THE GAUGHY PROBLEM OF LINEAR PARABOLIC EQUATIONS WITH DISCONTINUOUS AND UNBOUNDED COEFFICIENTS

YOSHIAKI IKEDA

§ 1. Introduction.

In this article we shall prove the uniqueness and existense of a weak solution for the Cauchy problem of linear parabolic equations with discontinuous and unbounded coefficients

$$
\begin{align*}
L u & =u_{t}-\left\{\sum_{i, j=1}^{n}\left(a_{i j}(x, t) u_{x_{i}}\right)_{x_{j}}+\sum_{j=1}^{n} b_{j}(x, t) u_{x_{j}}+c(x, t) u\right\} \tag{1.1}\\
& =\sum_{j=1}^{n}\left(f_{j}(x, t)\right)_{x_{j}}+g(x, t)
\end{align*}
$$

In the case where the coefficients are bounded for large $|x|$, Aronson [1] proved the uniqueness and existence using the weighted energy type estimates for weak solutions. Bodanko [2] also discussed the questions of a regular solution for the Cauchy problem of linear parabolic equations

$$
\begin{align*}
L u & =\sum_{i, j=1}^{n} a_{i, j}(x, t) u_{x_{i} x_{j}}+\sum_{j=1}^{n} b_{j}(x, t) u_{x_{j}}+c(x, t) u-u_{t} \tag{1.2}\\
& =f(x, t)
\end{align*}
$$

with unbounded coefficients under some assumption.
In $\S 2$ we shall state some notations and definitions. $\S 3$ is devoted to derive the energy estimates for weak solutions of the equation (1.1) and we prove main theorems in $\S 4$.

§ 2. Some notations and definitions.

Let $x=\left(x_{1}, \cdots, x_{n}\right)$ be a point in the n-dimensional Euclidean space E^{n} and t a point on the real line. Let T be a fixed positive number and set $Q=E^{n} \times(0, T]$. For some fixed positive number R_{0} we put $Q_{0}=\Sigma_{R_{0}} \times(0, T]$,

[^0]where $\sum_{R_{0}}=\left\{x \in E^{n}| | x \mid<R_{0}\right\}$. Now let ω be a domain in E^{n}. The space $L^{q}\left[0, T ; L^{p}(\omega)\right]$ is the set of real functions $w(x, t)$ with the following properties;
(i) w is defined and measurable in $\tilde{\omega}=\omega \times(0, T]$,
(ii) $w(x, t) \in L^{p}(\omega)$ for almost all $t \in(0, T]$,
(iii) $\|w\|_{L^{p}(\omega)}(t) \in L^{q}((0, T))$.

The space $L^{q}\left[0, T ; L^{p}(\omega)\right]$ is denoted by $L^{p, q}(\tilde{\omega})$ for simplicity. For $w \in L^{p, q}(\widetilde{\omega})$ with $1 \leqq p, q<\infty$ we define the norm by

$$
\|w\|_{p, q, \tilde{\omega}}=\left\{\int_{0}^{T}\left(\int_{\omega}|w|^{p} d x\right)^{q / p} d t\right\}^{1 / q} .
$$

In the case either p or q is infinte, $\|w\|_{p, q, w}$ is defined in a similar fashion using L^{∞}-norms rather than integrals.

We shall consider the following Cauchy problem:

$$
\left\{\begin{array}{lll}
L u=\sum_{j=1}^{n}\left(f_{j}\right)_{x_{j}}+g & \text { for } & (x, t) \in Q, \tag{2.1}\\
u(x, 0)=u_{0}(x) & \text { for } & x \in E^{n},
\end{array}\right.
$$

where the coefficients $a_{i j}, b_{j}$ and c are measurable, real valued functions in Q, and f_{j} and g are given functions in Q. We assume the following conditions:

Condition A.
(A.1) For all $\xi \in E^{n}$ and for almost all (x, t) there exist positive constants k and K_{1} such that

$$
k\left(1+|x|^{2}\right)^{1-\lambda}|\xi|^{2} \leqq \sum a_{i j}(x, t) \xi_{i} \xi_{j} \leqq K_{1}\left(1+|x|^{2}\right)^{1-\lambda}|\xi|^{2}
$$

where λ is any fixed number with $0 \leqq \lambda \leqq 1$.
(A.2) The restriction of every coefficient b_{j} to Q_{0} belongs to some space $L^{p_{j}, q_{j}}\left(Q_{0}\right)$, where p_{j} and q_{j} satisfy
(*) $2<q_{j}, p_{j} \leqq \infty$ and $\frac{n}{2 p_{j}}+\frac{1}{q_{j}}<\frac{1}{2}$,
and there exists a non-negative constant K_{2} such that

$$
\left|b_{j}(x, t)\right| \leqq K_{2}\left(1+|x|^{2}\right)^{\frac{1}{2}} \quad \text { for } \quad(x, t) \in Q-Q_{0} .
$$

