FINITE CO-DEDEKINDIAN GROUPS

by MARIAN DEACONESCU \dagger and GHEORGHE SILBERBERG

(Received 18 October, 1994)

1. Introduction. A group G is called Dedekindian if every subgroup of G is normal in G.

The structure of the finite Dedekindian groups is well-known [3, Satz 7.12]. They are either abelian or direct products of the form $Q \times A \times B$, where Q is the quaternion group of order $8, A$ is abelian of odd order and $\exp (B) \leq 2$.

We may view a Dedekindian group G as a group satisfying the property that $\alpha(H)=H$ for every $H \leq G$ and for every $\alpha \in \operatorname{Inn}(G)$. This remark suggests the consideration of a new class of groups, called co-Dedekindian groups which are defined by a similar requirement. Although our definition makes sense for infinite groups we shall restrict here to the finite case.

Definition. Let G be a group and let $\operatorname{Aut}_{c}(G)$ be its group of central automorphisms, so that $\operatorname{Aut}_{c}(G)=\{\alpha \in \operatorname{Aut}(G) \mid \alpha(x) \in x Z(G)$, for every $x \in G\}$. G is called a co-Dedekindian group (\mathscr{C}-group for short) if $\alpha(H)=H$ for every $H \leq G$ and for every $\alpha \in \mathrm{Aut}_{c}(G)$.

A first glance at the definition shows that the class of \mathscr{C}-groups is very large. If G is a group and if $Z(G)=1$ or if $G^{\prime}=G$, then $\mathrm{Aut}_{c}(G)=1$ and G is a \mathscr{C}-group in an obvious manner. By a trivial \mathscr{C}-group we shall mean a group G with $\operatorname{Aut}_{c}(G)=1$.

Since $Z\left(S_{n}\right)=1$ for $n \geq 3$, it follows by Cayley's theorem that every finite group can be embedded into a trivial \mathscr{C}-group. This means that there is no hope for a compact description of the trivial \mathscr{C}-groups and turn the focus on nontrivial \mathscr{C}-groups.

The parallel with Dedekindian groups is clear. We may regard the abelian groups as trivial Dedekindian groups. A Dedekindian group is trivial if and only if $\operatorname{Inn}(G)=1$. The nontrivial Dedekindian finite groups are the Hamiltonian groups whose structure was described above.

All groups in this paper are finite. The notation is standard and conforms to that of [2]. If G is a group and if $\alpha \in \operatorname{Aut}_{c}(G)$ we shall denote $F_{\alpha}=C_{G}(\alpha)=\{x \in G \mid \alpha(x)=x\}$, $K_{\alpha}=[G, \alpha]=\left\langle x^{-1} \alpha(x) \mid x \in G\right\rangle$. Also, $F=\cap\left\{F_{\alpha} \mid \alpha \in \operatorname{Aut}_{c}(G)\right\} \quad$ and $K=\left\langle K_{\alpha}\right| \alpha \in$ Aut $\left._{c}(G)\right\rangle$.

Our first result is a Dedekind-like structure theorem. Unfortunately it holds only for \mathscr{C}-groups with trivial Frattini subgroup:

Theorem 1. Let G be a nontrivial \mathscr{C}-group such that $\Phi(G)=1$. Then $G=F \times K$, $(|F|,|K|)=1, F$ is a trivial \mathscr{C}-group and K is a cyclic group of odd square-free order.

The nilpotent \mathscr{C}-groups are good candidates for nontrivial \mathscr{C}-groups and we may

[^0]expect that their structure is quite restricted. The following result shows that this is indeed the case under certain additional assumptions.

