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Introduction

Although unnecessary assumptions are something we all try to
avoid, advice on how to do so is much harder to come by than
admonition. The most widely quoted dictum on the subject, often
referred to by writers on philosophy as "Ockham's razor" and
attributed generally to William of Ockham, states "Entia non
sunt multiplicanda praeter necessitatem". (Entities are not to be
multiplied without necessity.) As pointed out in reference [i],
however, the authenticity of this attribution is questionable.

The same reference mentions Newton's essentially similar state-
ment in his Principia Mathematica of 1726. Hume [3] is credited
by Tribus [2c] with pointing out in 1740 that the problem of statis-
tical inference is to find an assignment of probabilities that "uses
the available information and leaves the mind unbiased with respect
to what is not known." The difficulty is that often our data are
incomplete and we do not know how to create an intelligible inter-
pretation without filling in some gaps. Assumptions, like sin, are
much more easily condemned than avoided.

In the author's opinion, important results have been achieved
in recent years toward solving the problem of how best to utilize
data that might heretofore have been regarded as inadequate. The
approach taken and the relevance of this work to certain actuarial
problems will now be discussed.

Bias and Prejudice

One type of unnecessary assumption lies in the supposition that
a given estimator is unbiased when in fact it has a bias. We need
not discuss this aspect of our subject at length here since what we

J) Originally presented at the seminar on Mathematical Theory of Risk
and allied topics, auspices of the Committee on Mathematical Theory of
Risk, Casualty Actuarial Society, November 16, 1966.
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might consider the scalar case of the general problem is well
covered in textbooks and papers on sampling theory. Suffice it to
say that an estimator is said to be biased if its expected value
differs by an incalculable degree from the quantity being estimated.
Such differences can arise either through faulty procedures of data
collection or through use of biased mathematical formulas. It
should be realized that biased formulas and procedures are not
necessarily improper when their variance, when added to the bias,
is sufficiently small as to yield a mean square error lower than the
variance of an alternative, unbiased estimator.

As an example of bias due to sampling procedure, suppose we
sample a population in a non-random, haphazard manner so that
probabilities of selection vary in an unknown way. There is no
method by which to calculate the difference between the expected
value of the mean of such a sample and the mean of the population.
Hence, the sample mean is a biased estimator. On the other hand,
if probabilities of selection are known, appropriate weighting will
provide an unbiased estimator. An example of bias due to choice
of mathematical formula is the use of ratio-estimates, as where the
ration of y to x obtained by sampling is multiplied by a known
population total of x to estimate the population total of y. The
combined bias and standard error of a ratio estimate is often less,
however, than the standard error of the best alternative unbiased
estimate. An estimator is not considered to be biased if there is any
way of removing the bias. Thus, the sum of the means of random
samples of x and of y is considered to be an unbiased estimator of
the expected value of x if we know the expected value of y. This
is because we can subtract the latter quantity leaving x -\- y — Ey,
the expected value of which is clearly Ex.

Our concern here is not primarily with point estimations but
with complete statistical distributions. We shall consider any
distribution function characterized by parameters or form not
directly derived from the data as" prejudiced". This seems an apt
characterization since different analysts may derive different
functions from a given set of data if they go beyond the data in
their specifications. These differences can inferentially be imputed
to differing personal prejudices (perhaps unconscious) in favor of
one function over another.
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While we presumably exercise no conscious favoritism for one
one type of distribution function over another and we test all
plausible choices impartially, we are necessarily limited to those
functions with which we are familiar and which we can handle
mathematically. The phenomena we study are not necessarily so
constrained. In some problems, however, we are fortunate in that
the data include information that a process is involved which can
produce only a particular kind of distribution, so there is no possibil-
ity of prejudice.

