiency of sequential evalua-

tion since it avoids repeated closure construction and context switching. For instance,

observe that in the QuickSort example, qs(l) eventually reduces to

append(append(· · · append(t1, t2) · · ·)

If we propagate only WHNF demand, then the request to head-normalize the

outermost append results in another call to head-normalize the inner append. This

proceeds all the way to the innermost append, which then outputs a single element.

This element is consumed by the next outer append and so on until the top-level

append outputs one element. The rest of the computation is represented in a closure,

which is invoked only after the first element is consumed. In contrast, if we propagate

NF demand then the top-level append will force complete evaluation of inner append,

which in turn will force full evaluation of its inner append and so on. Hence, we

avoid repeated closure constructions and context switches. Consequently, the code

generated by Equals is similar to that generated by a strict language and hence

its sequential performance is comparable to strict implementations. In summary,

propagating NF demand leads to:

• easier detection of parallelism,

• larger task granularity, and

• avoidance of repeated closure building and context switching.

2.3 Run-time propagation of NF-demand and laziness

In this section we consider the interaction between exhaustive-demand propagation

and lazy computation. We show that lazy streams, for instance, remain possible. We

also show that one can benefit from exhaustive-demand propagation even in the

presence of laziness, due to run-time propagation.

Propagation of exhaustive demand does not translate into inability to deal with

lazy streams. In particular, functions that induce such behaviour do not propagate

exhaustive demand, and hence will be evaluated lazily in our system. For instance,

consider the expression

take 5 infinite list with complicated elements

where take is defined as

take (n, x:xs) = if n==0 then nil else x:take(n−1,xs)

Clearly, take is not ee-strict on its second argument, hence the second argument

is not evaluated under NF-demand. Thus, laziness is preserved by evaluating the

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 189

elements of the second argument only on demand, effectively achieving the necessary

stream behaviour2.

From the above example, it may appear that one non-strict function would

be sufficient to block the propagation of NF-demand. Although this may be the

case when demand propagation is done only at compile time, NF-demand can be

safely propagated at runtime even beyond non-strict functions. For example, in the

above example, propagation of NF demand stopped at the top level. However, after

evaluating the if statement in the body of take, we end up with the term

(complicated element):take(4, rest of the infinite list with complicated elements)

The top-level NF-demand can now be propagated on this expression; this results in

an NF-demand on each argument of the cons , which is ee-strict in both arguments.

Thus complicated element is not only evaluated with an NF-demand, but it can be

evaluated in parallel with the rest of take, that is, the needed elements of the infinite

list. Note that it is the runtime propagation of NF-demands that allows selective

demand propagation, based on the outcome of conditionals and pattern matches.

Thus, demand propagation can be done safely even beyond non-strict functions.

Of course, use of more precise strictness information, such as head and tail

strictness, can yield additional benefit, both in terms of additional parallelism and

in terms of avoiding construction of closures. However, this added benefit is also

associated with a cost – that of evaluation to many different extents and propagation

of many different demands at run-time – both of which could complicate the compiler

and run-time systems. For this reason, we have deferred the use of more precise

strictness information in Equals.

2.4 Memory management

Most previous implementations of lazy languages on shared-memory machines use

variants of mark-and-sweep or copying garbage collectors to reclaim storage. Mem-

ory management using garbage collection has the following advantages: it is trans-

parent, can manage memory in presence of imperative updates, and furthermore,

can handle variable-size allocations while avoiding the disadvantages of fragmenta-

tion. However, this approach seems unsuitable for parallel evaluation, since garbage

collectors scale poorly when the number of processors is increased. This is because

there are certain inherently sequential components and hot spots in the copying

phase of the collector such as the need to lock every structure before moving3. This

2 Even in the context of a function that propagates exhaustive-demand, we may wish to
‘force’ stream behaviour, so that the function produces its output incrementally. In a
parallel implementation, this can be accomplished without sacrificing the advantages of
exhaustive-demand propagation, by using vertical parallelism, i.e. evaluation of a function
and its argument in parallel. However, Equals does not exploit vertical parallelism yet.

3 Although some recent concurrent collectors (e.g. see Huelsbergen and Larus (1993)) do not
lock when copying, they require additional memory and add overhead to node access and
allocation. Moreover, note that collectors such as the Appel-Ellis-Li collector (Appel et al.,
1988) are sequential; the concurrency arises from a single process performing collection
while other (mutator) processes are executing the program.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


190 O. Kaser et al.

problem is compounded by the fact that the garbage collectors traverse much of the

heap space and consequently produce a considerable amount of paging activity.

An alternative to mark-and-sweep or copying garbage collectors reclaims memory

through the use of reference counting, and is used in Equals. Reference counts

have been used in other lazy functional language implementations, such as Alfalfa

(Goldberg, 1988b). However, this technique’s efficiency compared to garbage collec-

tion and its effectiveness in a parallel implementation have not been established. The

Equals implementation shows that reference counting avoids memory contention

and improves locality due to immediate reclamation and reuse of free space. It also

reduces memory use and is efficient. For instance, the sequential run times of Equals

are comparable to those of SML/NJ (with reference counting typically taking less

than 20% of the time) and heap space used by Equals is, on the average, only 25%

of that used by SML/NJ.

Reference-counting implementations are usually limited to acyclic structures, but

this is a limitation of individual implementations and not the approach itself.

Intuitively, reference counts can be used in presence of cycles by keeping only one

reference count field for all nodes in a strongly connected component (SCC) of a

cyclic term; this field stores the number of references to any node in the SCC from

some node outside the SCC. The general algorithm by Hughes (1982) collects cyclic

structures using reference counts based on this strategy. Unfortunately, the overhead

of such algorithms is high, since during the addition of every edge, we must check

whether this edge creates an SCC. There is an additional overhead, since at every

update, we must identify which reference count field – the node’s or the SCC’s – is

to be updated.

In a purely functional language such as Equals, cyclic data structures can always

be coded as output of infinite functions. For example, ones() = 1 : ones(); x = ones()

evaluates the same structure as x = 1 : x. However, the corresponding cyclic

representation preserves sharing, and hence is more efficient than the infinite function

form (Bird and Wadler, 1988, p. 188). While our current implementation does not

use the cyclic representation, note that in declarations such as let x = 1 : x, creation

of SCC’s can be detected statically, at compile time. Thus, we can use the algorithm

due to Hughes (1982) without the overhead of SCC detection. However, since the

algorithm still has the additional overhead of identifying the correct reference count

field, the performance impact of creating cyclic structures is unclear, and needs to

be established through experiments.

3 Compiler

An Equals program consists of a set of functions defined by pattern match. The

abstract syntax of the source language of Equals is given in figure 2.

Each function definition in the program is translated into a corresponding func-

tion in the intermediate language, and its body is translated into a sequence of

intermediate code statements. The constructs in the intermediate language are given

in figure 3. Note that this language bears some similarities to the G-machine, but

differs in many ways, such as explicitly named variables and functions, and con-

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 191

program ::= [fundef ]∗

fundef ::= [f(pat, . . . , pat) = expr]+

expr ::= if expr then expr else expr

| d(expr, . . . , expr)

| x
pat ::= c(pat, . . . , pat)

| x

Notes.

f: function symbol; c: constructor; d: function symbol or a constructor; x: a variable

Fig. 2. Equals source language syntax.

Function f(context, x1, . . . xn)

Assign var, expr

If expr then block1 else block2

Switch x { case c1 : block1, . . . , case cn : blockn }
Eval x to extent at location

FunctionEval f(v1, . . . , vn) to extent at location result x

BuildTerm d(v1, . . . , vn) result x

GetChild i of x result y

WaitFor extent of x

Deref x

Return x

Notes.

extent : the extent of evaluation (NF, WHNF or context).

expr : constants, variables or compound expressions using predefined functions, such as +.

block : a sequence of statements in intermediate code.

location : either local or remote and specifies whether a task is to be evaluated locally or at

a remote site (i.e., on another processor).

Fig. 3. Equals intermediate language.

structs for demand propagation. Every function in the intermediate code takes a

parameter named context. This parameter specifies (at runtime) the extent to which

the output of (the current invocation of) a function needs to be evaluated, and is

used to propagate demand at runtime.

The intermediate code is subsequently translated into C, the final target language.