Theorem 2. Let G be a p-group. If G is a nonabelian \mathscr{C}-group, then $Z_{2}(G)$ is a Dedekindian group. If $Z_{2}(G)$ is nonabelian, then $G \simeq Q_{8}$. If $Z_{2}(G)$ is cyclic, then $G \simeq Q_{2^{n}}$, $n \geq 4$, where $Q_{2^{n}}$ is the generalized quaternion group of order 2^{n}.
2. Nontrivial \mathscr{C}-groups with trivial Frattini subgroup. In order to prove Theorem 1, we need first a number of results about arbitrary \mathscr{C}-groups. The first lemma is well-known (see [1]).
(2.1) Let G be a group and let $\alpha \in \operatorname{Aut}_{c}(G)$.
(i) The function $\phi_{\alpha}: G \rightarrow G$, defined by $\phi_{\alpha}(x)=x^{-1} \alpha(x)$ for all $x \in G$ is an endomorphism of G, $\operatorname{Ker} \phi_{\alpha}=F_{\alpha}, \phi_{\alpha}(G)=K_{\alpha}$ and $|G|=\left|F_{\alpha}\right| \cdot\left|K_{\alpha}\right|$. If, moreover, $(|\alpha|,|G|)=1$ then $G=F_{\alpha} \times K_{\alpha}$.
(ii) $G^{\prime} \leq F$ and $K \leq Z(G)$, so in particular $F, K, F_{\alpha}, K_{\alpha}$ are normal subgroups in G.

The following elementary consequence of (2.1)(i) will be used in the sequel:
(2.2) Let G be a \mathscr{G}-group, let $\alpha \in \operatorname{Aut}_{c}(G)$ and let $H \leq G$. Then

$$
|H|=\left|H \cap F_{\alpha}\right| \cdot\left|\phi_{\alpha}(H)\right|
$$

If G is a \mathscr{C}-group and if $\alpha \in \operatorname{Aut}_{c}(G)$, then F_{α} and K_{α} play a special role in the lattice of all subgroups.
(2.3) Let G be a \mathscr{G}-group, let $\alpha \in \operatorname{Aut}_{c}(G)$ and let $H \leq G$. Then
(i) $H \cap F_{\alpha}=1 \Rightarrow H \leq K_{\alpha}$,
(ii) $H \cap K_{\alpha}=1 \Rightarrow H \leq F_{\alpha}$,
(iii) $G=H F_{\alpha} \Rightarrow K_{\alpha} \leq H$,
(iv) $G=H K_{\alpha} \Rightarrow F_{\alpha} \leq H$.

Proof. Since the proofs are similar, we shall prove only (iv). Let $G=H K_{\alpha}$, so that $|G|=|H| \cdot\left|K_{\alpha}\right| /\left|H \cap K_{\alpha}\right|$. By (2.1)(i), $|H|=\left|H \cap K_{\alpha}\right| \cdot\left|F_{\alpha}\right|$. By (2.2), $\left|H \cap F_{\alpha}\right| \cdot\left|\phi_{\alpha}(H)\right|=$ $\left|H \cap K_{\alpha}\right| \cdot\left|F_{\alpha}\right|$. Then $\left|\left(H \cap K_{\alpha}\right): \phi_{\alpha}(H)\right| \cdot\left|F_{\alpha}:\left(H \cap F_{\alpha}\right)\right|=1$, forcing $F_{\alpha} \leq H$.

Now we can prove the following result.
(2.4) Let G be a \mathscr{C}-group and let $\alpha \in \operatorname{Aut}_{c}(G)$. Then
(i) $F_{\alpha} \cap K_{\alpha} \leq \Phi(G)$
(ii) $F \cap K \leq \Phi(G)$.

Proof. It is sufficient to prove only (ii). We may assume that $F \neq \Phi(G)$. Choose a maximal subgroup M of G such that $F \neq M$. Then $G=F M$, so $G=F_{\alpha} M$ for all $\alpha \in \mathrm{Aut}_{c}(G)$. By (2.3)(iii) it follows that $K_{\alpha} \leq M$ for all $\alpha \in \mathrm{Aut}_{c}(G)$, whence $K \leq M$. We have thus proved that if M is a maximal subgroup of G and if $F \not \ddagger M$, then $K \leq M$. Now $F \cap K \leq \bigcap\{M \mid M$ is maximal in G and $F \leq M\} \cap \bigcap\{M \mid M$ is maximal in G and $F \neq M\}=\Phi(G)$.

The next result shows that the elements of prime order are "separated" by F_{α} and K_{α}.
(2.5) Let G be a \mathscr{C}-group, let $\alpha \in \mathrm{Aut}_{c}(G)$ and let $p \in \pi(G)$. If T_{p} is the set of all elements of order p of G, then $T_{p} \subseteq F_{\alpha}$ or $T_{p} \subseteq K_{\alpha}$.