(A.3) The restriction of c to Q_{0} belongs to $L^{p, q}\left(Q_{0}\right)$, where p and q
satisfy
(**) $1<p, q \leqq \infty \quad$ and $\frac{n}{2 p}+\frac{1}{q}<1$, and $c(x, t) \leq K_{3}\left(1+|x|^{2}\right)^{2}$ in $(x, t) \in Q-Q_{0}$ for a non-negative constant K_{3}.

A function $u(x)$ defined and measurable in ω is said to belong to $H^{1, p}(\omega)$ if u possesses a distribution derivative $\left(u_{x_{1}}, \cdots, u_{x_{n}}\right)$ and $\|u\|_{L^{p}(\omega)}+\left\|u_{x}\right\|_{L^{p}(\omega)}<\infty$, where $\left\|u_{x}\right\|_{L^{p}}^{p^{p}}=\sum_{i=1}^{n}\left\|u_{x_{i}}\right\| \|_{L^{p}}^{p}$.
The space $H_{0}^{1, p}(\omega)$ is the completion of the $C_{0}^{\infty}(\omega)$ functions in this norm. The space $H^{1, p}\left(E^{n}\right)$ is the completion of the $C_{0}^{\infty}\left(E^{n}\right)$ functions in the norm

$$
\|\varphi\|_{L^{p}\left(E^{n}\right)}+\left\|\varphi_{x}\right\|_{L^{p}\left(E^{n}\right)} .
$$

Definition 2.1. A function $u=u(x, t)$ is said to be a weak solution of the problem (2.1) in Q for the initial data $u_{0} \in L_{\text {loc }}^{2}\left(E^{n}\right)$ if u belongs to $L^{\infty}\left[0, T ; L^{2}(\omega)\right] \cap L^{2}\left[0, T ; H^{1,2}(\omega)\right]$ for any ω compact in E^{n}, that is, if

$$
u \in L^{\infty}\left[0, T ; L_{\mathrm{loc}}^{2}\left(E^{n}\right)\right] \cap L^{2}\left[0, T ; H_{\mathrm{loc}}^{1,2}\left(E^{n}\right)\right]
$$

and if u satisfies
(2.2) $\iint_{Q}\left\{-u \varphi_{t}+\Sigma a_{i j} u_{x_{i}} \varphi_{x_{j}}-\Sigma b_{j} u_{x_{j}} \varphi-c u \varphi+\Sigma f_{j} \varphi_{x_{j}}-g \varphi\right\} d x d t$

$$
=0
$$

for any $\varphi \in C_{0}^{1}(Q)$ and further if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{E^{n}} u(x, t) \psi(x) d x=\int_{E^{n}} u_{0}(x) \psi(x) d x \quad \text { for all } \psi \in C_{0}^{1}\left(E^{n}\right) \tag{2.3}
\end{equation*}
$$

At the end of this section we state a lemma which is often used in the following sections.

Lemma 2.1. (Aronson [1]). If $w \in L^{\infty}\left[0, T ; L^{2}\left(E^{n}\right)\right] \cap L^{2}\left[0, T ; H_{0}^{1,2}\left(E^{n}\right)\right]$, then $w \in L^{2 p, 2 q^{\prime}}(Q)$ for all values of p^{\prime} and q^{\prime} whose Hölder conjugates p and q satisfy

$$
\frac{n}{2 p}+\frac{1}{q} \leqq 1
$$

where if $n=2$, then the strict inequality holds. Moreover

$$
\|w\|_{2 p, 2 q, Q}^{2} \leqq K T^{\theta}\left\{\|w\|_{2, \infty, Q}^{2}+\left\|w_{x}\right\|_{2,2, Q}^{2}\right\}
$$

where $\left|w_{x}\right|^{2}=\sum_{j=1}^{n} w_{x_{j}}^{2}, \theta=1-\frac{1}{q}-\frac{n}{2 p}$, and K is a positive constant which depends only on n for $n \neq 2$ and only on p for $n=2$.

§ 3. Energy Estimates.

