AN EXAMPLE OF NORMAL LOCAL RING WHICH IS ANALYTICALLY RAMIFIED

MASAYOSHI NAGATA

Previously the following question was offered by Zariski [6]:

Is any normal Noetherian local ring analytically irreducible?¹

In the present note, we will construct a counter-example against the question.

TERMINOLOGY. A ring (integrity domain) means always a commutative ring (integrity domain) with identity. A normal ring is an integrity domain which is integrally closed in its field of quotients. When \mathfrak{o} is an integrity domain, the integral closure of \mathfrak{o} in its field of quotients is called the derived normal ring of \mathfrak{o} .

In our treatment, some basic notions and results on general commutative rings and Noetherian local rings are assumed to be well known (see, for example, [5] and one of [1] or [2]). In particular, some results on regular local rings and completions of local rings are used freely (without references). On the other hand, we will make use of an example constructed in [3, §1] without proof.

§1. The construction of an example

Let \mathbf{k}_0 be a perfect field of characteristic 2 and let $u_0, v_0, \ldots, u_n, v_n, \ldots$ (infinitely many) be algebraically independent elements over \mathbf{k}_0 . Set $\mathbf{k} = \mathbf{k}_0(u_0, v_0, \ldots, u_n, v_n, \ldots)$. Further let x and y be indeterminates and set $\mathbf{r} = \mathbf{k} \{x, y\}$ (formal power series ring), $\mathbf{0} = \mathbf{k}^2 \{x, y\} [\mathbf{k}]$ and $c = \sum_{i=0}^{\infty} (u_i x^i + v_i y^i)$. Then we set $\mathbf{s} = \mathbf{0}[c]$.

PROPOSITION. § is a normal Noetherian local ring and the completion of \mathfrak{F} contains non-zero nilpotent elements (that is, \mathfrak{F} is analytically ramified).

https://doi.org/10.1017/S0027763000023333 Published online by Cambridge University Press

Received January 10, 1955.

¹⁾ It was conjectured that the answer is negative by [4] and the present paper answers the conjecture affirmatively.

MASAYOSHI NAGATA

§ 2. Some preliminary results

LEMMA 1. The ring o is a regular local ring with a regular system of parameters x, y. x is the completion of o.

For the proof, see [3, §1].

LEMMA 2. An element $\sum a_{ij} x^i y^j$ $(a_{ij} \in \mathbf{k})$ is in 0 if and only if $[\mathbf{k}^2(a_{00}, a_{01}, a_{10}, \ldots) : \mathbf{k}^2]$ is finite.

Proof. $b = \sum a_{ij} x^i y^j$ is in 0 if and only if b is in $k^2 \{x, y\} [u_0, v_0, \ldots, u_n, v_n]$ for some n. Therefore we see our assertion easily.

LEMMA 3. Set $d_n = \sum_{i=0}^{\infty} u_{n+i} x^i$, $e_n = \sum_{i=0}^{\infty} v_{n+i} y^i$ (n = 0, 1, ...). Then $t = o[d_0, e_0, ..., d_n, e_n, ...]$ is a normal ring.²

Proof. Let f be any element of the derived normal ring of t. Since f is in the field of quotients of t, f is expressed in the form $(p+qd_n+re_n+se_nd_n)/t$ $(p, q, r, s, t \in 0, t \neq 0)$ (because $\mathfrak{o}[d_0, e_0, \ldots, d_n, e_n] = \mathfrak{o}[d_n, e_n]$ by the construction). Since p, q, r, s and t are in o, there exists an integer N which is not less than n such that the coefficients of them (as the power series in x and y) are in $k^2(u_0, v_0, \ldots, u_{N-1}, v_{N-1})$. Then since $d_n = u_n + u_{n+1}x + \ldots$ $+ u_{N-1}x^{N-n-1} + x^{N-n}d_N$ and $e_n = v_n + \ldots + v_{N-1}y^{N-n-1} + y^{N-n}e_N$, f is in the derived normal ring of $\mathfrak{o}^*[d_N, e_N]$, where $\mathfrak{o}^* = \mathbf{k}^2 \{x, y\} [u_0, v_0, \ldots, u_{N-1}, v_{N-1}]$ (because p, q, r, s and t are in o^* by our assumption and because the square of f is in $k^{2}(x, y) \subseteq 0^{*}$). Since the maximal ideal of 0^{*} is generated by x and y, as is easily seen, o^* is a (complete) regular local ring. Since the residue class field of 0^* is represented by $\mathbf{k}^2(u_0, v_0, \ldots, u_{N-1}, v_{N-1})$ and since the leading forms of d_N and e_N are u_N and v_N (respectively), the maximal ideal of $\mathfrak{o}^*[d_N, e_N]$ is generated by x and y. Therefore $0^*[d_x, e_x]$ is a regular local ring and is a normal ring. Therefore f is in $0^*[d_N, e_N]$ and therefore f is in t. Thus we see that t is normal.