Proof. Let $x \in T_{p}$. If $\langle x\rangle \cap F_{\alpha}=1$, then by (2.3)(i) $\langle x\rangle \leq K_{\alpha}$. This shows that
$T_{p} \subseteq F_{\alpha} \cup K_{\alpha}$. Assume now that $x, y \in T_{p}$ such that $x \in F_{\alpha}-K_{\alpha}$ and $y \in K_{\alpha}-F_{\alpha}$. Since $y \in K_{\alpha} \leq Z(G),[x, y]=1$, so $x y \in T_{p}$. But clearly $x y \notin F_{\alpha} \cup K_{\alpha}$, a contradiction. Thus $T_{p} \subseteq F_{\alpha}$ or $T_{p} \subseteq K_{\alpha}$, as asserted.

As a corollary we have the following result.
(2.6) Let G be a \mathscr{C}-group and let $\alpha \in \operatorname{Aut}_{c}(G)$, such that $F_{\alpha} \cap K_{\alpha}=1$. Then $G=F_{\alpha} \times K_{\alpha}$ and $\left(\left|F_{\alpha}\right|,\left|K_{\alpha}\right|\right)=1$.

Proof. That $G=F_{\alpha} \times K_{\alpha}$ follows from hypothesis and (2.1)(i), while $\left(\left|F_{\alpha}\right|,\left|K_{\alpha}\right|\right)=1$ follows by (2.5).

We are now in position to give a
Proof of Theorem 1. Let G be a nontrivial \mathscr{C}-group with $\Phi(G)=1$. Then $F \cap K=1$ by (2.4) and if $\alpha \in \operatorname{Aut}_{c}(G)$ we also have that $G=F_{\alpha} \times K_{\alpha},\left(\left|F_{\alpha}\right|,\left|K_{\alpha}\right|\right)=1$ by (2.4) and (2.6).

We prove first that $(|F|,|K|)=1$.
Let $p \in \pi(K)$. Since K is abelian we can find $\alpha \in \operatorname{Aut}_{c}(G)$ such that $p \in \pi\left(K_{\alpha}\right)$. Then $\left(p,\left|F_{\alpha}\right|\right)=1$ and since $F \leq F_{\alpha},(p,|F|)=1$.

Now we prove that $G=F \times K$. Since $F, K \unlhd G$ and $F \cap K=1$, it suffices to show that $G=F K$. Let x be a p-element of G. From (2.2) and (2.3) it follows that either $\langle x\rangle \leq F_{\alpha}$ or $\langle x\rangle \leq K_{\alpha}$ if $\alpha \in \operatorname{Aut}_{c}(G)$. It is easy to deduce that either $\langle x\rangle \leq F$ or $\langle x\rangle \leq K$, which shows that $G=F K=F \times K$.

Since $(|F|,|K|)=1, \operatorname{Aut}_{c}(G)=\operatorname{Aut}_{c}(F) \times \operatorname{Aut}_{c}(K)$.
Since G is a \mathscr{C}-group, both F and K are \mathscr{C}-groups. Of course, F is a trivial \mathscr{C}-group, because $F=C_{G}\left(\operatorname{Aut}_{c}(G)\right) . K$ is a cyclic group because K is abelian and the condition of being a \mathscr{C}-group is equivalent to that of every subgroup of K being characteristic in K. Since $K \leq G, \Phi(K) \leq \Phi(G)=1$, so $|K|$ is square-free. Note that if $2 \in \pi(G)$, then $2 \in \pi(F)$. Indeed, if $\alpha \in \operatorname{Aut}_{c}(G)$, then $\alpha(x)=x$ for every involution of G. Hence $|K|$ is odd and the proof is complete.
3. Nilpotent \mathscr{C}-groups. If G is a nilpotent \mathscr{C}-group, then G is the direct product of its (characteristic) Sylow p-subgroups and every Sylow p-subgroup of G is also a \mathscr{C}-group. We will therefore focus here on p-groups which are nontrivial \mathscr{C}-groups. Note that an abelian p-group is a \mathscr{C}-group if and only if it is a cyclic p-group and that a cyclic p-group G is a trivial \mathscr{C}-group if and only if $|G| \leq 2$.