The target language influenced some constructs; for instance, compound expressions

were permitted since they are allowed in C and hence may be more efficiently com-

piled than an equivalent sequence of simple expressions. Furthermore, the structure

of the intermediate language permits compilation to be a simple translation followed

by a series of optimization steps.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


192 O. Kaser et al.

3.1 Compilation algorithm

First, the pattern-matching constructs of Equals are transformed to case ex-

pressions, using the Huet-Levy algorithm (Huet and Levy, 1991) for lazy pattern

matching4. After pattern matching, the only change to the structure of the source

is the introduction of case expressions. The code generator (see figure 4) takes

these transformed function definitions and produces intermediate code. It consists

of several functions listed below. Most of them take as parameters the fragment

of the source program to be translated, and extent, which specifies the demand on

this fragment. The value of extent can be UNK, which means that the demand

is not known statically, or one of NF or WHNF. The parameter extent is not to

be confused with context: the former is a compiler parameter used to propagate

demand statically at compile time whereas the latter is a parameter to functions

in intermediate code and is used to propagate demand at run-time. In the figure,

best(extent, context) stands for ‘NF’ if extent = NF and ‘context’ otherwise. The

function GetFreshVariable generates unique variable names.

The compilation scheme uses the translation functions F, E, P, A and B. An

overview of these functions is given below:

F – generates the code for a function.

E – translates an expression. It takes three parameters: the expression to be trans-

lated, the name of the variable in which the value of the expression is to be

stored, and extent.

P – is like E, but handles pattern-matching.

A – generates code for evaluating arguments passed to a function. A takes five

arguments:

1. the expression e to be evaluated,

2. the argument position of e,

3. the name d of the function that has e as an argument,

4. the name of the variable y into which the result is stored, and

5. extent.

A differs from E in that it takes the strictness of d into account to determine

the demand on e.

B – generates code to build the graph representing a given expression (first argu-

ment); the root of the graph is stored in the given variable (second argument).

To preserve the simplicity of the code generator, many optimizations are deferred

until a later stage – the code generator itself concentrates on propagating demand at

compile time and generating code to propagate demands at runtime. Furthermore,

some instructions that guide the efficient use of resources are not even generated.

For instance, a WaitFor instruction is needed to coordinate parallel tasks, but such

instructions are not initially generated. Instead, we rely on a subsequent optimization

4 Our current system does not handle prioritized patterns. It can be done using the techniques
of Laville (1988), Puel and Suarez (1990) or Sekar et al. (1992).

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 193

F [[f(x1, . . . , xn) = e]] =

y ←GetFreshVariable()

Function f(context, x1, . . . , xn);

E [[e]] y UNK;

Return y

E [[case x in (pm1, ..., pmn)]] y extent =

Eval x to WHNF at Remote;

Switch x P [[pm1]] x y extent;
...

P [[pmn]] x y extent

E [[x]] y extent =

Eval x to best(extent, context) at Remote;

Assign y, x;

E [[if e1 then e2 else e3]] y extent =

E [[e1]] z NF;

If z then E [[e2]] y extent else E [[e3]] y extent

E [[d(e1, . . . , en)]] y extent =

{z1, z2, . . . , zn} ← GetFreshVariables()

A [[e1]] 1 d z1 extent;
...

A [[en]] n d zn extent;
BuildTerm d(z1, . . . , zn) result y if d is a constructor

Assign y, d(z1, . . . , zn) if d is a predefined function

FunctionEval d(z1, . . . , zn) if d is a user-defined function

to best(extent, context)

at Remote result y

P [[c(x1, . . . , xn)→ e]] y extent =

case c : GetChild 1 of x result x1;
...

GetChild n of x result xn;

E [[e]] y extent

A [[e]] i d y extent =
E [[e]] y NF if ith arg. of d is ee-strict and extent = NF

If context = NF if ith arg. of d is ee-strict and extent 6= NF

then E [[e]] y NF

else B [[e]] y

B [[e]] y otherwise

B [[x]] y =

Assign y, x

B [[d(e1, . . . , en)]] y =

{z1, z2, . . . , zn} ← GetFreshVariables()

B [[e1]] z1;
...

B [[en]] zn;

BuildTerm d(z1, . . . , zn) result y;

Fig. 4. Compilation scheme.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


194 O. Kaser et al.

nfib(n) = if (n < 2) then 1

else nfib(n− 1)+nfib(n− 2) + 1

Fig. 5. An example Equals program, nfib.

Function nfib(x1)

Eval x1 to NF at Remote

Assign y1, x1

BuildTerm 2 result y2

If (UnboxInt(y1) < UnboxInt(y2)) then

BuildTerm 1 result y4

Assign y3, y4

else

Eval x1 to NF at Remote

Assign y5, x1

BuildTerm 1 result y6

Assign y7, BoxInt(UnboxInt(y5) − UnboxInt(y6))

FunctionEval nfib NF(y7) at Remote result y8

Eval x1 to NF at Remote

Assign y9, x1

BuildTerm 2 result y10

Assign y11, BoxInt(UnboxInt(y9) − UnboxInt(y10))

FunctionEval nfib NF(y11) at Remote result y12

Assign y13, BoxInt(UnboxInt(y8) + UnboxInt(y12))

BuildTerm 1 result y14

Assign y15, BoxInt(UnboxInt(y13) + UnboxInt(y14))

Assign y3, y15

Assign y16, y3

Return y16

Fig. 6. Compiled code for nfib before optimizations.

phase to introduce resource-management instructions, and remove inefficiencies in

the generated code.

The code generated using the compilation rules of figure 4 for the program nfib

in (figure 5) appears in figure 6. Note that all Eval’s and FunctionEval’s have been

marked Remote, no WaitFor’s have been generated, and common subexpressions

have not been eliminated.

3.2 Optimizations

Since the compilation process has been kept simple, the generated code may contain

many redundant and inefficient operations. Several optimizations are possible, and

indeed, necessary to obtain a practical system. The optimizations form a collection of

techniques, both known and novel, that have been combined to considerably improve

the performance of the generated code. Some of the most effective optimizations

performed are mentioned next, and later explained in more detail.

• Unboxing to eliminate most of the unnecessary boxing operations;

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 195

• Placing Synchronization Barriers just before the point where a value is needed;

• Forcing Local evaluation whenever no significant work is done between a

remote evaluation and its corresponding synchronization barrier;

• Sharing Common Subexpression with different evaluation extents and across

basic blocks;

• Reducing the Number of Temporary Variables to shrink activation records

(and hence, improve locality);

• Reclaiming Free Space Immediately by deallocating a term immediately after

its last access;

• Eliminating Tail and Linear Recursion by conversion to loops (see Arsac and

Kodratoff (1982)); and,

• Generating two versions of code, one for each demand, to reduce repeated

tests for demand.

To consider the unboxing optimization further, note that the code generated by

the compilation algorithm in figure 4 treats all values as boxed, that is, represented by

graphs. The efficiency of programs manipulating unboxable values such as integers

can be considerably improved by an unboxing optimization that removes unnecessary

boxing operations. We use a transformational scheme similar to the one presented

in Peyton Jones and Launchbury (1991) and remove, for instance, any unboxing

operation on a value that is obtained by boxing another value available in this

function. This scheme is extended to perform inter-procedural unboxing as follows.

When a function receives a parameter of an unboxable type in a fully evaluated state

(as determined by strictness), the parameter is passed in unboxed form. In addition,

if a function’s return type permits, an unboxed value is returned. While implementing

Equals, we found that such an inter-procedural unboxing optimization improves

speed by more than a factor of 2 on examples such as Nqueens.

Optimizations involving the placement of synchronization barriers, common

subexpression sharing, and reducing the number of temporary variables are all

based on the lifetime of variables in the generated code. Using a lifetime analysis, we

can determine the extent to which each variable (or more precisely, the term pointed

to by the variable) is evaluated, at each point in the code. This lifetime analysis is an

intra-procedural flow analysis that is performed across basic blocks; after perform-

ing it, placement of synchronization barriers becomes trivial. Also, the optimization

of sharing common subexpression evaluations across different evaluation extents is

easier with this lifetime information. This optimization uses the observation that

the result of a term t evaluated to a demand d can be reused whenever t needs to

be evaluated to an equal or weaker demand d′. Finally, the number of temporary

variables is reduced by applying a graph coloring heuristic with the knowledge of

which variables have overlapping lifetimes. The lifetime analysis itself, as well as the

subsequent optimizations are either well known, or are straightforward, and are not

described any further.