Let Ω be any bounded domain in E^{n} such that $\Omega \subset \sum_{R_{0}}$, and set $Q_{1}=\Omega \times(0, T]$. In Q_{1} we consider the equation

$$
\begin{equation*}
L u=\Sigma\left(f_{j}\right)_{x_{j}}+g . \tag{3.1}
\end{equation*}
$$

where $f_{j} \in L^{2,2}\left(Q_{1}\right)$ and $g \in L^{p, q}\left(Q_{1}\right)$ for any p and q satisfying (**).
Lemma 3.1. Let $u \in L^{\infty}\left[0, T ; L^{2}(\Omega)\right] \cap L^{2}\left[0, T ; H^{1,2}(\Omega)\right]$ be a weak solution of (3.1) with the initial data u_{0}, that is, let u satisfy

$$
\begin{align*}
& \iint_{Q_{1}}\left\{-u \varphi_{t}+\Sigma a_{i j} u_{x_{i}} \varphi_{x_{j}}-\Sigma b_{j} u_{x_{j}} \varphi-c u \varphi+\Sigma f_{j} \varphi_{x_{j}}-g \varphi\right\} d x d t \tag{3.2}\\
& =0
\end{align*}
$$

for any $\varphi \in C_{0}^{1}\left(Q_{1}\right)$ and (2.3), and let $\zeta=\zeta(x)$ be a non-negative smooth function such that $\zeta u \in L^{2}\left[0, T ; H_{0}^{1,2}(\Omega)\right]$. Then for any positive number μ_{0}, there exist positive constants \mathscr{C} and μ such that

$$
\begin{align*}
& \left\|\zeta e^{-\mu\left(1+|x|^{2}\right)^{2}} u\right\|_{2, \infty, Q_{1}^{\prime}}^{2}+\left\|\zeta e^{-\mu\left(1+|x|^{2}\right)^{2}} u_{x}\right\|_{2,2, Q_{1}^{\prime}}^{2} \tag{3.3}\\
& \leqq \mathscr{C}\left(\int_{\Omega} \zeta^{2} e^{-2 \mu_{0}\left(1+|x|^{2}\right)^{2}} u_{0}^{2} d x+\| \zeta_{x} e^{-\mu_{0}\left(1+|x|^{2}\right)^{2}}\right. \\
& \times\left(1+|x|^{2}\right)^{\frac{1-\lambda}{2}} u\left\|_{2,2, Q_{1}^{\prime}}^{2}+\right\| \zeta e^{-\mu_{0}\left(1+|x|^{2}\right)^{2}} f_{j} \|_{2,2, Q^{\prime}}^{2} \\
& +\zeta e^{\left.-\mu_{0}(1+\mid x)^{2}\right)^{2}} g \|_{\left.\frac{2 p}{p+1}, \frac{2 q}{q+1}, Q_{1}^{\prime}\right)}
\end{align*}
$$

where $Q_{1}^{\prime}=\Omega \times\left(0, T^{\prime}\right)$ with $T^{\prime}<\frac{\pi}{2}$. The constants T^{\prime}, \mathscr{C} depend only on k, K_{1}, $K_{2}, K_{3}, \lambda, \mu_{0},\left\|b_{j}\right\|_{p_{j}, q_{j}, Q_{0}}$ and $\|c\|_{p, q, Q_{0}} ;$ and μ depends on μ_{0} and T^{\prime}.

Proof. Let $h(x, t)=-\alpha(t)\left(1+|x|^{2}\right)^{2}$, where $\alpha(t) \in C^{1}\left(\tau^{\prime}, \tau^{\prime}+\sigma\right)$ for any τ^{\prime} and a sufficiently small number σ with $0 \leq \tau^{\prime}<\tau^{\prime}+\sigma \leqq T$. Then we obtain for any $\tau \in\left[\tau^{\prime}, \tau^{\prime}+\sigma\right]$

$$
\begin{align*}
& \left.\frac{1}{2} \int_{\Omega} \zeta^{2} e^{2 h} u^{2} d x\right|_{t=\tau}+\int_{\tau /}^{\tau} \int_{\Omega} \zeta^{2} e^{2 h}\left\{\Sigma a_{i j} u_{x_{i}} u_{x_{j}}-\Sigma b_{j} u u_{x_{j}}\right. \tag{3.4}\\
& \left.+\left(-h_{t}-c\right) u^{2}+\Sigma f_{j} u_{x_{j}}-g u\right\} d x d t+2 \int_{z /}^{\tau} \int_{\Omega} \zeta e^{2 h} u\left(\Sigma a_{i j} u_{x_{i}} \zeta_{x_{j}}\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.+\sum a_{i j} u_{x_{i}} \zeta h_{x_{j}}\right)+\zeta e^{2 h} u \sum f_{j}\left(\zeta_{x_{j}}+\zeta h_{x_{j}}\right)\right\} d x d t \\
& =\left.\frac{1}{2} \int_{\Omega} \zeta^{2} e^{2 h} u^{2} d x\right|_{t=\tau^{\prime}}
\end{aligned}
$$

(See $\S 2$ in [1]).
Now we shall estimate each term of (3.4) by using Hölder's inequality and Young's inequality together with Lemma 2.1.