We shall now concentrate on nonabelian p-groups which are \mathscr{C}-groups. The following two lemmas are helpful:
(3.1) Let G be a nonabelian p-group. If G is a \mathscr{C}-group, then $\Omega_{1}(G) \leq F$.

Proof. Observe first that, since G is a \mathscr{C}-group, $\operatorname{Aut}_{c}(G)$ is an abelian group. This follows at once from the condition that $\alpha(x) \in\langle x\rangle$ for every $x \in G$ and every $\alpha \in$ Aut $_{c}(G)$. We may use now Corollary 2 of [1] to derive that Aut $_{c}(G)$ is a p-group.

If $x \in T_{p}$, so that $|x|=p$, then by [2, Lemma 2.6.3], $x \in F$. This proves that $\Omega_{1}(G) \leq F$.
(3.2) Let G be a nonabelian p-group. If G is a \mathscr{C}-group, then $Z_{2}(G)$ is a Dedekindian group.

Proof. Since G is nonabelian, $Z(G)<Z_{2}(G)$. Every element of $Z_{2}(G)$ induces by conjugation a central automorphism of G because $\left[Z_{2}(G), G\right] \leq Z(G)$. Since G is a \mathscr{C}-group, it follows that $\left[H, Z_{2}(G)\right] \leq H$ for every $H \leq G$. In particular, every subgroup of $Z_{2}(G)$ is normal in $Z_{2}(G)$, so $Z_{2}(G)$ is a Dedekindian group.

If G is a nonabelian p-group which is a \mathscr{C}-group then by (3.2) $Z_{2}(G)$ is either abelian or $Z_{2}(G)$ is the direct product of Q_{8} by a group of exponent at most 2 . It is a rather easy matter to determine those nonabelian p-groups G which are \mathscr{C}-groups and in which $Z_{2}(G)$ is a cyclic group.
(3.3) Let G be a nonabelian p-group which is a \mathscr{C}-group. If $Z_{2}(G)$ is cyclic, then $p=2$ and $G \simeq Q_{2^{n}}, n \geq 4$, where $Q_{2^{n}}$ is the generalized quaternion group of order 2^{n}.

Proof. Since $Z_{2}(G)$ is cyclic, it follows by [3, Satz 7.7] that $p=2$ and G has a cyclic maximal subgroup. Then G must be isomorphic to one of the groups of the following list:
(i) $D_{2^{n}}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1,[a, b]=a^{-2}\right\rangle$,
(ii) $S D_{2^{n}}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1,[a, b]=a^{-2+2^{n-2}}\right\rangle$,
(iii) $\operatorname{Mod}_{2^{n}}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1,[a, b]=a^{2^{n-2}}\right\rangle$,
(iv) $Q_{2^{n}}=\left\langle a, b \mid a^{2^{n-1}}=1, b^{2}=a^{2^{n-2}},[a, b]=a^{-2}\right\rangle$.

Since G is a \mathscr{C}-group, it follows that $Z_{2}(G) \leq C_{G}\left(\Omega_{1}(G)\right)$ by (3.1). If $G \simeq D_{2^{n}}$, than $C_{G}\left(\Omega_{1}(G)\right)=C_{G}(G)=Z(G), \quad$ a contradiction. If $G \simeq S D_{2^{n}}$, than $C_{G}\left(\Omega_{1}(G)\right)=$ $C_{G}\left(\left\langle a^{2}, b\right\rangle\right)=Z(G)$, a contradiction. If $G \simeq \operatorname{Mod}_{2^{n}}$, then G has class 2, whence $Z_{2}(G)=G$ and G is not cyclic. The groups $Q_{2^{n}}$ are co-Dedekindian groups for $n \geq 3$, but if $n=3$, $Z_{2}(G)=G \simeq Q_{8}$ is not cyclic. Therefore $G \simeq Q_{2^{n}, n} \geq 4$, as asserted.

We are now in position to prove Theorem 2. Notice that by (3.2) and (3.3) we have only to tackle the case in which $Z_{2}(G)$ is nonabelian. We start by fixing some notation.