The Logical Inconsistency of Prejudice
Let us suppose that data X imply conclusions C x. Let us suppose,

further, that we do not quite know how to interpret X and cannot
draw any conclusion unless we assume Y also to be true. Then we
draw the conclusion CXY and tender it as Cx. That this is clearly
a false coin is seen when someone else similarly finds it necessary
to make an assumption, say Z, and tenders CYZ as CY. More
embarrassing, we ourselves may at a later date find assumption
W to be more agreeable than Y so we now find ourselves with a
different conclusion, Cxw, from the same data. Alternatively, we
may telescope the process and offer two or more conclusions
simultaneously, at the same time admitting their dubious nature
by revealing the alternative assumptions we found ourselves
obliged to adopt but between which we are at a loss to choose.

The thesis of this paper is that there is a way out of this dilemma
in an important class of problems.

Entropy
By way of wielding Ockham's razor, we might devise some

measure whereby different functions could be compared as to
number of "entia". Of all functions consistent with the data we
might select the one, or ones, requiring the fewest "entia", i.e.,
the least information, as being minimally prejudiced. The author
joins others, cited in the references hereto, in proposing a measure
employed by Shannon [4] in the development of information theory
and subsequently adopted by Jaynes [5], Tribus [2] and others in
re-derivations of the theorems of statistical mechanics and thermo-
dynamics.

https://doi.org/10.1017/S0515036100011132 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100011132


THE AVOIDANCE OF UNNECESSARY ASSUMPTIONS 377

Success in these areas suggested that valid applications might be
found in the area of statistical inference [2d, 2e]. Shannon's measure,
which he called the "entropy" or "uncertainty" of a distribution,
is defined by:

5 = -KZpt lnpt (1)

where pi is the probability associated with the i'th discrete possibil-
ity and the summation is taken over all possibilities having non-
zero probability. K is an arbitrary scaling factor. "Ln" refers to
natural logarithms although inclusion of a scaling factor would
permit use of logarithms to any base.

An amusing sidelight on the naming of this measure is related
by Tribus [21]:

When Shannon discovered this function he was faced with the
need to name it, for it occurred quite often in the theory of
communication he was developing. He considered naming it
"information" but felt that this word had unfortunate popular
interpretations that would interfere with his intended uses of
it in the new theory. He was inclined towards naming it "un-
certainty" and discussed the matter with the late John Von
Neumann. Von Neumann suggested that the function ought to
be called "entropy" since it was already in use in some treatises
on statistical thermodynamics . . . Von Neumann, Shannon
reports, suggested that there were two good reasons for calling
the function "entropy". "It is already in use under that name," he
is reported to have said, "and besides, it will give you a great
edge in debates because nobody really knows what entropy is
anyway." Shannon called the function "entropy" and used it
as a measure of "uncertainty," interchanging the two words in
his writings without discrimination.

Shannon showed that this measure is unique in satisfying the
following criteria:
(a) It should depend only upon the probability distribution, i.e.,

S is a function of pv p2 . . . pn.
(b) If all of the p{ are equal, then pi = i/w and 5 is a monotonically

increasing function of n.
(c) The measure should be consistent in the sense that if we con-
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sider events A and B in the context of a state of knowledge X,
then we should have

S(AB\X) = S(A\BX) + S(B\X)
That is, the entropy ascribed to A and B jointly in the context
of X equals the entropy that would be ascribed to A in the
context of B and X plus the entropy that would be ascribed to
B alone in the context of X. This parallels the law of compound
probabilities.

Formal Results
Defining the minimally prejudiced distribution function as that

for which S is at a maximum, let us look at the derivations of some
familiar distributions. These problems will be characterized by the
information available and the solution derived by maximizing S.
We assume that nothing whatever is known about each distribution
beyond what is stated. In practice there might be additional, non-
quantitative data that would preclude use of the functions derived
here in certain cases. Derivation of the minimally prejudiced
distribution subject to common qualitative constraints would be
an important extension of presently known results.