First we see from Condition (A.1) that

$$
\begin{align*}
& \iint \zeta^{2} e^{2 h} \sum a_{i j} u_{x_{i}} u_{x_{j}} d x d t \geqq k \iint \zeta^{2} e^{2 n}\left(1+|x|^{2}\right)^{1-\lambda}\left|u_{x}\right|^{2} d x d t \tag{3.5}\\
& 2 \iint \sum a_{i j} u_{x_{i}} u \zeta \zeta_{x_{j}} e^{2 h} d x d t \leqq \frac{k}{10} \iint \zeta^{2} e^{2 n}\left(1+|x|^{2}\right)^{1-\lambda}\left|u_{x}\right|^{2} d x d t \tag{3.6}\\
& \quad+\frac{10 n^{2} K_{1}^{2}}{k} \iint\left|\zeta_{x}\right|^{2} e^{2 h}\left(1+|x|^{2}\right)^{1-\lambda} u^{2} d x d t
\end{align*}
$$

and

$$
\begin{align*}
& 2 \iint \Sigma a_{i j} \zeta^{2} e^{2 h} u u_{x_{i}} h_{x_{j}} d x d t \leqq \frac{k}{10} \iint \zeta^{2} e^{2 h}\left(1+|x|^{2}\right)^{1-\lambda}\left|u_{x}\right|^{2} d x d t \tag{3.7}\\
& +\frac{10 n^{2} K_{1}^{2}}{k} \iint \zeta^{2} e^{2 h}\left(1+|x|^{2}\right)^{1-\lambda} u^{2}\left|h_{x}\right|^{2} d x d t .
\end{align*}
$$

Next we have

$$
\begin{aligned}
& \int_{z \prime}^{\tau} \int_{\Omega} \Sigma b_{i} \zeta^{2} e^{2 h} u_{x_{j}} u d x d t \leqq \int_{\tau^{\prime}}^{\tau} \int_{\Sigma_{R_{0}}} \Sigma\left|b_{i}\right| \zeta^{2} e^{2 h}\left|u_{x_{j}}\right||u| d x d t \\
& \quad+K_{2} \int_{z^{\prime}}^{\tau} \int_{\Omega} \zeta^{2} e^{2 h}\left(1+|x|^{2}\right)^{\frac{1}{2}}|u| \Sigma\left|u_{x_{j}}\right| d x d t \\
& \quad \equiv B_{1}+B_{2}, \quad \text { say. }
\end{aligned}
$$

By the inequalities of Hölder and Young it is clear that

$$
B_{1} \leqq \frac{k}{10}\left\|\zeta e^{h} u_{x}\right\|_{2,2}^{2}+\frac{5}{k} \Sigma\left\|b_{j}^{2}\right\|_{p, q} \cdot\left\|\zeta e^{h} u\right\|_{2 p, 2 q \prime}^{2},
$$

where p and q satisfy (**). Thus by Lemma 2.1, we see

$$
B_{1} \leqq \frac{k}{10}\left\|\zeta e^{h} u_{x}\right\|_{2,2}^{2}+\frac{5}{k} M K \sigma^{\theta}\left\{\left\|\zeta e^{h} u\right\|_{2, \infty}^{2}+\left\|\left(\zeta e^{h} u\right)_{x}\right\|_{2,2}^{2}\right\}
$$

where we assumed $\Sigma\left\|b_{j}^{2}\right\|_{p, q} \leqq M$.
Using Young's inequality again we see

$$
B_{2} \leqq \frac{k}{10} \iint \zeta^{2} e^{2 h}\left(1+|x|^{2}\right)^{1-\lambda}\left|u_{x}\right|^{2} d x d t+\frac{5 K_{2}^{2} n}{k} \iint \zeta^{2} e^{2 h}\left(1+|x|^{2}\right) u^{2} d x d t
$$