Let G be a nonabelian p-group which is a \mathscr{C}-group such that $Z_{2}(G)$ is nonabelian. Then, by (3.2), $Z_{2}(G)$ must be a nonabelian 2-group; in particular, $p=2$ and $Z_{2}(G)=$ $H \times S$, where $H=\left\langle a, b \mid a^{4}=b^{4}=1, a^{2}=b^{2}, b^{-1} a b=a^{-1}\right\rangle \simeq Q_{8}$ and S is a group of exponent at most 2 .

Throughout the rest of the proof we shall keep this notation fixed. We split the proof into a number of steps.

Step 1. $\Phi(G) \leq C_{G}(H)$.
Proof. Since $\Phi(G)=\left\langle\left\{x^{2} \mid x \in G\right\}\right\rangle$, it suffices to prove that $x^{2} \in C_{G}(H)$ for all $x \in G$. But $C_{G}(H)=C_{G}(a) \cap C_{G}(b)$ and, for symmetry reasons, it suffices to prove that $x^{2} \in C_{G}(a)$ for every $x \in G$.

Let $x \in G-C_{G}(a)$. Since $a \in Z_{2}(G),[a, x] \in Z(G)$ and $[a, x] \neq 1$. Then $[a, x]$ has order 2 because $\exp (Z(G))=2$ by hypothesis. Since G is a \mathscr{C}-group, $[a, x] \in\langle x\rangle$. Let $|x|=2^{k}$, so that $[a, x]=x^{2^{k-1}}$. Then $a^{x^{2}}=1$ and $x^{2} \in C_{G}(a)$.

Step 2. $G=C_{G}(a) \cup C_{G}(b) \cup C_{G}(a b)$.
Proof. Let $x \in G-\left(C_{G}(a) \cup C_{G}(b)\right)$ and let $|x|=2^{k}$. Then, as in Step 1, we can write $[a, x]=x^{2^{k-1}},[b, x]=x^{2^{k-1}}$. This yields $x^{a}=x^{2^{k-1}+1}, x^{b}=x^{2^{k-1}+1}$, whence $x^{a b}=x^{2^{2 k-2+1}}$. Since $x \notin C_{G}(H)$ so $x \notin F=C_{G}\left(\right.$ Aut $\left._{c}(G)\right)$. Then $|x|>2$ by (3.1), whence $|x|=2^{k} \mid 2^{2 k-2}$. As a consequence $x^{a b}=x$, whence $x \in C_{G}(a b)$.

Step 3. $C_{G}(a), C_{G}(b)$ and $C_{G}(a b)$ are maximal subgroups of G.
Proof. It follows from [4] and from the previous Step that G has a quotient K which is a Klein four group, and $C_{G}(a), C_{G}(b), C_{G}(a b)$ are the preimages of the three nontrivial subgroups of K, hence they are maximal subgroups of G.

Step 4. $Z(G)=\left\langle a^{2}\right\rangle \simeq \mathbb{Z}_{2}$ and $Z(G) \leq \Phi(G)$.
Proof. Let $z \in Z(G)$ be an involution. Define $\phi: G \rightarrow G$ by $\phi(x)=x$ if $x \in C_{G}(a)$ and $\phi(x)=z x$ if $x \notin C_{G}(a)$. Then $\phi \in \mathrm{Aut}_{c}(G)$ and since G is a \mathscr{C}-group $\phi(b) \in\langle b\rangle$, whence $z b \in\langle b\rangle$ and $z=b^{2}=a^{2}$. In particular, $Z(G)$ has a unique involution. This shows that $Z(G)$ is cyclic. Since $Z(G) \leq Z\left(Z_{2}(G)\right)=\left\langle a^{2}\right\rangle \times S$, it follows that $Z(G)=\left\langle a^{2}\right\rangle \simeq \mathbb{Z}_{2}$.

It is now clear that $Z(G) \leq \Phi(G)$.
Step 5. $\Omega_{1}(G) \leq \Phi(G)$ and $a^{2} \in\langle x\rangle$, for all $x \in G-\Phi(G)$.
Proof. It is enough to show that there are no involutions in $G-\Phi(G)$.
Suppose that $x \in G-\Phi(G)$ is an involution and let M be a maximal subgroup of G such that $x \notin M$. Let $\phi: G \rightarrow G$ be defined by $\phi(g)=g$, if $g \in M$, and $\phi(g)=a^{2} g$, if $g \notin M$. Then $\phi \in \operatorname{Aut}_{c}(G)$ and in particular $\phi(x) \in\langle x\rangle$, since G is a \mathscr{C}-group. Then $a^{2} x \in\langle x\rangle$ and $a^{2} \in\langle x\rangle$. Since $|x|=2, a^{2}=x$. This contradicts Step 4.