In a wide variety of problems, available information may be in
the form of averages such as the mean first power, mean square,
mean cube, etc. of the variate x. The following results would apply
to means of any single-valued continuous functions, for example
trigonometric or logarithmic functions, as well as to the usually
reported integral power functions. We can denote these various
means as

§M) = SM-W (2)
where r = i, 2, 3 . . . m for m different functions of x and Y,pi = 1.

The measure just presented enables us to compare statements
about a distribution in such a way that we can select that one
among all satisfying the given data which, by virtue of maximum
entropy, best complies with Ockham's dictum in the sense of assert-
ing the least information. As noted by Tribus, "By using this prin-
ciple, the observer reduces his subjectivity to the minimum possible
value." In problems where this procedure inevitably leads different
analysts to the same result, the author considers that subjectivity,
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or prejudice, has been reduced to zero. The only challenge that
might be made to this claim would seem to rest upon the degree
of subjectivity entailed in adopting the principle of maximum
entropy as a criterion in the first place. Whether the case for
adoption of this principle is so overwhelming as to remove all
possibility of subjectivity on that point (so that its rejection is
outright error) will not be argued here. It does seem clear, however,
that as between persons who adopt the principle as a convention,
there is no room for personal prejudice. This alone is a strong
recommendation for any convention not demonstrably in error.

We now make certain observations concerning Shannon's
measure:
1. If the logarithm is taken to base 2 (rather than to the base e)

S is equal to the expected number of questions in a taxonomic
game, such as Twenty Questions, that would be needed to
remove all doubt. [2b]

2. In general, S is a measure of the "flatness" of a distribution,
hence of the relative equality with which probabilities are
assigned. This is consistent with the intuitive notion that event
A should not be assumed, without reason, to be more likely
than event B. (It seems obvious that consistent results cannot
be expected if probabilities are assigned whimsically.)

3. The measure is differentiate, hence can be maximized by
classical methods (i.e., without resort to linear programming or
other iterative procedures) to yield minimally prejudiced
functions as extremals.

4. The fact that the measure employs a summation of probabilities,
rather than an integral, apparently precludes its use in problems
that require continuous distributions. Yet, the class of phenom-
ena involving only a finite number of particles and the emission
or absorption of discrete quanta of energy may be sufficiently
broad as severely to limit, if not to rule out, the occurrence of
physical events for which continuous distributions are strictly
appropriate. Physical considerations aside, the digitalization of
measurements converts data representing even theoretically
continuous distributions into discrete form. This author does
not see it as a flaw, therefore, that the measure of entropy has
not been defined for continuous distributions.
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It is shown by Jaynes and Tribus that the assignment of the pi

for which S is at a maximum (K being an arbitrary constant) is

Pi = eXP- [—«0 — «lgl(*i)—«2&s(*i) — ] (3)

in which the a's are Lagrangian multipliers satisfying the re-
quirements of gr(x) and

a0 = In Sexp. [^argr{xt) ] ^
i r

while

gr(#) = —~baoj~bar —- mean of gr(x)

Var. [gr(#) ] = ~i)2ajdal = variance of gr(x)

and

5 = iCflo + KX ar gr(x)
r

Specific Derived Distributions

Known Data Distribution with Maximum Entropy

Range Uniform

n Pl = 1
i-1

Mean*

i - 0

Mean and variance*

S ptxt = *
0

0

* i: ^ f l = 1
( - 0

Pi = exP- (—«o) = -m

Exponential

Pi — e xP- (—«o—aixi)

Truncated Gaussian

Pt = exp. ( - « u - ^ -
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Mean and mean logarithm* Gamma

2 pixi = x pt — exp. (—a0—a1xi—a2xf)

2 pt In xt — In x = xt
 a* exp. (—a0—axx?)