Thus we obtain

$$
\begin{align*}
& \Sigma \iint b_{j} \zeta^{2} e^{2 h} u_{x_{j}} u d x d t \leqq \frac{k}{5} \iint \zeta^{2} e^{2 h}\left(1+|x|^{2}\right)^{1-\lambda}\left|u_{x}\right|^{2} d x d t \tag{3.8}\\
& +\frac{5}{k} M K \sigma^{\theta}\left\{\left\|\zeta e^{h} u\right\|_{2, \infty}^{2}+\left\|\left(\zeta e^{h} u\right)_{x}\right\|_{2,2}^{2}\right\} \\
& +\frac{5 K_{2}^{2} n}{k} \iint \zeta^{2} e^{2 h}\left(1+|x|^{2}\right)^{\lambda} u^{2} d x d t
\end{align*}
$$

Similarly we have

$$
\begin{align*}
& \iint c \zeta^{2} e^{2 h} u^{2} d x d t \leqq M K \sigma^{\theta}\left\{\left\|\zeta e^{h} u\right\|_{2, \infty}^{2}+\left\|\left(\zeta e^{h} u\right)_{x}\right\|_{2,2}^{2}\right\} \tag{3.9}\\
& +K_{3} \iint \zeta^{2} e^{2 h}\left(1+|x|^{2}\right)^{2} u^{2} d x d t
\end{align*}
$$

where we assumed $\|c\|_{p, q} \leqq M$.
It is easily seen that

$$
\begin{gather*}
2 \iint \Sigma f_{i} \zeta e^{2 h}\left(\zeta_{x_{j}}+\zeta h_{x_{j}}\right) u d x d t \leqq \tag{3.10}\\
2 \Sigma\left\|\zeta e^{h} f_{j}\right\|_{2,2}^{2}+\left\|\zeta \zeta_{x} e^{h} u\right\|_{2,2}^{2}+\left\|\zeta e^{h} u h_{x}\right\|_{2,2}^{2} \\
\iint \Sigma f_{j} \zeta^{2} e^{2 h} u_{x_{j}} d x d t \leqq \frac{k}{10}\left\|\zeta e^{h} u_{x}\right\|_{2,2}^{2}+\frac{10}{k} \Sigma\left\|\zeta e^{h} f_{j}\right\|_{2,2}^{2}
\end{gather*}
$$

and
(3.12) $\quad \iint \zeta^{2} e^{2 h} g u d x d t \leqq\left\|\zeta e^{h} g\right\|_{\frac{2 p}{p+1}, \frac{2 q}{q+1}\left\|\zeta e^{h} u\right\|_{2 p^{\prime}, 2 q^{\prime}}}$

$$
\leqq \frac{1}{2 M}\left\|\zeta e^{h} g\right\|_{\frac{2 p}{p+1}}^{\frac{2 q}{q+1}}+\frac{M}{2} K \sigma^{\theta}\left\{\left\|\zeta e^{h} u\right\|_{2, \infty}^{2}+\left\|\left(\zeta e^{h} u\right)_{x}\right\|_{2,2}^{2}\right\}
$$

Finally we note that

$$
\begin{equation*}
\left\|\left(\zeta e^{h} u_{x}\right)\right\|_{2,2}^{2} \leqq 2\left\|\zeta e^{h} u_{x}\right\|_{2,2}^{2}+4\left\|u e^{h} \zeta_{x}\right\|_{2,2}^{2}+4\left\|\zeta e^{h} u h_{x}\right\|_{2,2}^{2} . \tag{3.13}
\end{equation*}
$$

Combining these estimates from (3.5) to (3.13), we have

$$
\begin{equation*}
\left.\frac{1}{2} \int_{\Omega} \zeta^{2} e^{2 h} u^{2} d x\right|_{t=\tau}+\left\{\frac{k}{2}-\left(\frac{10}{k}+3\right) M K \sigma\right\} \int_{\tau \prime}^{\tau} \int_{\Omega} \zeta^{2} e^{2 h} \tag{3.14}
\end{equation*}
$$

$$
\left(1+|x|^{2}\right)^{1-\lambda}\left|u_{x}\right|^{2} d x d t+\int_{\tau^{\prime}}^{\tau} \int_{\Omega} \zeta^{2} e^{2 h} u^{2}\left\{-h_{t}-\left[\frac{10 n^{2} K_{1}^{2}}{k}\left(1+|x|^{2}\right)^{1-\lambda}\left|h_{x}\right|^{2}\right.\right.
$$