LEMMA 4. x3 and y3 are prime ideals.

Proof. g/xg is isomorphic to $\mathbf{k}^2 \{y\} [\mathbf{k}] [e_0]$, which is an integrity domain. Therefore xg is a prime ideal. That yg is prime follows similarly.

LEMMA 5. Let \mathfrak{E}' be the derived normal ring of \mathfrak{E} and let f be an element

²⁾ By virtue of this result, we see easily that t is a regular local ring.

of \mathfrak{S}' . If xyf is in \mathfrak{S} , then f is in \mathfrak{S} .

Proof. Since \mathfrak{o} is Noetherian and since $\mathfrak{g} = \mathfrak{o}[c]$, \mathfrak{g} is Noetherian. Therefore if f is not in \mathfrak{g} , then one of the following must hold (see $[5, \mathfrak{g}8]$): 1) $xy\mathfrak{g}$ has an imbedded prime divisor; 2) there exists at least one minimal prime divisor \mathfrak{p} of $xy\mathfrak{g}$ such that $\mathfrak{g}_{\mathfrak{p}}$ is not normal. Both are impossible because $x\mathfrak{g}$ and $y\mathfrak{g}$ are prime ideals by Lemma 4. Thus we see that f is in \mathfrak{g} .

§3. Proof of the proposition

As was noted above, § is Noetherian. Since \$ is isomorphic to $\mathfrak{O}[X]/g(X)\mathfrak{O}[X]$, where $g(X) = X^2 - c^2$, the completion of \mathfrak{S} is isomorphic to $\mathfrak{r}[X]/g(X)\mathfrak{r}[X]$ (because r is the completion of \mathfrak{o}). The residue class of X-cis not zero and is nilpotent. Therefore the completion of \$ contains non-zero nilpotent elements. Now we will show that \mathfrak{s} is normal. Let f be any element of ŝ'. Since \mathfrak{s} is contained in t (because $c = d_0 + e_0$) and since t is normal by Lemma 3, f is in t. Therefore f is of the form $p + qd_n + re_n + sd_ne_n$ $(p, q, r, s \in \mathfrak{o})$. Then $x^n y^n f$ is in $\mathfrak{o}[d_0, e_0]$. In order to show that f is in \mathfrak{s} , we have only to show that $x^n y^n f$ is in \mathfrak{g} by Lemma 5. Therefore we may assume that n=0.Since f is in the field of quotients of β , f is of the form (t + uc)/v $(t, u, v \in 0)$. Since $c = d_0 + e_0$, we see that $(t/v) + (u/v) d_0 + (u/v) e_0 = p + q d_0$ $+ re_0 + sd_0e_0$. Since 1, d_0 , e_0 , d_0e_0 are linearly independent over 0, we have t/v=p, u/v = q(=r, s=0). Therefore f = p + qc, which is in \mathfrak{S} . Therefore \mathfrak{S} is a normal ring.

Bibliography

- [1] C. Chevalley, On the theory of local rings, Ann. of Math., vol. 44 (1943), pp. 690-708.
- [2] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., vol. 59 (1946), pp. 54-106.
- [3] M. Nagata, Note on integral closures of Noetherian domains, Memoirs Kyoto, Ser. A., vol. 28 (1953), pp. 121-124.
- [4] M. Nagata, On the theory of Henselian rings, II, Nagoya Math. Journ., vol. 7 (1954), pp. 1-19.
- [5] M. Nagata, Basic theorems on general commutative rings, to appear in Memoirs Kyoto, Ser. A.
- [6] O. Zariski, Analytical irreducibility of normal varieties, Ann. of Math., vol. 49 (1948), pp. 352-361.

Mathematical Institute, Kyoto University