Creation of unnecessary tasks is reduced by further optimizing the code as

follows. Note that it is not worthwhile to create a child task unless the parent has

significant work to perform in parallel with the child. Thus, the instructions between

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


196 O. Kaser et al.

a remote FunctionEval or a remote Eval statement and its corresponding WaitFor

are examined. If they do not represent substantial work for the parent, then the

FunctionEval or Eval statement is re-annotated for local evaluation. In place of a

sophisticated work-load analysis, the compiler currently assumes that evaluation of

a recursive, or unknown, function requires substantial work. In addition, functions

which might (in a strict language) call a function requiring substantial work, are

themselves deemed to require substantial work. Clearly, a more sophisticated analysis

would improve this optimization.

Another optimization significantly reduces the number of live heap cells by

deallocating a term as soon as it has been accessed for the last time. This is achieved

by dereferencing5 the term pointed to by a variable immediately at the end of

that variable’s lifetime, even when the variable is a parameter. Thus, a term is

deallocated even when a (now dangling) pointer to the term exists on the stack, as

long as the pointer is never used again. Compared to approaches where the caller is

responsible for dereferencing parameters, this approach significantly reduces memory

use. For example, we find that this scheme brings down the heap-space requirement

of QuickSort by a factor of 4. To reduce reference counting updates, we use a

simple technique based on intra-procedural flow analysis. In the future, we plan to

investigate the use of one of the analyses that have been proposed in the literature

(e.g. see Hudak (1987) or Park and Goldberg (1995)).

Finally, we generate two versions of code for each function, one for each demand

(NF or WHNF) on the return value. (Conceptually, we specialize each compiled

function on its context parameter, using the two possible values that the parameter

may assume.) This optimization eliminates the context parameter, and all tests

on its value. It should be noted that the NF-demand versions are often open to

more optimization, and are usually smaller, than the corresponding WHNF-demand

versions. Also, since the numerous tests for context in the single-version code have

been eliminated, the space increase due to multiple versions is rather small. Moreover,

note that only one version is required for functions that return non-structure values

(e.g. integers).

The optimized intermediate code for the function nfib given in figure 7 illustrates

the effect of the optimizations.

4 Memory management

Memory is divided into two sections, heap space and stack space. We separate the

stacks from the heap, since stacks exhibit greater locality and are simpler to man-

age. This organization, which is similar to that used in the STG-machine, should

be contrasted with the organization used in the 〈ν, G〉-machine and SML/NJ where

stack frames are allocated in the heap. In the following we first describe the im-

plementation of the heap, including node design, allocation policy, and deallocation

via reference counting, followed by a description of stack-space management.

5 We use the term dereferencing to mean removal of a reference. Operationally, this involves
decrementing the reference count and disposing of a term whose count has reached zero.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 197

Function nfib NF(x1)

If x1 < 2 then

Assign y1, 1

else

Assign y1, (x1− 1)

FunctionEval nfib NF(y1) at Remote result y2

Assign y1, (x1− 2)

FunctionEval nfib NF(y1) at Local result y3

WaitFor NF of y2

Assign y1, (y2 + y3 + 1)

Return y1

Fig. 7. Optimized intermediate code for nfib.

Status and ID

WaitQ Ptr

Reference count

Data or Ptr to Child1

Ptr to Child2

Status fields include:

NF: indicates whether the term rooted at this node is in normal form.

InProcess: set if the term rooted at this node is in the normalized or head-normalized.

Lock: serializes accesses to the node.

Overflow: set if the current node has more than two children.

Type: indicates whether the value of the node is a function symbol, constructor, integer, float,

etc.

Fig. 8. Structure of heap nodes.

4.1 Node design and locking

When a term is normalized, it is overwritten with its normal form. If all graph

nodes are of equal size, this is easily achieved by overwriting the term’s root node.

Under this scheme, nodes of arbitrary arity are accommodated with a binary tree of

overflow nodes containing pointers to reference additional children. Some systems,

such as the 〈ν, G〉-machine, use variable-size nodes; properly overwriting a smaller

node with a larger node then requires overwriting with an indirection node that

points to the larger node. Thus, at runtime, certain node accesses must be checked

for indirection. The fixed-size scheme avoids this indirection cost and also enables

simple reference-counting collection without fragmentation.

The structure of the design’s graph nodes is given in figure 8, where each line

represents four bytes. The WaitQ field points to the notification list of tasks, to be

awakened when the (head) normalization of the node is complete. An ID field is

used for constructors and function symbols, and we record the arity of each node

in its status field. The implementation seeks to keep heap nodes small, under the

constraints that all heap nodes must be of the same size, and a large reference-count

field is required to avoid overflow. Our current design’s 20-byte nodes represent

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


198 O. Kaser et al.

an improvement over our original design, which aligned 24-byte nodes on 32-byte

boundaries. We optionally allow node alignment in our new design, to reduce false

sharing in the cache. However, the performance improvement from alignment has

been small and we are currently investigating the matter further.

The locks we have implemented use the Lock status bit. They are shadow locks,

in which we spin on the copy of the lock bit in cache until it is reset and then try

to obtain the lock (Sequent Computer Systems, 1987). These locks use the atomic

test-and-set (btsw) instruction available on the Sequent and generate less bus traffic

than naive locks.

The locks themselves are held only as long as it takes to update the status

fields. For instance, the system ensures that the InProcess bit of a node is set when

the graph rooted at this node is under evaluation. When a graph is taken up for

evaluation, the evaluator first obtains the Lock on the root node. It then checks

the InProcess bit of the root node, and if set, adds the current task to the WaitQ,

releases the lock, and suspends the current task. Otherwise, the InProcess bit is set,

and the lock is immediately relinquished. Similarly, when the evaluation of a graph

is complete, the root node is locked only while overwriting the ID and the data/child

pointers; the lock is released after obtaining a local copy of the WaitQ field, so that

the suspended tasks may be released to the ready queue outside the critical section.

Thus, the lock itself is held for very short periods of time.

It may seem as though a status field can be accessed only after the lock is acquired.

However, the design permits access to certain status fields without locking, thereby

further reducing overheads due to locking. Some of the strategies used to avoid

locked access to nodes are described below.

If a node has been normalized, the extent of its normalization guarantees that

either the entire term (if in NF), or just the root (if in WHNF) will not require

locking. The implementation ensures that the status flags indicating the extent of

normalization can be safely read without locking. For instance, consider the flag that

indicates whether a term is in NF. Even when the term is in an inconsistent state (i.e.

partially overwritten), the implementation guarantees that this flag is not set. Thus,

it is safe to examine the flag and if set, all the data fields in the node can be safely

extracted without locking. Since Equals is a lazy language, in our implementation

tests for normalization are done often and the above optimization is very important.

Another case when locking is not required arises when a node cannot be referenced

by another processor, e.g. when the node has just been allocated. Finally, the

reference count is manipulated exclusively with atomic increment and decrement

instructions and the normal locking convention is not used.

It is informative to compare our node design to that of the STG-machine (Peyton

Jones, 1992). In particular, our design keeps the symbol at the root node of term,

whereas the STG-machine stores a code pointer that evaluates the term, even for

terms in HNF. In the STG-machine, every access to the term uniformly executes the

corresponding code, avoiding the tag checking that Equals performs to test whether

the term needs evaluation. Due to NF-demand propagation, and the strictness-driven

compilation scheme, in Equals we find that most terms are already evaluated to the

extent needed when they are inspected. Thus the tag checks usually succeed; note

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 199

that a successful tag check is cheaper than two context switches that are otherwise

necessary in the STG-machine.

Moreover, in the presence of multiple extents of evaluation, we cannot avoid a tag

check (or a more expensive lock) in a parallel implementation. In Peyton Jones (1992)

it is suggested that the code pointer of a node that is picked up for evaluation be

overwritten with a ‘queue-me’ code pointer such that any subsequent task attempting

the evaluation of the same node will get queued. Thus, parallel evaluation may

proceed without locking. The important point here is that correctness is not violated

if two tasks evaluate the same node and sequence their overwrites arbitrarily, since

both evaluations necessarily reduce the term to the same extent. Note, however, that

in presence of multiple extents of evaluation, such a scheme may produce incorrect

results. For instance, consider a term that is taken up for evaluation (to NF) by a

task, say tNF. Before tNF overwrites the WHNF code pointer with pointer to ‘queue

me’ code, let another task, tWHNF take up the same term for evaluation to WHNF.

Now, if tNF finishes earlier, the results of the NF computation may be overwritten

with the WHNF result computed by tWHNF. In effect, a NF evaluation can never

be guaranteed to produce a result in NF! Hence, locking, which may be reduced by

using appropriate tags, is unavoidable.