$$
\begin{aligned}
& \left.\left.+\left(\frac{20}{k} n^{2} M K \sigma^{\theta}+6 M K \sigma^{\theta}+1\right)\left|h_{x}\right|^{2}+\left(\frac{5 K \frac{2}{2} n}{k}+K_{3}\right)\left(1+|x|^{2}\right)^{\lambda}\right]\right\} d x d t \\
& \leqq \frac{1}{2}\left(\frac{10}{k}+3\right) M K \sigma^{\theta}\left\|\zeta e^{h} u\right\|_{2, \infty}^{2}+\left.\frac{1}{2} \int_{\Omega} \zeta^{2} e^{2 h} u^{2} d x\right|_{t=\tau^{\prime}} \\
& +C_{1}\left(\int_{\tau}^{\tau} \int_{\Omega}\left|\zeta_{x}\right|^{2} e^{2 h}\left(1+|x|^{2}\right)^{1-\lambda} u^{2} d x d t+\sum\left\|\zeta e^{h} f_{j}\right\|_{2,2}^{2}+\left\|\zeta e^{h} g\right\|_{\frac{2 p}{2}}^{p+1}, \frac{2 q}{q+1}\right)
\end{aligned}
$$

where we used the fact that $1 \leqq\left(1+|x|^{2}\right)^{1-2}$.
Since $h(x, t)=-\alpha(t)\left(1+|x|^{2}\right)^{2}$, we see

$$
-h_{t}(x, t)=\alpha(t)\left(1+|x|^{2}\right)^{2} \text { and }\left|h_{x}\right|^{2} \leqq \alpha^{2}(t) 4 \lambda^{2}\left(1+|x|^{2}\right)^{2 \lambda-1} .
$$

Noting that $2 \lambda-1 \leqq \lambda$, that is, $\left(1+|x|^{2}\right)^{2 \lambda-1} \leqq\left(1+|x|^{2}\right)^{2}$, we obtain

$$
\begin{aligned}
& -h_{t}-\left[\frac{10 n^{2} K_{1}^{2}}{k}\left(1+|x|^{2}\right)^{1-\lambda}\left|h_{x}\right|^{2}+\left(\frac{20}{k} n^{2} M K \sigma^{\theta}+6 M K \sigma^{\theta}+1\right)\left|h_{x}\right|^{2}\right. \\
& \left.+\left(\frac{5 K_{2}^{2} n}{k}+K_{3}\right)\left(1+|x|^{2}\right)^{\lambda}\right] \geqq\left(1+|x|^{2}\right)^{2}\left\{\alpha^{\prime}(t)-A \alpha^{2}(t)-B\right\},
\end{aligned}
$$

where

$$
A=4\left(\frac{10 n^{2} K_{1}^{2}+20 n^{2} M K \sigma^{\theta}}{k}+6 M K \sigma+1\right) \lambda^{2}, \text { and } B=\frac{5 K_{2}^{2} n}{k}+K_{3} .
$$

If $\lambda \neq 0$ we put $\alpha(t)=\sqrt{\frac{B}{A}} \tan \{\sqrt{A B} t+m\}$ for $0 \leqq t \leqq \tau^{\prime}$, where $m(>0)$ is a constant with $\sqrt{\frac{B}{A}}$ tan $m=\mu_{0}\left(0<m<\frac{\pi}{2}\right)$. Then

$$
\alpha^{\prime}(t)-A \alpha^{2}(t)-B=0 .
$$

Now we put σ so small that $\frac{k}{2}-\left(\frac{10}{k}+3\right) M K \sigma>0, \frac{1}{2}-\frac{1}{2}\left(\frac{10}{k}+3\right)$. $M K \sigma>0$ and $m+\sqrt{A B} \sigma<\min \left(-\frac{\pi}{2}, T\right)$. Then from (3.14) we have

$$
\begin{align*}
& \max _{\tau^{\prime} \leq t \leq \tau^{\prime}+\sigma} \int_{\Omega} \zeta^{2} e^{2 h} u^{2} d x+\int_{\tau}^{\tau^{\prime}+\sigma} \int_{\Omega} \zeta^{2} e^{2 h}\left|u_{x}\right|^{2} d x d t \tag{3.15}\\
& \leq \mathscr{C}_{2}\left(\left.\int_{\Omega} \zeta^{2} e^{2 h} u^{2} d x\right|_{t=\tau^{\prime}}+\left\|\zeta_{x} e^{h}\left(1+|x|^{2}\right)^{\frac{1-\lambda}{2}} u\right\|_{2,2}^{2}\right. \\
& \left.\quad+\Sigma\left\|\zeta e^{h} f_{j}\right\|_{2,2}^{2}+\left\|\zeta e^{h} g\right\|_{\frac{2 p}{p+1}}^{p+\frac{2 q}{q+1}}\right)
\end{align*}
$$

where $h=h(x, t)=-\sqrt{\frac{B}{A}} \tan (\sqrt{A B} t+m)\left(1+|x|^{2}\right)$.
\quad Let $X(t)=\int \zeta^{2}(x) e^{2 h(x, t)} u^{2}(x, t) d x \quad$ and $\quad J=\left\|\zeta_{x} e^{h}\left(1+|x|^{2}\right)^{\frac{1-\lambda}{2}} u\right\|_{2,2}^{2}$
$+\sum\left\|\zeta e^{h} f_{j}\right\|_{2,2}^{2}+\left\|\zeta e^{h} g\right\|_{\frac{2 p}{p+1}}^{2}, \frac{2 q}{q+1}$

