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1 - INTRODUCTION

Magnetic fields in the solar corona are braught into an endless evo
lution by the never-ceasing motions of the subphotospheric plasma in which the 
feet of their lines are anchored. It is generally thought that this evolution 
is essentially quasi-static, the field passing through a sequence of force- 
free equilibrium states. Sporadically, however, the equilibrium is broken in a 
region of limited extent, and during a relatively short interval of time a 
catastrophic highly dynamic evolution takes place, giving rise to such well- 
known phenomena as flares or coronal transients. Understanding the factors 
which determine if a magnetohydrostatic coronal equilibrium is maintained or, 
on the contrary, destroyed, when boundary conditions change at the photosphe- 
ric level, then appears as a central theoretical problem of solar physics. In 
this Communication, we report some recent results which shed some new light 
onto this old problem.

2 - EVOLUTION OF AN ARCADE FORCE-FREE FIELD EMEEDDED IN A CONDUCTING PLASMA

Let us consider in the half-space {z > 0}, assumed to contain a per
fectly conducting plasma, a continuous time-sequence of x-.invariant force-free
fields BL(y,z) = VAL(y,z) x x + BL fAt (y,z)]x whose field lines have an arcade 
topology. This sequence describes a quasi-static evolution which is driven by
a stationnary velocity field v(y) = v(y)x which is imposed on the boundary 
{z = 0}, and then the potential A (y,z) is a solution of the initial-boundary 
value problem (see Aly, 190?)

- AA = d (D? , / 2) /
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topology {Cpl} = topology {Cpo} (arcade) (5)

Equation (1) expresses the force-free character of the field; (2) 
relates the shear Xt(A) of a field line Ct(A) labelled by a value A of the 
potential At - Xt(A) is the difference between the x-positions of its left and 
right feet, respectively - to the velocity field on {z = 0}, which determines 
the function £(A), and to the time t; in this equation, Cpl(A) represents the 
projection of Ct(A) onto (x = 0}, while (A) stands for the area between 
C (A) and the y-axis; (3) is a boundary condition expressing that AL(y,o) is 
kept unchanged by the x-motions (g is a given function satisfying:
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g(± °“) = 0 ^ g(y) < Am = g(o); yg'(y) < 0 for y * 0; and y2g(y) = 0(1)); rela
tion (^), which constraints the magnetic energy per unit of x-length to be 
finite, plays the role of an asymptotic condition for At ; and (5) is a condi
tion which expresses the frozen-ir. law. Clearly, at the initial time t = 0. 
the field coincides with the finite energy potential field AQ associated with 
g-

We have yet been able to reach the following conclusions :

i) consider the associated variational problem, which consists to 
Look at each time t for a function Â  which makes the energy Ct CA], as defined 
by { l\ ) , an absolute minimum over the set of functions K belonging to an appro
priate functional space and satisfying (3)“(5) in some sense; then this pro
blem has always a solution, i.e.: Vt, 3A~£Jt such that Ct[A‘] = inf Ct[A]. We

A GH
shall assume here that A‘ is sufficiently regular to be also a solution of the
original problem. Of course, the field A" is, by construction, absolutely 
non-linearly stable with respect to all 2D ideal perturbations;

ii) the energy C~ = C [A" ] increases steadily from C0[AQ ] - C~ up to
infinity; for small (resp. large) values of t, (Ĉ  - C~ ) a t2 (resp. a log t)
(Figure 1);

iii) when t -* cof A“ converges asymptotically towards a singular 
quasi-potential field A^ which is completely (resp. partially) open if A1 = A"1
(resp. A1 < Am ), where A1 is the smallest number such that £(A) = 0 for 
A1 < A <• Am (see Figure 2a (resp. 2b)).

/
/

Current sheet

(b)

2 (see text)

3 - STABILITY OF THE ARCADE CONFIGURATIONS WITH RESPECT TO RECONNECTION

Let us now relax the assumption of perfect conductivity of the plasma 
and look for the possibility of new effects happening in a time scale much 
shorter than the irrelevant resistive time scale r .V

Shearing of the field creates some amount of "toroidal" magnetic flux 
(flux in the x-direction) which thus cannot be destroyed on a time-scale
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<< t (> . However, it may be possible that a fast reconnection process acting in 
an arcade configuration rearranges this flux in a different way by cutting 
some of the lines into several pieces, as shown on Figure 3-

Figure 3• 'transition by reconnection from an arcade 
to a more complex configuration.

In such a process, the topology of the lines changes, but the distri
bution of the magnetic fluxes are (quasi-)conserved. This means that if a new 
equilibrium field (A[, B ’x ) is obtained by reconnecting the arcade (A“ , B‘x),
then: i) conservation of the poloidal fluxes: A^(y.o) = g(y) and
0 < A[(y,z) < A"1; ii) conservation of the toroidal fluxes:

M A> = K x dA 1(A)-2
/

-b ; (1
a r ’ (1 M f  \ “ /

(A) = 2  D[ y  1 (A)dA) i=l \ i=l V 1> <a )
ds'/IVA,'p '  1 t

( 6 )

(the line L (A) being broken into p(A) pieces).

Of course, reconnection may occur spontaneously at t only if there 
does exist among the configurations (At , BLx) satisfying the requirements just
stated above, one which has an energy smaller than CT . Thus we are led to 
consider the following new minimization problem at each time t: "Minimize 
C [A] over the set H' defined as IK, but without the topological constraint
(5)" (note that we have taken here into account the fact that having
D'(i) -f o'(j) for some i ^ i, increases the energy, and then taken
B ^ L)(A) = B ’x (A) = [-xt (dZ[ /dA) “1 ] (A) for all i, 1 < i <p(A)). This minimiza
tion problem has always a solution A‘ (C [A~ ] = C[ = inf Ct[A]). Then we

T
may have to face two possible situations: i) either A^ = Â  and C~ = C" :
reconnection is not energetically favourable; ii) or A' ^ A" and Ct < CT:
reconnection is energetically favourable.

Actually, one can show that there is a critical time tc[g,£] such 
that the first (resp. the second) possibility arises if 0 < t < tc (resp.
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t \  t  \ The reason lor  this  result iii;ty he e a s i l y  unders t Ood. Indeed, for

t - 0, A ̂ = A = A, by a well known properly of potent ini fields and the
:.:ir i::;i.:ei’ of C\ over if then has an nivade topology; Lhis property naturally
also holds for small values of t. On the contrary, for large enough values ol‘ 

it is easy to see by using the asymptotic result of § J that. I lie poloidal
•■■aorgy of A (Figure -ta) is decreased if we reconnect that field by making it
; e tent ial in a small rectangle a.s sIk ..n on Figure1 G>. while the* toroidal mer- 
.. : y be made to change as little' as we want (as 1 i m lii 0 for t < r'~) .
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