4.2 Heap allocation

To avoid contention when allocating memory, the heap is managed as a two-level

structure6. The lower-level structure is a linked list of free nodes, called a block and

the higher-level structure is a locked global pool of blocks.

Initially, a block from the global pool is given to each evaluator, which privately

allocates from (and deallocates to) its block. Blocks are permitted to grow to a

certain maximum size, after which they become full. When this occurs, the evaluator

begins a new block. The full block may either be returned to the global pool, or

the evaluator may keep it for possible later use. Blocks may also become empty, if

an evaluator allocates more than it deallocates. If the evaluator thus exhausts its

current block, it will use a full block that it has kept for such possible use; if it has

no such block, it will obtain one from the global pool.

In the current implementation, an evaluator keeps two full blocks on hand before

it begins returning them to the global pool. Without hysteresis (i.e. empty on zero

and full on two), it is possible for an evaluator to cause thrashing at the global

pool. For instance, an evaluator that has exactly one full block would return the

block to the global pool. If it must next perform a node allocation immediately,

it would have to obtain a block from the global pool, and this cycle can repeat

forever. The hysteresis ensures that each evaluator performs at least n allocations (or

deallocations) between any two accesses to the global pool, where n is the number

of nodes in a block.

6 A two-level allocation strategy, involving garbage collection, was also used in GAML.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


200 O. Kaser et al.

4.3 Reference counting

As mentioned before, reference counting is used to reclaim free space. Since there

is no separate phase in which all processes collect free space, opportunities for

contention at memory reclamation are minimized. Moreover, reference counts permit

the following trick to avoid locking when a node is freed. Observe that a node about

to be freed (i.e. a node being dereferenced with reference count = 1) will be referred

to only by the current evaluator. Thus, there is no need to lock it before freeing.

Since many dereferences satisfy this condition (e.g. 45% of the dereferences in the

Euler example), this trick is important in practice. In contrast, since this reference

information is not available for a mark-and-sweep or a copying garbage collector,

this trick cannot be used to avoid locking at copying time.

Using reference counting, we can immediately reclaim freed space. This results

in significant reduction in heap space usage. Furthermore, by maintaining the free

list as a LIFO, we encourage immediate reuse of memory that is freed. Since nodes

are created and destroyed very quickly in typical programs, this strategy increases

the chances of using the same set of memory locations repeatedly, thus improving

locality (see section 6).

4.4 Stack management

The stack space is divided into many different stacks, and each task, upon its creation,

is allocated one stack. Stacks are used in the usual manner during execution of the C

code to evaluate a term, and thus an activation record is usually allocated adjacent

to its parent in memory, unless overflow occurs.

There are two possible mechanisms to handle stack overflows. In the first, when

a task’s stack overflows, it is extended by linking another stack. Checking for stack

overflow is performed at every entry to a function. When returning after a call that

had overflowed, the current stack is unlinked and execution resumes on the old

stack.

In the second approach, the stack is expanded on overflow and underflow cannot

occur. In this approach, overflow triggers the allocation of a larger stack, and

the contents of the smaller stack are moved to the new stack, with appropriate

adjustments to stored frame pointers. Moving the old stack’s contents can, in theory,

be achieved by adjusting the virtual-to-physical address translation tables. This

approach incurs some overhead from adjustment, but it has certain advantages

relative to linking; for instance, it avoids the possibility of repeatedly linking a

new stack, using it minimally, underflowing and unlinking it, and then immediately

overflowing the old stack again.

In Equals, the initial design used the second approach of expanding stacks, to

avoid this problem. Unfortunately, on the Sequent Symmetry, the address translation

tables are inaccessible to nonprivileged programs, and the operating system interface

to them imposes unacceptable limitations on the allowable memory layout. Hence,

in the original implementation, we were forced to copy the contents of the smaller

stack onto the larger stack. Since this copying process leads to a burst of bus traffic

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 201

and can be extremely wasteful of memory (since no ‘un-expansion’ was ever done),

our new design uses the linking approach, and a two-level allocation scheme also

manages the new pool of linkable stacks. Kaser et al. (1994) contains a further

comparison of the two approaches.

5 Task management

The task management subsystem provides mechanisms for the creation, synchro-

nization, and load-balancing of tasks. Each of these mechanisms is described in

detail below.

5.1 Task creation

Recall that the purpose of a task is to evaluate a term to either NF or WHNF. Task

creation consists of building the term to be evaluated (if it does not already exist),

and allocating a task control block, and a stack to be used for the term’s evaluation.

Each task’s information is stored in a task control block (TCB) that includes

not only the task’s stack base and limit, but also a field linking the tasks awaiting

the same event. The original design imposed a fixed maximum number of tasks,

and allocated them from an array. Since the synchronization mechanism used

in that design required each graph node indicate the task processing it, these TCB

pointers could be shorter (an index) than otherwise possible with full-length pointers.

However, the limit on the number of tasks was small, and it sometimes provided a

throttle on the creation of tasks. This phenomenon is described later in this section.

5.1.1 Task life-cycle

At the time of creation of a task, an initial stack is linked to a new TCB, and a code

pointer and other information are pushed onto the stack. If the task is to normalize

an expression f(a1, . . . ak) where f is known at compile time, the initial code pointer

indicates the code that evaluates f to the desired extent. The expressions a1, . . . , ak
have been appropriately evaluated, and have been pushed onto the new stack as

parameters. In the other case, the expression is unknown, and a pointer to it is

pushed onto the new stack, where it will be a parameter to the runtime support

routine that performs the appropriate normalization. The code pointer pushed onto

the new stack thus indicates this runtime routine.

After creation, task T is entered into the global ready queue. Eventually, it will be

dequeued, and execution will begin (either initially, or where it was suspended; our

mechanism is uniform and requires no tag information). In addition, the information

in the TCB sets the evaluator’s stack pointer, base, and limit during this execution.

While executing, T may create another task S; if so, eventually T will synchronize

with S . During this synchronization, S ’s TCB will be used for parent–child com-

munication, since it is known to both tasks. Specifically, the TCB of S contains a

flag that indicates whether S has completed, and a field to hold the return value

of S upon completion. If S ’s completion flag is set, T extracts S ’s return value.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


202 O. Kaser et al.

Otherwise, T must suspend itself to await S ’s completion; this requires that T has

the appropriate structures built on its stack and TCB. Later, when S completes, it

places T ’s TCB in the ready queue, ensuring T ’s re-awakening. Finally, when T

is completed, it relinquishes its stack, and writes its return value onto its TCB. It

then awakens any other tasks awaiting its completion. It should be noted that the

completion flag and the return value fields in a TCB can be overlaid on the stack

base and limit fields. Details of the layout of the TCB, as well as a more detailed

description of the task-management scheme and performance measurements, can be

found in Kaser et al. (1994).

5.2 Task synchronization

While evaluating a term t, a task T may find that it must evaluate one of its

subterms, say s. Task T may create a new task S (as discussed above) for s, or T

may evaluate s by itself. Synchronization is clearly required in the first case, since T

may have to wait for the completion of S . Even in the second case, synchronization

may be required: If s is already being evaluated by another task, T must suspend

itself until s is evaluated. In such cases, T executes a WaitFor instruction that enters

it into a wait queue for s. Its evaluator then proceeds to execute the next task from

the global ready queue. Note that there is no need to pre-empt tasks in Equals,

since we use a conservative approach that never generates work that is not required.

An important point to be noted here is that wait queues are associated with terms,

rather than tasks. This is because a task T created to evaluate a term s may also

take up many subterms s1, . . . , sk of s for (local) evaluation. Suppose that another

task T ′ needs to evaluate s1. In this case, observe that T ′ need wait only until

s1 is evaluated. However, T will complete only after evaluating all of s2, . . . , sk, s.

Thus, parallelism from simultaneous execution of T and T ′ is lost if T ′ waits on

T instead of s1. Also, note that T selectively waits for one or more subterms, and

is not restricted to await all subterms that it has created before it can resume from

any one of them. (This restriction is imposed in Hwang and Rushall (1992), where

it necessitates additional measures to avoid deadlock.)

Since a term may be evaluated to different extents (WHNF or NF) depending

on the demand, evaluation of shared subterms complicates matters. To see this,

consider a term t being evaluated to extent ext1 by a task T1. Before its evaluation

is complete, suppose a task T2 needs the same term t to be evaluated, this time to

extent ext2. The following scenarios arise:

• ext1 = ext2: T2 is added to the wait queue for t and is awakened when t’s

evaluation is complete.