Then from (3.14) we see

$$
X(t) \leqq \mathscr{C}_{2}\left\{X\left(\tau^{\prime}\right)+J\right\} \text { for } \tau^{\prime}<t \leq \tau^{\prime}+\sigma
$$

If $(j-1) \sigma \leqq t<j \sigma$, it follows by iteration that

$$
\begin{equation*}
X(t) \leqq \mathscr{C}_{2}^{j} X(0)+\frac{\mathscr{C}_{2}\left(\mathscr{C}_{2}^{j}-1\right)}{\mathscr{C}_{2}-1} J \text { for }(j-1) \sigma<t \leq j \sigma \tag{3.16}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \int_{(j-1) \sigma}^{j \sigma} \int_{\Omega} \zeta^{2} e^{2 \hbar}\left|u_{x}\right|^{2} d x d t \leq \mathscr{C}_{2}\{X((j-1) \boldsymbol{\sigma})+J\} \tag{3.17}\\
& \leqq \mathscr{C}_{2}^{j} X(0)+\frac{\mathscr{C}_{2}^{j}-1}{\mathscr{C}_{2}-1} J
\end{align*}
$$

Suppose that $(l-1) \sigma<T^{\prime}<l \sigma$ for some integer l, where $\sqrt{A B} T^{\prime}+m<\frac{\pi}{2}$. Then summing (3.16) on j from 1 to l, we have

$$
\left\|\zeta e^{h} u\right\|_{2, \infty, Q_{1}^{\prime}}^{2} \leqq \mathscr{C}_{3}\{X(0)+J\}
$$

Similarly from (3.16),

$$
\left\|\zeta e^{h} u_{x}\right\|_{2,2, Q_{1}^{\prime}}^{2} \leq \mathscr{C}_{4}\{X(0)+J\}
$$

Putting $\sqrt{\frac{B}{A}}$ tan $(\sqrt{A B} l+m)=\mu$, and combining these two inequalities we obtain (3.3).

If $\lambda=0$, then we put $\alpha(t)=B t+\mu_{0}$ and we have (3.3) in the same manner as above.

§4. The Cauchy problem.

In this section we consider the Cauchy problem (2.1). A measurable function $u(x, t)$ on Q is said to be in the class $\mathscr{E}_{\mu}^{\lambda}(Q)$ if there exist numbers $\lambda \geqq 0$ and $\mu>0$ such that

$$
\iint_{\Omega} e^{-2 \mu|x|^{2} 2} u^{2} d x d t<\infty
$$

Theorem 1. If there are solutions u of the Cauchy problem (2.1) in the class $\mathscr{E}_{\mu_{1}}^{2}(Q)$ for some positive constant $\mu_{1}<\mu_{0}$, then u is uniquely determined in Q.

Proof. Let us assume that there are two solutions u_{1}, u_{2} of the Problem (2.1) in
the class $\mathscr{E}_{\mu_{1}}^{\mu_{1}}(Q)$. Put $u=u_{1}-u_{2}$. Then we see that u is in $\mathscr{E}_{\mu_{1}}^{\lambda_{1}}(Q)$ and u is a weaksolution of the problem

$$
\begin{aligned}
& L u=0 \quad \text { for } \quad(x, t) \in Q \\
& u(x, 0)=0, \text { for } x \in E^{n} .
\end{aligned}
$$

For each $R \geq R_{0}$, we define a function $\zeta_{R}(x)$ in such a way that

$$
\begin{equation*}
\left|\zeta_{R}(x)\right| \leqq 1 \quad \text { in } \quad(-\infty, \infty), \tag{i}
\end{equation*}
$$

(ii)

$$
\zeta_{R}(x)= \begin{cases}1 & |x| \leqq R \\ 0 & |x| \geqq R+1\end{cases}
$$

(iii) $\left|\zeta_{R_{x}}(x)\right| \leqq C$ in $(-\infty, \infty)$, where C is independent of R.

