STRONG PSEUDO-CONVEXITY AND SYMMETRIC DUALITY IN NONLINEAR PROGRAMMING

M. S. MISHRA, S. NANDA AND D. ACHARYA¹

(Received 15 November 1983; revised 25 July 1984)

Abstract

In this note, the weak duality theorem of symmetric duality in nonlinear programming and some related results are established under weaker (strongly Pseudo-convex/strongly Pseudo-concave) assumptions. These results were obtained by Bazaraa and Goode [1] under (stronger) convex/concave assumptions on the function.

1. Introduction

We use the following notation and terminology throughout the paper. Let $\psi(x, y)$ be a real-valued twice-differentiable function, defined on an open set in \mathbb{R}^{n+m} containing $C_1 \times C_2$, where C_1 and C_2 are closed convex cones with non-empty interiors in \mathbb{R}^n and \mathbb{R}^m respectively. Let C_1^* be the *polar* of C_1 , that is

$$C_1^* = \left\{ z \cdot x'z \leq 0 \text{ for each } x \in C_1 \text{ where } x' \text{ represents the transpose of } x \right\}.$$
(1)

 C_2^* is defined similarly. $\nabla_x \psi(x_0, y_0)$ denotes the gradient vector of ψ with respect to x at the point (x_0, y_0) , $\nabla_y \psi(x_0, y_0)$ is defined similarly. $\nabla_{xx} \psi(x_0, y_0)$ denotes the matrix (Hessian) of second partial derivative with respect to x evaluated at (x_0, y_0) . $\nabla_{xy} \psi(x_0, y_0)$, $\nabla_{yx} \psi(x_0, y_0)$ and $\nabla_{yy} \psi(x_0, y_0)$ are defined similarly.

DEFINITION 1. If f is a scalar-valued differentiable function on a convex set $\Gamma \subset \mathbb{R}^n$, and K(x, y) is an arbitrary positive scalar function satisfying

$$K(x, y)\{f(y) - f(x)\} \ge (y - x)^{t} \nabla f(x), \qquad (2)$$

¹Indian Institute of Technology, Kharagpur-721302, India.

[©] Copyright Australian Mathematical Society 1985, Serial-fee code 0334-2700/85

then we say that f is strongly Pseudo-convex with respect to K(x, y) (see [2], [5]). If K(x, y) = 1 then (2) reduces to the definition of convex function.

DEFINITION 2. If f is a scalar-valued differentiable function on a convex set $\Gamma \subset \mathbb{R}^n$ and K(x, y) is an arbitrary positive scalar function satisfying

$$K(x, y)\left\{f(y) - f(x)\right\} \leq (y - x)^{t} \nabla f(x), \tag{3}$$

then we say that f is strongly Pseudo-concave with respect to K(x, y). If K(x, y) = 1 then (3) reduces to the definition of concave function.

It may be noted that strong Pseudo-convexity is weaker than convexity and stronger than Pseudo-convexity.

It may be remarked here that strong Pseudo-convexity is not a modification of the usual pseudoconvexity, but rather is a special case of *invex*, as mentioned by Mond [7]. Thus

$$f(y)-f(x) \ge [h(x, y)]^{t} \nabla f(x),$$

with h(x, y) = (y - x)/K(x, y), shows the *invex* property.

We say that ψ is strongly Pseudo-convex/strongly Pseudo-concave on $C_1 \times C_2$ if and only if $\psi(\cdot, y)$ is strongly Pseudo-convex with respect to a positive scalar function K_1 on C_1 for each given $y \in C_2$ and $\psi(x, \cdot)$ is strongly Pseudo-concave with respect to a positive scalar function K_2 on C_2 for each given $x \in C_1$.

Let us consider a pair of nonlinear programs, as follows.

$$P_0 \text{ (Primal): Minimize } \begin{cases} f(x, y) = \psi(x, y) - y^t \nabla_y \psi(x, y) \\ \text{subject to } (x, y) \in C_1 \times C_2, \ \nabla_y \psi(x, y) \in C_2^*. \end{cases}$$
$$D_0 \text{ (Dual): Maximize } \begin{cases} g(x, y) = \psi(x, y) - x^t \nabla_x \psi(x, y) \\ \text{subject to } (x, y) \in C_1 \times C_2, -\nabla_x \psi(x, y) \in C_1^*. \end{cases}$$