• ext1 = NF and ext2 = WHNF: T2 is added to t’s wait queue. Since the

code executed evaluating t to NF does not produce an intermediate result in

WHNF, T2 waits until t is in NF. This potentially reduces parallelism, since T2

is blocked longer than strictly necessary. Nevertheless, efficiency is improved;

often, T2 would soon request subterms of t in WHNF, duplicating the work

already being done to evaluate t to NF.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 203

• ext1 = WHNF and ext2 = NF: T2 is added to t’s wait queue, but will not be

released when t’s WHNF is computed. We might create a new task to evaluate

t to NF, but to prevent T1 from possibly overwriting the NF we would have

to kill it, and all tasks it has spawned. We avoid this difficulty by permitting

T1 to complete, at which time t is taken up for normalization. Although we

might release terms awaiting t’s WHNF at this time, for efficiency all tasks are

made to await t’s NF.

Finally, we note that Equals implements the notification model of task creation,

as opposed to the advisory-sparking method used by a number of other implemen-

tations (Augustsson and Johnsson, 1989; George, 1989; Maranget, 1991). In the

advisory method, a task is not created until an evaluator is free to run it: a pointer

to the graph to be evaluated would be put into a spark pool by the parent task,

say T , but no guarantees are made that a task will ever be created. Rather than

block for a sparked graph for which no task has been created, T would, with this

method, evaluate the graph itself. The main advantage of this technique is that

the spark pool need not be locked; however, the ready queue must still be locked,

and in certain (probably unlikely) cases work may be duplicated. We do not use

this scheme in Equals since our experiments indicate that the ready queue is not

a bottleneck. Moreover, given the stack and node structures used in Equals, this

scheme would require that we frequently construct closures, and then suffer the

penalty of copying arguments to the stack when entering the closure. Our optimized

task creation, whereby the arguments are placed directly onto the newly created

task’s stack, would not be possible.

5.2.1 Implementation of synchronization mechanism

During its evaluation of some term t, a parent task T may create several child

tasks, S1, S2, . . . , Sk , to evaluate sub-terms s1, s2, . . . , sk , respectively. Suppose T then

needs some of the values being computed before it can proceed further to compute,

for instance, s2 + s4. One approach is to associate a wait counter with t (George,

1989). This counter is incremented whenever a child is created, and decremented by

each child, upon its completion. We then require the counter to reach zero (i.e. all

of S1, S2, . . . , Sk complete) before T proceeds, and this implies that a (conceptual)

queue (of length zero or one) of waiting tasks is associated with a wait counter.

Each child term ei then maintains a queue of wait counters to decrement upon

completion, allowing shared subterms to be evaluated without duplicating work. To

minimize node size, the wait counter can be stored on T ’s stack, as a local variable

in the activation record created for e’s normalization. Note the disadvantage of this

scheme: the non-required tasks (all but S2 and S4 in the above example) cannot

continue to run in parallel; with a single wait counter, we cannot selectively wait

for some children.

A more flexible approach avoids this disadvantage. It associates a collection of

wait counters with e, and each WaitFor statement in the code is assigned its own

wait counter. Each completing child task will then decrement the counter associated

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


204 O. Kaser et al.

with its value’s first use by T , and T can continue execution whenever the wait

counter for which it is blocked reaches zero. Thus, T can proceed in parallel with its

remaining children. Again, these wait counters can be stored in the activation record

for e, and this flexible scheme was used in the initial implementation of Equals.

A number of disadvantages lead us to a new mechanism for synchronization.

First, it is undesirable to have child tasks making changes in the local stacks of their

parents. In particular, the scheme interacted very poorly with stack copying, and

significant overhead (and design complexity) was required to ensure that a child task

would update the proper counter after an upgrade. Our solution involved having

each graph node indicate the task processing it, and thus the nodes were enlarged. A

second disadvantage is that it is incorrect to awaken a task just because one of its wait

counters has reached zero. Rather, the system must ensure that the task is waiting

and is waiting for the counter that has just become zero. This requires additional

book-keeping, and in our implementation, further enlarged the graph nodes. We also

observed that the flexibility did not seem very useful since, in most cases, the wait

counters took binary values. This implies that each counter is uniquely identified

with a single child, and hence we could let the parent await the child directly, rather

than use an intermediate counter. Thus, the new design maintains an explicit wait-

queue of TCBs per node. This mechanism is simple and efficiently implemented;

however, it can lead to unnecessary awakenings. To see this, suppose that two tasks

have been created, and both must be awaited. Using wait queues, two WaitFor

instructions are required in series, possibly leading to unnecessary synchronization,

where a task is awakened only to re-suspend immediately. However, our new design’s

synchronization overheads are sufficiently low that this situation, even when it occurs,

does not seem to degrade our performance significantly.

5.3 Queue management

In Equals, new or resumed tasks are placed in the global ready queue from which

free evaluators take up tasks. Thus, the global ready queue is the mechanism for

load balancing. The ready queue has been designed so that serialized access does

not create a bottleneck. Consider a simple ready queue that is a linked list of tasks.

In order to add or remove entries from the queue, the queue needs to be locked.

Hence, the lock for the ready queue can become a system bottleneck: Too much

bus traffic is generated when all idle evaluators race one another to retrieve a newly

enqueued item. To avoid this difficulty, the current version implements the queue in

a novel way, which in spirit resembles the dual queue described in George (1989).

The queue is viewed as a series of slots (see figure 9), and each idle evaluator

that arrives at the queue is assigned a unique slot (e.g. next ‘free’ slot). If that slot

holds a task, the evaluator runs this task; if the slot is empty, the evaluator busy

waits on this slot until it is filled7. When a task is placed in the queue, it is placed

in the next empty slot. Note that once a slot is assigned, no locking is needed for

7 Although it is possible to make the idle evaluators relinquish the processor instead of
busy-waiting, we have not explored this avenue.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 205

head ptr
evaluator

evaluator
Task control blocks

head ptr

E

E

tail ptr

tail ptrCASE 1 CASE 2

Fig. 9. Split lock queue. Left: No tasks, and two idle evaluators have been assigned to empty

slots. Right: Two tasks, and no idle evaluators.

dequeueing. Furthermore, once a slot is assigned to an evaluator, filling other slots

does not affect this evaluator’s behaviour; hence, evaluators do not race one another.

More importantly, the locks needed to enqueue and to dequeue are independent.

Such a queue can be easily implemented as a circular array of task pointers. In our

implementation, a secondary linked list (with full locking) manages the extremely

rare cases when queue overflow occurs (Kaser et al., 1994). The speedup curves

shown in section 6 show that this implementation of the ready queue is not a system

bottleneck. (An early implementation of Equals used a simple linked list of tasks,

which proved to be a bottleneck and led to the above improvement.)

5.4 Control of parallelism

A common problem in parallel implementations is that apart from effective tech-

niques to uncover and exploit parallelism, we often need techniques to control the

available parallelism to match the available resources. Since there may be more

parallel tasks than can be efficiently evaluated with the resources (e.g. processors,

shared memory) at hand, tasks must be created only when they are deemed useful.

In Equals, we use two criteria – number of ready tasks as a measure of processor

load, and the number of total tasks as a measure of memory load – to measure the

total system load. When the system load is high, the evaluators avoid creating tasks

and instead perform the intended computation locally. (Two alternative blocks of

code will be present at the site of certain function calls. One will spawn a parallel

task to perform the computation, and the other performs it locally.) Throttling task

creation based on processor load has been used previously (George, 1989; Maranget,

1991).

5.4.1 Thresholds based on processor load

As mentioned earlier, new tasks are generated only when the system load is low,

as indicated by a global flag. This flag indicates whether the system is in parallel

(low load) or sequential (high load) mode. The system switches between the two

modes by comparing the size of the ready queue, N, against two thresholds Nseq and

Npar, as follows: When the system is in parallel mode and N becomes larger than

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


206 O. Kaser et al.

Nseq, the system enters sequential mode; in sequential mode, when N falls below

Npar, the system switches to parallel mode. In parallel mode, the runtime system

may be requested to create new tasks. It may refuse, as described earlier, if there

already are too many tasks (as controlled by the throttles Sseq and Spar based on

other resources, as explained below). The values of the two thresholds Npar and Nseq

have been determined through experiments, and though there is no ideal setting

for all programs, Npar = 1 and Nseq = 20 yields good overall results. Note that the

flag indicating the system’s mode need change only when a task is enqueued or

dequeued. Furthermore, since this flag is advisory, it can be read or written without

any locking. Observe that most accesses are to read this flag and are satisfied by the

local cache; thus, this flag is not a system bottleneck.