By Lemma 3.1,

$$
\begin{align*}
& \| \zeta_{R} e^{-\mu\left(1+|x|^{2}\right)^{\lambda} u \|_{2, \infty}^{2}} \tag{4.1}\\
& \quad \leq\left\|\zeta_{R_{x}} e^{-\mu_{0}\left(1+|x|^{2}\right)^{\lambda}}\left(1+|x|^{2}\right)^{\frac{1-\lambda}{2}} u\right\|_{2,2, e^{\prime}}^{2} \\
& \leqq \mathscr{C}_{1} \int_{\tau}^{\tau^{\prime}} \int_{|x| \geqq R} e^{-2 \mu_{0}\left(1+|x|^{2}\right)^{2}}\left(1+|x|^{2}\right)^{1-\lambda} u^{2} d x d t
\end{align*}
$$

where \mathscr{C}_{1} is independent of R, and $\mu_{1}<\mu_{0}<\mu$. Since

$$
e^{-\mu_{1}\left(1+|x|^{2}\right)^{2}} u \in L^{2}\left[0 . T^{\prime} ; L^{2}\left(E^{n}\right)\right] \quad \text { for } \quad \mu_{0}>\mu_{1}
$$

we see

$$
e^{-\mu_{0}\left(1+|x|^{2}\right)^{\lambda}}\left(1+|x|^{2}\right)^{1-\lambda} u \in L^{2}\left[0, T^{\prime} ; L^{2}\left(E^{n}\right)\right] .
$$

Therefore the integral on the right in (4.1) tends to zero as $R \rightarrow \infty$. Hence

$$
\max _{0 \leq t \leq \tau^{\prime}} \int_{|x| \leq \rho} e^{-2 \mu\left(1+|x|^{2}\right)^{2}} u^{2} d x=0
$$

for an arbitrary $\rho>0$. This means that $u \equiv 0$ in $E^{n} \times\left(0, T^{\prime}\right]$ that is, $u_{1} \equiv u_{2}$ in $E^{n} \times\left(0, T^{\prime}\right]$.

Repeating the same argument on $E^{n} \times\left(N T^{\prime},(N+1) T^{\prime}\right]$ inductively, we conclude that $u_{1} \equiv u_{2}$ in $E^{n} \times(0, T]$.

Theorem 2. Suppose that $e^{-\mu_{0}|x|^{2 \lambda}} f_{j} \in L^{2,2}(Q), e^{-\mu_{0} \mid x x^{2 \lambda}} g \in L^{p, q}(Q)$ with p and q satisfying (**) and $e^{-\mu_{0}|x|^{2 \lambda}} u_{0} \in L^{2}\left(E^{n}\right)$. Then there exists a weak solution u of the Cauchy problem (2.1) in $Q^{\prime}=E^{n} \times\left(0, T^{\prime}\right]$, where T^{\prime} depends on the constant in

Condition (A) and μ_{0}. Moreover there exists a constant μ depending on T^{\prime} and μ_{0} such that

$$
\begin{aligned}
& \left\|e^{\left.-\mu_{(1+}+|x|^{2}\right)^{2}} u\right\|_{2, \infty, Q^{\prime}}^{2}+\left\|e^{-\mu_{(1+}\left(|x|^{2}\right)^{2}} u_{x}\right\|_{2,2, Q^{\prime}}^{2} \\
& \leqq \mathscr{C}\left\{\left\|e^{-\mu_{0}\left(1+|x|^{2}\right)^{2}} u_{0}\right\|_{L^{2}\left(E^{2} n\right)}^{2}+\sum\left\|e^{-\mu_{0}\left(1+|x|^{2}\right)^{2}} f_{j}\right\|_{2,2, Q^{\prime}}^{2}\right. \\
& \left.\quad+\left\|e^{-\mu_{0}\left(1+|x|^{2}\right)^{2}} g\right\|_{p, q, Q^{\prime}}\right\} .
\end{aligned}
$$

Since the proof of Theorem 2 is almost parallel to that of [1], we omit it here.

Remark. In Lemma 3.1, if $\lambda=0$, then we put $\alpha(t)=B t+\mu_{0}$. Thus Lemma 3 is valid for $Q=E^{n} \times(0, T]$ if $\lambda=0$. Therefore if $\lambda=0$, a weak solution of the problem (2.1) exists in $Q=E^{n} \times(0, T]$.

References

[1] D.G. Aronson, Non-Negative Solutions of Linear Parabolic Equations, Ann. Ecole, Norm. Sup. Pisa 28 (1968), 607-694.
[2] W. Bodanko, Sur la problème de Cauchy et les problème de Fourier pour les équations paraboliques dans un domaine non borné, Ann. Polo. Math. 18 (1966), 79-94.

Nagoya University

[^0]: Received September 18, 1969.