0

Mean logarithm and mean Beta distribution

logarithm of complement ^ = exp.[—a0—a1lnxi—a2ln(i—xt)]
where o ^ a: < i = xf"11 (i—x,^'"12 e~a"

From theory and the foregoing examples it can correctly be
inferred that for every distribution there is at least one specification
as to the data which must be known for that distribution to be
the minimally prejudiced distribution. Also, there is a unique
minimally prejudiced distribution for each specification of known
data. In general, for f(x) to be the minimally prejudiced distribution,
the known data must be the expected value of the natural logarithm
of f(x). For example, what data must be known in order that
f(x) = sin x where 0<%<7i/2? Evidently we shall have pi =
exp. (—an—a l̂nsin x) = sin x if an is set equal to zero and ax — i.

An Apparent Paradox

An apparent paradox can arise in the fitting of distributions of
the generalized exponential type, pt = exp. (a0 -\- a1xi -\- a<jc\ -\- . . .),
which more or less typify the system of maximum entropy, when
actual distributions are better fitted by some other curve. At such
a time we are inclined to ask what is so good about a system that
does not give the best fit. The point to remember here is that if
we have the distribution function, or if we have a summary of it
in the form of grouped data, there is no particular reason to prefer
the generalized exponential over any other curve. Equation (3)
applies strictly only when our data are limited to the expected
values of g^x), g2(x) etc. If we have more information we should
use it. Theoretically, of course, by calculating the mean values of
a sufficient number of functions of x we can approximate any
arbitrary distribution as closely as we please.

The discipline advanced here does not tell us what function best
fits a more or less completely specified distribution. It does tell

* Sec page 380.
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us, however, what data to summarize in order that a given kind
of distribution function shall be best characterized by that data.
For example, if a class of distributions are found to be of the log-
normal type, the data we should be collecting are the mean and
variance of log x. Similarly, if the distributions for a certain kind
of variable are typified by a Gamma distribution, then we should
compile mean values of x and log x, and so on. Such knowledge is
economical since necessary data can often be summarized in the
course of ordinary processing of cases without the necessity of
compiling a great many separate distributions.

It is obviously advantageous, by judicious selection of the
function of x to be averaged, to reduce the number of statistics
that must be compiled.

Of more importance, in the author's opinion, is that for any
given data the criterion of maximum entropy leads to what he
believes to be a mathematically optimum compliance with the
principles attributed at the outset of this paper to Ockham and
Hume for the avoidance of prejudice and unwarranted assumptions.

Entropy as a Measure of Homogeneity
Let a classification plan subdivide a population of risks into n

classes such that for any particular layer of loss the probability of
occurrence of a loss during a specified time interval is pt for the
i'th class. Then for that layer of loss the entropy of this classification
scheme is as defined in Eq. (1). As between two classification plans
applied to the same population of risks, the plan for which S is
smaller contains the more information (less entropy). As between
two populations classified according to the same plan, S is greater
for the more homogeneous population. This measure is of interest
in comparison with the coefficient of variation, proposed by Bailey
[6] as a measure of homogeneity. It is not clear how much advantage,
beyond consistency with the general theory advanced here, entropy
offers over Bailey's measure.

Applications to Composite and Convoluted Distributions
We define a composite distribution as the result of mixing two

or more dissimilar distributions. It is obvious that for the mixture
all of the functions x, x2, x3 etc. will have as their expected values
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the weighted averages of the distributions brought together. This
enables us to describe the composite distribution without further
analysis in terms of Equation (3). It does not, however, assure that
the distribution so determined will provide a good fit to the data
unless the functions being averaged are appropriate to describe
each of the separate distributions.

We define an n-iold identically convoluted distribution as the
distribution of the sum or mean of n values selected independently
from the same (infinite) parent population. The parameters of such
a distribution are shown by Kendall [7] to vary as follows:

Parameter Parent Population Convolution

Mean x Sum nx, mean x

Relative Variance V2 = a2\x2 V2jn

n [E(x-x)3]2

Skewness

Kurtosis

[E(x~x)3]2

[E{x—x)2f (32 —

E(x—~xf n

Parameter values shown for the convolution can be used to compute
Ex2, Ex3, Ex*, etc. and similarly substituted in Eq. (3). Of course,
if the parent distribution function is known explicitly its convolu-
tions can be calculated by standard methods [8].