5.4.2 Thresholds based on memory load

The number of tasks in the system is an indicator of the extra resource (stack space)

usage due to parallelism. Therefore, we base our measurement of the memory load

on the total number of tasks in the system. The primary aim of throttling task

creation based on the total number of tasks is to avoid pushing the system to a

point of failure due to overallocation of resources. As a side-effect, we find that, by

forcing increased task granularity, the performance on certain divide-and-conquer

programs is improved.

In the original implementation that used stack copying approach to handle

overflows, the throttle depended upon the ability of the system to find a small

stack for the task (it is inefficient to begin execution on a large stack), and these

small stacks were often scarcer than tasks. In a very early version of Equals, this

throttle on task creation led to the following interesting situation: a program was

executed where one task created another, and quickly suspended awaiting it. Then,

the new task behaved similarly. Rapidly, all small tasks were allocated, and so the

system switched to a sequential, stack-intensive mode of evaluation. Overflowing its

stack, a larger stack was given to the task. Then, its original stack was released

to the pool of available stacks. Now, unfortunately, the system was briefly able to

switch out of sequential mode, create a new task to run on the newly freed stack,

and suspend the task running on the large stack. Having no more stacks, evaluation

(again on the small stack) returned to sequential mode, and the process repeated

until the the maximum number of tasks was exceeded.

To overcome this problem, a large hysteresis was used, involving two thresholds

Sseq and Spar. These thresholds, and the current number of tasks, controlled whether

the runtime system would permit creation of new, parallel tasks, or whether it would

enforce sequential execution.

In the new design of Equals, the situation is simpler. There is no arbitrary fixed

limit to the total number of tasks permitted, and those tasks that have completed

(but have not yet synchronized with their parents) occupy little memory. Thus, the

new design bases its system-wide task throttle only on the number of tasks that have

not yet completed. With the new design, our experiments indicate that the throttle

is now much less frequently imposed.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 207

5.4.3 Lazy task creation

Note that the technique of throttling task creation based on system load reduces the

number of tasks created, and consequently decreases parallel overheads. However, it

has been observed by Mohr et al. (1991) that this may result in too few tasks being

created. In particular, consider a term t where subterms s1 and s2 may be evaluated

in parallel. At compile time, evaluation of one of the two, say s2, is sequentialized

into the current task, and code is generated for potential parallel evaluation of

s1. At runtime, if the system load is high when the parallel task creation for s1 is

attempted, then even s1 is evaluated by the parent task. Now, the evaluation of s1
and s2 have been irrecoverably sequentialized. The solution proposed in Mohr et al.

(1991), called lazy task creation, is to avoid sequentializing s2 at compile time, but

rather allow s2 to be evaluated in parallel (i.e. allow s2 to be stolen by another task)

when sufficient resources become available.

To make s2 stealable, we need to create a structure containing all the information

necessary to compute s2 – in effect, a closure for s2. Note that heap creation of

closures can be considerably more expensive than stack creation, and furthermore,

synchronization tests are necessary even when these closures are sequentialized. The

overheads of lazy task creation will be justified only when the simpler scheme used

in Equals leads to a severe loss of parallelism. We have, thus far, not observed such

a situation.

6 Implementation results and discussion

In this section we describe the sequential and parallel performance of the current

implementation of Equals8. For the results of our initial implementation, see Kaser

et al. (1992). First we study the sequential performance of Equals and show that it

is comparable to that of Standard ML of New Jersey (SML/NJ). Following this,

we compare the speeds and scalability of Equals with those of the 〈ν, G〉-machine

and GAML. We then discuss the impact of reference counting on scalability and

performance. In particular, we provide experimental evidence to show that memory

requirements are significantly less and that the sequential performance is competitive

with that of modern generational collectors.

6.1 Sequential performance of Equals

Table 1 compares the performance of Equals with that of SML/NJ (release 0.93),

both running on a Sparcstation LX with 32 MB of physical memory. SML/NJ is

a sequential implementation of SML, a strict language, and is among the fastest

functional language implementations. This comparison is important, since scalability

is more easily achieved when one begins with an inefficient sequential implementa-

tion. Our sequential implementation is derived from the parallel implementation by

8 Some of these measurements were previously reported in Kaser et al. (1994).

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


208 O. Kaser et al.

Table 1. Comparison of Equals and SML/NJ

Equals SML/NJ 0.93

Euler 16.5 27.9
Nqueens 28.7 19.2
MatMult 3.4 3.9
Sieve 15.0 8.8
QuickSort 5.6 2.4
FFT 37.3 72.5

Table 2. Comparison of Equals with 〈ν, G〉-machine and GAML

Equals 〈ν, G〉 GAML

Euler 97.1 128.4 430
Nqueens 162.5 73.9 467
Nfib 28.7 62.1 213

simply redefining certain macros. In particular, the sequential implementation does

not have to handle locking, stack overflow, task creation or task synchronization.

The example programs for which the performance results are reported in the table

are adapted from programs given in Augustsson and Johnsson (1989), Goldberg

(1988a), George (1989) and Sekar et al. (1990). Among them, Euler computes the

Euler totient function from 1 through 1000. In addition to performing substantial

amounts of computation, this program also spends a lot of time creating and

destroying lists. MatMult computes the product of two 100 × 100 matrices. Sieve

computes list of primes between 2 and 10, 000. QuickSort sorts a list of 5000 integers,

and Nqueens finds all solutions to the n-queens problem on a 10 × 10 board. The

implementation of Nqueens is based on the list-of-successes technique discussed in

Bird and Wadler (1988). FFT computes a waveform, calculates its FFT, and then

computes the inverse FFT of the transform.

Observe, from Table 1, that speeds of SML/NJ and Equals are comparable in

Euler, MatMult and Nqueens. By propagating exhaustive demand and generating

two versions, our code is similar to that generated for a strict language, and

hence the speeds are comparable. In QuickSort and Sieve, where there are very few

computation steps and most of the time is spent in creating and destroying list

structures, SML/NJ is significantly faster because it stores unboxed integers in the

heap, and thus integer lists have only half as many nodes as in Equals, where

all heap objects are boxed by default (see Kaser et al. (1994) for a discussion on

unboxing in Equals). This is not a problem in the first three examples, since the

number of steps that access lists or perform other computations are much larger

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 209

0

5

10

15

20

0 5 10 15 20

S
pe

ed
up

Processors

Ideal
Nfib

Euler
MatMult
Queens

Fig. 10. Speedup curves for Equals.

than those that create or destroy lists. For example, in MatMult there are 106

operations of the first kind versus 104 list creation/deletion steps.

6.2 Parallel performance

Table 2 shows wall-clock times for (the parallel version of) Equals, the 〈ν, G〉-
machine and GAML on a single processor. Timings for both Equals and the 〈ν, G〉-
machine were obtained on Sequent Symmetries with 16 MHz clocks. However, the

〈ν, G〉-machine timings do not include garbage collection time, which can account

for up to 30% of the total (sequential) time. (Although a new concurrent garbage

collector appears to reduce this factor, the new timings reported in Röjemo (1991)

do not include Euler, MatMult or Nqueens.)

GAML timings were obtained on a Sequent Balance, which is considerably slower

than a Symmetry. This impedes a reasonable comparison between the performance

of Equals and that of GAML. However, it is mentioned in Maranget (1991) that

the sequential execution times for GAML are roughly of the same order as those of

the 〈ν, G〉-machine. Timings for Equals were obtained primarily on a 12-processor

Symmetry at Stony Brook. Timings with 12, 16, and 20 processors (for Nqueens,

Euler, and MatMult) are taken from Kaser et al. (1994), and were measured on a

26-processor Symmetry at Argonne National Labs that was available to us only

until the Fall of 1994.

Figure 10 shows speedup curves on all of the examples run using Equals. MatMult

and Euler create large-grain tasks and hence speedup is almost linear. Although

task granularity is very small in Nfib, Equals still scales well, showing that we have

managed to keep down task overheads and contention at the global queue.