Step 6. $\Phi(G)$ is elementary abelian.
Proof. Assume the contrary and let $x \in \Phi(G)$ with $|x|=4$. Then $a x \notin \Phi(G)$ because $a \notin C_{G}(b)$ and $C_{G}(b)$ is a maximal subgroup of G by Step 3. Since $\Phi(G) \leq C_{G}(H)$ by Step 1 , $(a x)^{4}=a^{4} x^{4}=1$. In particular, $|a x| \leq 4$ and since $a x \notin \Phi(G)$ it follows by Step 5 that $|a x|=4$. Then $(a x)^{2}=a^{2}$ by Step 5 . We get $x^{2}=1$, a contradiction.

Step 7. $|\Phi(G)|=2$.
Proof. By Step 6, if $x \in \Phi(G)$, then $|x|=2$. If $x \notin \Phi(G)$, then $x^{2} \in \Phi(G)=\left\langle\left\{g^{2} \mid g \in\right.\right.$ $G\}\rangle$. Also, by Step $5, a^{2} \in\langle x\rangle$ if $x \in G-\Phi(G)$. Then $x^{2}=a^{2}$ for every $x \in G-\Phi(G)$, whence

$$
\Phi(G)=\left\langle\left\{g^{2} \mid g \in G\right\}\right\rangle=\left\{1, a^{2}\right\}
$$

Step 8. $G=H \simeq Q_{8}$.
Proof. By Steps 5 and $7, G$ contains a unique involution. Then $G \simeq Q_{2^{n}}$ for some $n \geq 3$, by [3, Satz 8.2]. Since if $n \geq 4, Z_{2}(G) \simeq \mathbb{Z}_{4}$, it follows that $n=3$ and $G \simeq Q_{8}$.

The proof of Theorem 2 is now complete.
Notice that by (3.2), (3.3) and by Theorem 2 the classification of all \mathscr{C}-groups of prime power order is reduced to that of nonabelian p-groups with abelian noncyclic second center.
4. Concluding remarks. (a) If G is a \mathscr{C}-group and $\Phi(G) \neq 1$ then Theorem 1 does not hold; for example, the cyclic group \mathbb{Z}_{4} is a nontrivial \mathscr{C}-group which is indecomposable.
(b) The problem of deciding whether a group is a trivial \mathscr{C}-group is not a trivial one.

Of course, by (2.1)(ii), G is surely a trivial \mathscr{C}-group if $G=G^{\prime}$, or if $Z(G)=1$. But these conditions are not necessary: if $G=\mathbb{Z}_{2} \times H$ and H is a nonabelian group of order 21, then G is a trivial \mathscr{C}-group but clearly $Z(G) \neq 1$ and $G \neq G^{\prime}$. Theorem 1 gives a sufficient condition for a \mathscr{C}-group G to be a trivial \mathscr{C}-group: it suffices to have $\Phi(G)=1, G$ noncyclic and G purely nonabelian (i.e. G has no abelian direct factors).
(c) We remark here that nonabelian p-groups with abelian noncyclic second center and which are \mathscr{C}-groups do exist. An example is $G=\langle a, b| a^{9}=1, b^{3}=a^{6},[a, b]^{3}=1$, $\left.[a,[a, b]]=a^{3},[b,[a, b]]=1\right\rangle$ whose order is 81 .

It can be shown that G is the unique group of order p^{4} satisfying all these properties: Let G be a nonabelian \mathscr{C}-group of order p^{4}, with $Z_{2}(G)$ abelian and noncyclic.
Then $1<Z(G)<Z_{2}(G)<G,|Z(G)|=p,\left|Z_{2}(G)\right|=p^{2}, Z_{2}(G)$ is elementary abelian and G has class 3. From the relations $G^{\prime} \leq Z_{2}(G), G^{\prime} \cap Z(G) \neq 1, G^{\prime} \neq Z(G), G^{\prime} \leq \Phi(G)$ we derive $G^{\prime}=\Phi(G)=Z_{2}(G)$. Now let z be a generator of $Z(G)$.