Comparison with Other Schools of Statistical Inference
The method of minimum prejudice, or maximum entropy, is

distinguished from the Neyman-Pearson school of statistical in-
ference in that whereas the latter school sets up hypotheses and
judges their plausibility in terms of the probability of occurrence
of an observed event given the truth of a hypothesis, the former
method goes straight from the data to the answer without any
testing whatsoever. No testing is theoretically even possible if the
method of maximum entropy has been strictly followed, since all
available data will have gone into the calculation and no further
information is obtainable, in principle, by testing or otherwise.

As a practical matter, the two approaches apply under different
circumstances. If the only available data are several different kinds

26
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of means, the distribution with maximum entropy is asserted to
be the appropriate distribution on these data. As more data, such
as a histogram, are acquired an entirely different curve may be
indicated from what was derived from limited data. In principle it
should be possible to derive a maximum entropy distribution from
any arbitrary data. Very little is known, however, as to just how
to go about incorporating data other than averages. This should
be a fruitful field for study. Fully developed, it ought to obviate
the need for Chi-square and other tests in a great many cases. In
the meantime, however, it is entirely possible to conceive of using
a Chi-square test, for example, upon receipt of more data, to
confirm or revise any earlier choice of curve based upon maximum
entropy. It might also be used where a generalized exponential
function has been fitted to given data on the basis of selected
parameters computed from more detailed data such as a histogram.
The necessity for such a mixing of methods is less than satisfying.

That the need for testing can be eliminated may come as a
surprise to persons, such as the author, trained under the Neyman-
Pearson influence. Yet it is readily apparent that a solution derived
strictly according to Bayes' theorem requires no testing. Application
of this theorem does, however, require knowledge of prior probabili-
ties. It is only in the attempt to "fudge" an answer in the absence
of such knowledge that we find ourselves obliged to resort to
confidence tests and the like. The method of maximum entropy,
as a logical outgrowth and extension of Bayes' theorem, provides
a solution to this dilemma in a wide class of cases.

Actuarial Implications
An obvious actuarial implication arises in the calculation of

deductibles under conditions of inadequate data. Given only the
mean of a non-negative variable, we know the exponential distribu-
tion is the minimally prejudiced estimate of the distribution.
Sometimes we may have more information, such as that /(o) = o.
This implies that In x has a finite mean *. Hence we might let/(%) =
exp. (—a0 — axx — a2 In x) = (x) exp. (—a0 — axx) if a2 = 1.

*) This implication holds without qualification only for discrete distri-
butions which are the only distributions for which entropy has been defined
here.
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Whether such a solution is valid is one of the questions to be
studied. (If we knew the mean value of In x, this equation would be
minimally prejudiced — but is it minimally prejudiced when only
the existence, not the value, of E(ln x) is known ? How do we know
the exponent of In x should be unity ? Does the arbitrary selection
of this value for the exponent betray a prejudice ?)

It appears that in many important practical cases involving
constraints of a form inexpressible as averages, it is not feasible to
maximize the entropy through use of the calculus of variations to
find extremals. Correct answers in such instances may be calculable
only through iterative procedures. [9]

In collective risk theory it seems unlikely that we shall ever have
satisfactorily specified distributions of the claims arising from
heterogeneous portfolios. It may be that Eq. (3) provides our best
estimate of such distributions for practical purposes.

Finally, in such imponderables as the probability distribution of
the error in existing rates — which must be estimated if credibility
is to be calculated using Gauss's theorem on minimum variance,
complete specification of distributions is apparently out of the
question. In this and many other cases we must settle for a good
deal less information. It seems clear that in such instances, as in
others, we are well advised to use such information as we have with
a minimum of prejudice and unsupported assumptions.
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