Figures 11 and 12 compare the scalability of Equals with that of the 〈ν, G〉-
machine and GAML on Euler, Nfib and Nqueens. Observe that Equals scales as

well as the 〈ν, G〉-machine and GAML on Nfib. On Euler, it scales as well as the

〈ν, G〉-machine and better than GAML. It should be noted that the 〈ν, G〉-machine

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


210 O. Kaser et al.

0

5

10

15

20

0 5 10 15 20

S
pe

ed
up

Processors

0

5

10

15

20

0 5 10 15 20
Processors

Ideal EQUALS <v, G> GAML

Fig. 11. Speedup curves. Left: Euler. Right: Nfib.

0

5

10

15

20

0 5 10 15 20

S
pe

ed
up

Processors

Ideal
EQUALS

<v, G>
GAML

EQUALS (old)

Fig. 12. Speedups for Nqueens.

timings do not include garbage-collection times, which may cause its scalability to

appear better than in reality: as can be seen from the results in GAML, garbage

collection times scale poorly, e.g. in Euler, the garbage-collection time decreases

by only a factor of 2 when the number of processors increases to 8. In figure 12

we also compare the performance of the current version of Equals with the old

version presented in Kaser et al. (1992) on Nqueens9. We speculate that this program

demonstrates the effect of removing the ceiling on the number of tasks allowed: in

Kaser et al. (1994) this program was observed to have over 8000 tasks simultaneously

alive.

Apart from these small benchmark programs that help measure the performance

9 Timings for the old version were obtained on a 20-processor Symmetry at Rice University.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 211

0

2

4

6

8

10

12

0 2 4 6 8 10 12
Processors

Ideal
Pascal

FFT

Fig. 13. Speedup curves for Equals on two medium-size programs.

of various aspects of the system, we also show the performance of Equals on two

medium-sized programs in figure 13. Pascal is an interpreter for a subset of Pascal,

has 83 functions and 833 lines of code, and relies heavily on lazy evaluation10.

Most of its parallelism arises when a non-strict argument is evaluated in parallel

with other strict computations due to run time demand propagation, much like the

parallelism found in the take example discussed in section 2.3. The other program

is FFT, which is composed of 43 functions in 343 lines of code. The figure indicates

the viability of the Equals system in exploiting significant parallelism in moderate-

sized applications. It shows that sufficient parallelism can be detected and exploited

automatically, reducing the dependency on user annotations.

6.3 Impact of Equals memory management

We had mentioned in the introduction that memory management was a crucial

component and that by using reference counting we can achieve very good scalability,

low memory requirement and improved locality. In this section we give empirical

evidence for these claims.

One program for which efficient memory management is crucial is the Euler

program. It spends over 40% of the total time in memory allocation and deallocation,

creating and destroying as many as 3 million nodes. The nearly ideal speedup of this

program demonstrates the scalability of the Equals memory manager. In contrast,

the speedup of GAML appears to saturate even for five processors, largely due to

poor scaling of the memory management techniques used.

Reference counting collection enables immediate reclamation of free space that

leads to low memory requirements. This is illustrated in Table 3, where the memory

usage of Equals is compared with that of SML/NJ. The Euler program cycles

10 Note that since Pascal relies on laziness, it cannot be used to compare the performance of
Equals and SML/NJ.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


212 O. Kaser et al.

Table 3. Memory Utilization of EQUALS vs. SML/NJ (in MB)

EQUALS

Heap Stack Total SML/NJ

Euler 0.06 0.22 0.28 2.24
Nqueens 1.3 1.1 2.4 2.32
MatMult 0.8 0.02 0.82 1.20
Sieve 0.4 1.1 1.5 1.85
QuickSort 0.20 0.56 0.76 0.95

through memory and the table shows the substantial gains that can be obtained

via immediate reclamation. Equals consumes more memory than SML/NJ on

Nqueens, primarily due to the boxed representation of integers in the heap. This

effect is also seen on Sieve and QuickSort, where the difference between the memory

consumption of Equals and SML/NJ is small. However, it should be noted that

SML/NJ allocates stack frames from the heap, and hence there is no separation of

the memory area. Since references to the stack typically show much greater locality

than heap references, and moreover, since stacks are considerably easier to manage,

stack usage is less critical to overall system performance.

It has been commonly thought that reference counting leads to higher memory

consumption due to the presence of reference count fields in every heap node.

Although it is true that heap node sizes do increase due to reference counting, due

to the potential for immediate reclamation of dead heap, we observe an overall

reduction in the amount of heap used.

It is sometimes stated that reference counting damages locality because the simple

removal of a pointer requires that the pointed-to object be modified in its count

field. Since modern generational garbage collectors (such as employed by SML/NJ)

have a reputation for enhancing locality, we measured the performance of Equals

and SML/NJ as we gradually reduced the amount of physical memory available

from about 21.5 MB to 2.5 MB. To do this, we used a Sparcstation-LX with 32 MB

of physical memory. Under Solaris 2, it is possible to effectively disable portions of

physical memory. The machine was removed from the network and all non-essential

processes, such as the windowing system and the various daemons, were killed. In

this state, the machine had nearly 21.5 MB of physical memory available for user

processes. Varying amounts of this available memory were disabled, and the SML

and Equals versions of each example program were run to determine the effect of

the memory shortage. Since our mechanism to directly measure paging activity itself

created additional paging, we used elapsed times instead as a measure of the paging

activity. Moreover, to ensure paging for both Equals and SML/NJ11, we timed the

11 The heap-size parameters used were defaults supplied with the distribution of SML/NJ
0.93. This begins with 5 MB heap, but our examples caused ML to dynamically expand
the heap beyond this.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 213

Table 4. Runtimes of Equals and SML/NJ 0.93 on larger problem instances

Equals SML/NJ

Euler(2000) 68.7 124.0
Nqueens(11) 174.0 104.2
MatMult(250) 49.7 59.6
Sieve(40000) 153.8 107.9
QuickSort(20000) 32.1 12.7

Nqueens benchmark on an 11× 11 board, the MatMult benchmark with 250× 250

matrices, Euler and Sieve with inputs 2000 and 40,000 respectively, and QuickSort

with 20,000 elements.

To isolate the time due to paging, we then subtracted the wall-clock times obtained

from the times observed when all physical memory was available. (Ten runs were

averaged to obtain each data point.) Results are shown in figure 14. Thus, while

generational collectors have an excellent reputation for enhancing locality, our results

indicate that a reference-counting collector can be a viable alternative.

6.3.1 Cost of reference counting

Finally, we quantify the cost of reference counting in our implementation. Two

issues are involved, since reference counting has a direct cost associated with the

actual reference manipulations and their cache effects. It also has an indirect benefit,

due to the enhanced locality from immediate reclamation. Below, we describe the

experiments and the measurements, obtained using a Sparc-20 with 64 MB of

physical memory.

We estimated the total penalty of reference counting in Equals by measuring the

performance improvement due to the removal of all reference count manipulations.

Since in the absence of reference information, memory is never deallocated, allocation

was done from a pre-initialized, consecutive freelist. Note that although the modified

system has no direct overheads due to absence of reference count manipulations,

it can suffer from cache degradation since memory is never reclaimed. Using the

modified system, we observed an average speed-up of 14% over the base system.

To separate the cost from the benefit, the programs were timed when counts were

manipulated as usual, but freed nodes were discarded, rather than added back to the

freelist. This version incurs all of the direct costs of reference counting, but allocates

the same set of nodes as the first experiment. Therefore, it should similarly lack

the locality benefits due to immediate node reuse. We observed a 26% slowdown

compared to the first experiment. This slowdown, we believe, approximates the total

cost due to reference counting. Note that the modified system exhibits a slowdown

of 11% over the base system, and this approximates the benefit due to the locality of

reference enabled by immediate memory reclamation. Thus, the above experiments

indicate that the cost of the reference counting operations is approximately halfway

offset by their locality benefit.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


214 O. Kaser et al.

-6

-4

-2

0

2

4

6

8

10

2.5 3 3.5 4 4.5 5 5.5 6 6.5

T
im

e 
In

cr
ea

se
 (

se
co

nd
s)

Memory Remaining (MB)

0

200

400

600

800

1000

1200

1400

2.5 3 3.5 4 4.5 5 5.5 6 6.5

T
im

e 
In

cr
ea

se
 (

se
co

nd
s)

Memory Remaining (MB)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2.5 3 3.5 4 4.5 5 5.5 6 6.5

T
im

e 
In

cr
ea

se
 (

se
co

nd
s)

Memory Remaining (MB)

-2

0

2

4

6

8

10

12

14

16

18

2.5 3 3.5 4 4.5 5 5.5 6 6.5

T
im

e 
In

cr
ea

se
 (

se
co

nd
s)

Memory Remaining (MB)

-5

0

5

10

15

20

25

30

35

40

45

50

2.5 3 3.5 4 4.5 5 5.5 6 6.5

T
im

e 
In

cr
ea

se
 (

se
co

nd
s)

Memory Remaining (MB)

EQUALS
SML

Fig. 14. Time increases when physical memory is limited. Top: Euler(left) and

MatMult(right). Middle: Nqueens(left) and QuickSort(right). Bottom: Sieve.