If $x \notin \Phi(G)$ and M is a maximal subgroup of G such that $x \notin M$, then $\phi: G \rightarrow G$ defined by $\phi\left(x^{i} m\right)=x^{i} z^{i} m$, for every $m \in M$ and for every $i \in\{0,1, \ldots, p-1\}$ is a central automorphism of G with $\phi(x)=x z$. Because G is a \mathscr{C}-group, $\alpha(x) \in\langle x\rangle$, that is $Z(G) \subset\langle x\rangle$ for every $x \in G-\Phi(G)$.

We obtain $|x|>p$ for every $x \in G-\Phi(G)$ and $\Omega_{1}(G)=Z_{2}(G)$. It is known that $G^{p} \leq \Phi(G)$, so that $\exp (G)=p^{2}$. Now if $x \in G-\Phi(G)$ then $|x|=p^{2}$ and $Z(G) \subset\langle x\rangle$, that is $Z(G)=\left\langle x^{p}\right\rangle$. It follows that $G^{p}=Z(G)$.

Finally we get

$$
\begin{equation*}
1<Z(G)=G^{p}<Z_{2}(G)=\Phi(G)=\Omega_{1}(G)<G \tag{**}
\end{equation*}
$$

Conversely, we will show that a group G of order p^{4} satisfying (**) is a nonabelian \mathscr{C}-group with abelian noncyclic second center.

Let G be such a group. Obviously G has class $3,|Z(G)|=p$ and $\left|Z_{2}(G)\right|=p^{2}$. Being generated by elements of order $p, Z_{2}(G)$ is elementary abelian.

Now let ϕ be a nontrivial central automorphism of G. Then $1 \neq K_{\phi} \leq Z(G)$, that is $K_{\phi}=Z(G)$. It follows that F_{ϕ} is a maximal subgroup of G. This implies $\phi(x)=x$, for every $x \in \Phi(G)$.

Let $x \in G-\Phi(G)$. From (**) we get $|x|>p$ and $x^{p} \in Z(G)$, that is $Z(G)=\left\langle x^{p}\right\rangle$.
Now $\phi(x) \in x Z(G) \subset\langle x\rangle$, hence G is a \mathscr{C}-group. We may observe that such a group G is nonregular because $\left|G^{p}\right| .\left|\Omega_{1}(G)\right| \neq|G|$ and the lack of regularity implies $p \leqslant 3$ (See [3], Satz 10.2 and Satz 10.7).

Moreover, $p \neq 2$ because $G^{p} \neq \Phi(G)$. We may conclude that the only nonabelian \mathscr{C}-groups G of order p^{4} which have abelian noncyclic second center are the groups of order 81 satisfying ($* *$).

There is a single group with these properties, namely $G=\langle a, b| a^{9}=1, b^{3}=a^{6}$, $[a, b]^{3}=1,[a,[a, b]]=a^{3},[b,[a, b]]=1>($ See $[3]$, Aufgabe 29 p. 349).

It is easy to see that $Z(G)=G^{3}=\left\langle a^{3}\right\rangle \simeq \mathbb{Z}_{3}$ and

$$
Z_{2}(G)=\Phi(G)=\Omega_{1}(G)=\left\langle a^{3},[a, b]\right\rangle \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

REFERENCES

1. M. J. Curran and D. J. McCaughan, Central automorphisms of finite groups, Bull. Austral. Math. Soc. 34 (1986), 191-198.
2. D. Gorenstein, Finite groups (Harper and Row, 1968).
3. B. Huppert, Endliche Gruppen I (Springer Verlag, 1967).
4. G. Scorza, I gruppi che possono pensarsi come somma di tre loro sottigruppi, Boll. Un. Mat. Ital. 5 (1926), 216-218.

Department of Mathematics
University of Timişoara
Bd. V. Pârvan nr. 4
1900 Timişoara, Romania.
AND
Department of Mathematics
University of Kuwait
P.O. Box 5969, Safat 13060

Kuwait.

Department of Mathematics
University of Timişoara
Bd. V. Pârvan nr. 4
1900 Timişoara, Romania.

[^0]: \dagger The research of this author was supported by Grant SM082 from the Research Council, University of Kuwait.

