SESSION III: THEORY

\checkmark

J.J. Al \because
Service d'Astrophysique - CEN Saclay
F-91191 Gif-sur-Yvette Cedex - France

1 - INTRODUCTION

Magnetic fields in the solar corona are braught into an endess evolution by the never-ceasing motions of the subphotospheric plasma in which the feet of their lines are anchored. It is generally thought that this evolution is essentially quasi-static, the field passing through a seguence of forcefrec equilibrium states. Sporadically, however, the equilibrium is broken in a region of limited extent, and during a relatively short interval of time a catastrophic highly dynamic evolution takes place, giving rise to such wellknown phenomena as flares or coronal transients. Understanding the factors which determine if a magnetohydrostatic coronal equilibrium is maintained or, on the contrary, destroyed, when boundary conditions change at the photospheric level, then appears as a central theoretical problem of solar physics. In this Communication, we report some recent results which shed some new light. onto this old problem.

2 - EVOLUTION OF AN ARCADE FORCE-FREE FIELD EMEEDDED IN A CONDUCTING PLASMA

Let us consider in the half-space $\{z>0\}$, assumed to contain a perfectly conducting plasma, a continuous time-sequence of x-invariant force-free fields $\underset{\sim}{B}(y, z)=\nabla A_{t}(y, z) \times \hat{x}+B_{L_{x}}\left\lceil A_{L}(y, z)\right] \hat{x}$ whose field lines have an arcade topology. This sequence describes a quasi-static evolution which is driven by a stationnary velocity field $\underset{\sim}{v}(y)=v(y) \hat{x}$ which is imposed on the boundary $\{z=0\}$, and then the potential $A_{1}(y, z)$ is a solution of the initial-boundary value problem (see Aly, 1987)

$$
\begin{align*}
& -\Delta A_{t}=d\left(B_{t x}^{2} / 2\right) / d A \tag{1}\\
& X_{t}(A)=B_{t x}(A) \int C_{p t}(A) \frac{d s_{p}}{\left|\nabla A_{t}\right|}=-B_{t x}(A) \frac{d \Sigma(A)}{d A}=t \zeta(A) \tag{2}\\
& A_{t}(y, 0)=g(y) \tag{3}\\
& C_{t}\left[A_{t}\right]=\int_{\{z>0\}}\left|\nabla A_{t}\right|^{2} d y d z+t^{2} \int_{0}^{2 x} \zeta^{2}\left|\frac{d A_{t}}{d \Sigma}\right|^{2} d \Sigma<\infty \tag{4}\\
& \text { topology }\left\{C_{p t}\right\} \equiv \text { topology }\left\{C_{p o}\right\} \text { (arcade) } \tag{5}
\end{align*}
$$

Equation (1) expresses the force-free character of the field; (2) relates the shear $X_{t}(A)$ of a field line $C_{t}(A)$ labelled by a value A of the potential $A_{t}-X_{1}(A)$ is the difference between the x-positions of its left and right feet, respectively - to the velocity field on $\{z=0\}$, which determines the function $\zeta(A)$, and to the time t; in this equation, $C_{p, ~}(A)$ represents the projection of $C_{1}(A)$ onto $\{x=0\}$, while $\sum_{l}(A)$ stands for the area between $C_{p t}$ (A) and the y-axis; (3) is a boundary condition expressing that $A_{t}(y, 0)$ is kept unchanged by the x-motions (g is a given function satisfying:
$g(\pm a)=0 \leqslant g(y) \leqslant A^{m}=g(0) ; y g^{\prime}(y)<0$ for $y \neq 0$; and $\left.y^{2} g(y)=0(1)\right)$; relation (4), which constraints the magnetic energy per unit of x-length to be finite, plays the role of an asymputic condition for A_{1}; and (5) is a condition which expresses the frozen-ir law. Clearly, at the initial time $t=0$. the field coincides with the finite energy potential field A_{0} associated with g.