7 Concluding remarks

The Equals implementation demonstrates that it is possible to automatically detect

and effectively exploit the parallelism implicit in functional programs by propagating

NF-demand. Strictness-based propagation of NF-demand means that the advantages

of NF evaluation can be safely performed in presence of laziness. In addition, run-

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 215

time propagation of NF-demand leads to discovery of more parallelism than is

possible with static propagation alone. Code for NF evaluation is very similar to

the code generated for strict languages. This possibly explains why the uniprocessor

performance of Equals is comparable to that of strict implementations such as

SML/NJ.

In addition to the benefits of NF-demand propagation, the Equals implementa-

tion indicates the viability of reference counting as an effective technique for memory

management. Our experiments with Equals demonstrate that reference counting not

only scales very well, but it also has good sequential performance. Moreover, use of

reference counting leads to better memory utilization and exhibits good locality.

The two main features of Equals, namely, the use of NF-demand propagation

and reference counting enable various further optimizations. For instance, the load

balancing scheme used in Equals is quite simple, and its power can be considerably

improved by using compile-time estimates of the time complexity of functions.

Static analysis of time complexity, as well as mechanisms to maintain the size

information at run-time, are considerably simpler in the case of NF evaluation. With

regard to reference counting, the reference information enables us to avoid updating

closures that are not shared; note that such a run-time technique is necessarily more

effective than any technique based on static sharing analysis. The impact of these

optimizations on the performance, however, remains to be quantified.

Acknowledgements

We thank the referees for their detailed comments that led to substantial improve-

ment of the paper. This research was supported in part by grants from the Na-

tional Science Foundation (CCR-9404921, CDA-9303181, CDA-9504275 and INT-

9314412) and the NSERC of Canada (OGP0155967). Use of a Sequent Symmetry

S81 was provided by the Department of Computer Science at Rice University under

NSF Grant CDA-8619393, and another by the Mathematics and Computer Science

Division of Argonne National Laboratory, which is operated by the University of

Chicago under a contract with the U.S. Department of Energy.

References

Appel, A., Ellis, J. and Li, K. (1988) Real-time concurrent collection on stock multiprocessors.

ACM Symposium on Programming Language Design and Implementation, pp. 11–20. ACM

Press.

Arsac, J. and Kodratoff, Y. (1982) Some techniques for recursion removal from recursive

functions. ACM Transactions on Programming Languages and Systems, 4(2), 295–322.

Augustsson, L. (1984) A compiler for lazy ML. ACM Symposium on Lisp and Functional

Programming, pp. 218–227. ACM Press.

Augustsson, L. and Johnsson, T. (1989). Parallel graph reduction with the 〈ν, G〉 machine.

Symposium on Functional Programming Languages and Computer Architecture, pp. 202–213.

ACM Press.

Bird, R. and Wadler, P. (1988) Introduction to Functional Programming. Prentice Hall.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


216 O. Kaser et al.

Darlington, J. and Reeve, M. (1981) Alice: A multi-processor reduction engine for the parallel

evaluation of applicative languages. Symposium on Functional Programming Languages and

Computer Architecture, pp. 65–75. ACM Press.

George, L. (1989) An abstract machine for parallel graph reduction. Symposium on Functional

Programming Languages and Computer Architecture, pp. 214–227. ACM Press.

Goldberg, B. (1988a) Buckwheat: Graph reduction on shared-memory multiprocessor. ACM

Symposium on Lisp and Functional Programming, pp. 40–51. ACM Press.

Goldberg, B. (1988b) Multiprocessor execution of functional programs. PhD thesis, Yale

University.

Hudak, P. (1987) A semantic model for reference counting and its abstraction. In: Abramsky,

S. and Hankin, C. (eds.), Abstract Interpretation of Declarative Languages, pp. 45–62. Ellis

Horwood.

Huelsbergen, L. and Larus, J. (1993). A concurrent copying garbage collector for languages

that distinguish immutable data. Principles and Practice of Parallel Programming, pp. 73–82.

ACM Press.

Huet, G. and Levy, J.-J. (1991) Computation in orthogonal rewriting systems. In: Lassez, J.-L.

and Plotkin, G. (eds.), Essays in Computational Logic – Essays in Honor of Alan Robinson.

MIT Press.

Hughes, R. J. M. (1982) Reference-counting with circular structures in virtual memory applica-

tive systems. Technical Report, Programming Research Group, Oxford.

Hwang, S. and Rushall, D. (1992) The ν-STG machine: A parallelized spineless tagless graph

reduction machine in a distributed memory architecture. Fourth Workshop on Parallel

Implementations of Functional Languages.

Kaser, O., Pawagi, S., Ramakrishnan, C. R., Ramakrishnan, I. V. and Sekar, R. C. (1992) Fast

parallel implementation of lazy languages – the EQUALS experience. ACM Symposium on

Lisp and Functional Programming, pp. 335–344. ACM Press.

Kaser, O., Ramakrishnan, C. R. and Sekar, R. C. (1994) A high performance runtime system

for parallel evaluation of lazy languages. First International Symposium on Parallel Symbolic

Computation, pp. 234–243. World Scientific.

Laville, A. (1988) Implementation of lazy pattern matching algorithms. European Symposium

on Programming: Lecture Notes in Computer Science 300, pp. 298–316. Springer-Verlag.

Maranget, L. (1991) GAML: A parallel implementation of lazy ML. Symposium on Functional

Programming Languages and Computer Architecture: Lecture Notes in Computer Science 523,

pp. 102–123. Springer-Verlag.

Mohr, E., Kranz, D. and Halstead, R. (1991) Lazy task creation: A technique for increasing

the granularity of parallel programs. IEEE Transactions on Parallel and Distributed Systems,

2(3), 264–280.

Park, Y. and Goldberg, B. (1995) Static analysis for optimizing reference counting. Information

Processing Letters, 55(4), 229–234.

Peyton Jones, S. L. (1992) Implementing lazy functional languages on stock hardware: the

Spineless Tagless G-machine. Journal of Functional Programming, 2(2), 127–202.

Peyton Jones, S. L. and Launchbury, J. (1991) Unboxed values as first class citizens in a non-

strict functional language. Symposium on Functional Programming Languages and Computer

Architecture: Lecture Notes in Computer Science 523, pp. 636–666. Springer-Verlag.

Peyton Jones, S. L., Clack, C., Salkild, J. and Hardie, M. (1987) GRIP – a high-performance

architecture for parallel graph reduction. Symposium on Functional Programming Languages

and Computer Architecture: Lecture Notes in Computer Science 274, pp. 98–112. Springer-

Verlag.

Puel, L., & Suarez, A. (1990). Compiling pattern matching by term decomposition. ACM

Symposium on Lisp and Functional Programming, pp. 273–281. ACM Press.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669


Equals – a fast parallel implementation of a lazy language 217

Röjemo, N. (1991) A concurrent garbage collector for the 〈ν, G〉-machine. Technical Report,

Chalmers University.

Sekar, R. C., Pawagi, S. and Ramakrishnan, I. V. (1990) Small domains spell fast strictness

analysis. ACM Symposium on Principles of Programming Languages, pp. 169–183. ACM

Press.

Sekar, R. C., Ramesh, R. and Ramakrishnan, I. V. (1992) Adaptive pattern matching. Inter-

national Colloquium on Automata, Languages and Programming: Lecture Notes in Computer

Science 623, pp. 247–260. Springer-Verlag.

Sequent Computer Systems (1987) Sequent guide to parallel programming.

Watson, P. and Watson, I. (1987) Evaluating functional programs on the FLAGSHIP

machine. Symposium on Functional Programming Languages and Computer Architecture:

Lecture Notes in Computer Science 274, pp. 80–97. Springer-Verlag.

https://doi.org/10.1017/S0956796897002669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002669