We have yet bean able to reach the following a,nclusions :
i) consider the associated variational problem, which consists to Look at cach time t for a function A_{i}^{-}which makes the energy $C_{i}[A]$, as defined by (4), an absolute minimum over the set of functions $\ell \ell$ belonging to an appropriate functional space and satisfying (3)-(5) in some sense; then this problem has always a solution, i.e.: Vt, $\exists A_{t}^{-} E t t$ such that $C_{t}\left[A_{t}^{-}\right]=\underset{A E H}{\inf } C_{t}[A]$. We shall assume here that A_{i}^{-}is sufficiently regular to be also a solution of the original problem. Of course, the field A_{t}^{-}is, by construction, absolutely non-linearly stable with respect to all 2 D ideal perturbations;
i.i) the energy $C_{1}^{-}=C_{1}\left[A_{1}^{-}\right]$increases steadily from $C_{0}\left[A_{0}\right]=C_{0}^{-}$up to infinity; for small (resp. large) values of $t,\left(C_{i}^{-}-C_{0}^{-}\right) ~ \alpha t^{2}(r e s p . \alpha \log t)$ (l'igure 1);
iii) when $t-\infty, A_{i}^{-}$converges asymptotically towards a singular quasi-potential field A_{∞} which is completely (resp. partially) open if $A^{\prime}=A^{m}$ (resp. $A^{1}<A^{m}$), where A^{1} is the smallest number such that $\zeta(A)=0$ for $A^{\prime} \leqslant A \leqslant A^{\prime \prime \prime}$ (see Figure 2a (resp. 2b)).

Figure 1 (see text)

Figure 2 (see text)

3 - STABILIITY OF THE ARCADE CONFICURATIONS WITH RESPECT TO RECONNECTION

Let us now relax the assumption of perfect conductivity of the plasma and look for the possibility of new effects happening in a time scale much shorter than the irrelevant resistive time scale τ_{r}.

Shearing of the field creates some amount of "toroidal" magnetic flus (flux in the x-direction) which thus cannot be destroyed on a time-scale
$\ll T_{1}$. However, it may be possible that a fast reconnection process acting in an arcude configuration rearranges this flux in a different way by cutting some of the lines into several pieces, as shown on Figure 3.

Figure 3: 'Transition by recomection from an arcade to a more complex configuration.

In such a process, the topology of the lines changes, but the distribution of the magnetic fluxes are (quasi-)conserved. This means that if a new equilibrium field ($A_{i}^{\prime}, B_{t x}^{\prime}$) is obtained by reconnecting the arcade ($A_{1}^{-}, B_{t_{x}^{-}}^{-}$), then: i) conservation of the poloidal fluxes: $A_{i}^{\prime}(y, o)=g(y)$ and $\left.0 \leqslant A_{i}^{\prime}(y, z) \leqslant \Lambda^{m} ; i i\right)$ conservation of the toroidal fluxes:
$X_{i}(A)=\left(-B_{i x}^{-} \frac{d \Sigma_{i}}{d A}\right)(A)=\sum_{i=1}^{p(A)}\left(-B_{i x}^{\prime(i)} \frac{d \Sigma_{i}^{\prime(i)}}{d A}\right)(A)=\sum_{i=1}^{p(A)} B_{i x}^{\prime(i)}(A) \int_{C_{p i}^{\prime}(i)(A)}^{d} d s_{p}^{\prime} /\left|\nabla A_{i}^{\prime}\right|$
(the line $C_{p, L}(A)$ being broken into $p(A)$ pieces).
Of course, reconnection may occur spontaneously at t only if there does exist among the configurations ($A_{t}^{\prime}, B_{1 x}^{\prime}$) satisfying the requirements just stated above, one which has an energy smaller than C_{i}^{-}. Thus we are led to consider the following new minimization problem at each time t : "Minimize $C_{[}[A]$ over the set \mathcal{H}^{\prime} defined as \mathcal{H}, but without the topological constraint (5)" (note that we have taken here into account the fact that having $B_{i x}^{\prime(i)} \neq B_{i x}^{(j)}$ for some $i \neq j$, incroases the energy, and then taken $B_{i x}^{\prime}(i)(A)=B_{i x}^{\prime}(A)=\left[-X_{t}\left(d \sum_{i}^{\prime} / \alpha A\right)^{-1}\right](A)$ for all $\left.i, 1 \leqslant i \leqslant p(A)\right)$. This minimization problem has always a solution $A_{1}^{-}\left(C_{t}\left[A_{1}^{-}\right]=C_{1}^{-}=\operatorname{Hinf}^{\prime} C_{1}[A]\right)$. Then we may have to face two possible situations: i) either $A_{i}^{-}=A_{i}^{-}$and $C_{i}^{-}=C_{1}^{-}$: reconnection is not energetically favourable; ii) or $A_{1}^{-} \neq A_{i}^{-}$and $C_{1}^{-}<C_{1}^{-}$: reconnection is energetically favourable.

Actually, one can show that there is a critical time $t_{e}[g, 5]$ such that the first (resp. the second) possibility ariser if $0 \leqslant t<t_{e}$ (resp.

! 111113:1ヶ