For notational convenience, the sets of feasible solutions of P_0 and D_0 are denoted by P and D respectively, that is

$$P = \left\{ (x, y) \in C_1 \times C_2 \colon \nabla_y \psi(x, y) \in C_2^* \right\}$$

and

$$D = \{(x, y) \in C_1 \times C_2: -\nabla_x \psi(x, y) \in C_1^*\}.$$

2. Main results

THEOREM 1. Let ψ be strongly Pseudo-convex/strongly Pseudo-concave on $C_1 \times C_2$ with respect to scalar-valued functions $K_1 \ge 1$ and $K_2 \ge 1$ respectively. Then

$$\inf_{(x, y)\in P} f(x, y) \ge \sup_{(x, y)\in D} g(x, y).$$

PROOF. Let $(x, y) \in P$ and $(u, v) \in D$. It is sufficient to prove that $f(x, y) \ge g(u, v)$.

Since ψ is strongly Pseudo-convex/strongly Pseudo-concave on $C_1 \times C_2$ with respect to the scalar-valued functions $K_1 \ge 1$ and $K_2 \ge 1$ respectively, the following two inequalities hold.

$$K_1(u, x)\{\psi(x, v) - \psi(u, v)\} \ge (x - u)^t \nabla_u \psi(u, v)$$

or

$$\psi(x,v) - \psi(u,v) \ge \frac{(x-u)^{t}}{K_{1}(u,x)} \nabla_{u} \psi(u,v), \qquad (4)$$

$$K_2(y,v)\{\psi(x,v)-\psi(x,y)\} \leq (v-y)^t \nabla_y \psi(x,y)$$

or

$$\psi(x,v) - \psi(x,y) \leq \frac{(v-y)'}{K_2(y,v)} \nabla_y \psi(x,y).$$
 (5)

By multiplying by -1 in (5) and adding it to (4), we get

$$0 \ge \psi(u, v) + \frac{(x - u)^{t} \nabla_{u} \psi(u, v)}{K_{1}(u, x)} - \psi(x, y) - \frac{(v - y)^{t} \nabla_{y} \psi(x, y)}{K_{2}(y, v)}$$
(6)
$$= \psi(u, v) + \frac{x^{t} \nabla_{u} \psi(u, v)}{K_{1}(u, x)} - \frac{u^{t} \nabla_{u} \psi(u, v)}{K_{1}(u, x)} - \frac{\psi(x, y)}{K_{2}(y, v)} + \frac{y^{t} \nabla_{y} \psi(x, y)}{K_{2}(y, v)}.$$

Since $u \in C_1$ and $-\nabla_u \psi(u, v) \in C_1^* \Rightarrow -u^t \nabla_u \psi(u, v) \leq 0$, by the definition of polar, we have

$$\frac{-u'\nabla_u\psi(u,v)}{K_1(u,x)} \ge -u'\nabla_u\psi(u,v) \quad \text{as } K_1(u,x) \ge 1.$$
(7)

Similarly $y \in C_2$ and $\nabla_y \psi(x, y) \in C_2^* \Rightarrow y' \nabla_y \psi(x, y) \leq 0$. So we have

$$\frac{y'\nabla_{y}\psi(x, y)}{K_{2}(y, v)} \ge y'\nabla_{y}\psi(x, y) \text{ as } K_{2}(y, v) \ge 1,$$
(8)

$$\frac{x'\nabla_u\psi(u,v)}{K_1(u,x)} \ge 0 \quad \text{as } -x'\nabla_u\psi(u,v) \le 0 \quad \text{and} \quad K_1(u,x) \ge 1, \qquad (9)$$

$$\frac{-v'\nabla_y\psi(x,y)}{K_2(y,v)} \ge 0 \quad \text{as } v'\nabla_y\psi(x,y) \le 0 \quad \text{and} \quad K_2(y,v) \ge 1.$$
(10)

240

Using (7), (8), (9) and (10) in (6), we get

$$0 \ge \psi(u, v) - u' \nabla_u \psi(u, v) - \left\{ \psi(x, y) - y' \nabla_y \psi(x, y) \right\}$$
$$= g(u, v) - f(x, y) \Rightarrow f(x, y) \ge g(u, v).$$

This completes the proof.

Theorem 1 was motivated by the works of Bazaraa and Goode [1] and Dantzig et al. [4], who proved the same result under stronger assumptions on the cone and the function. In [4], the cone was taken to be non-negative orthant and the function convex/concave. Bazaraa and Goode [1] generalized the results of [4] to arbitrary cones. In Theorem 1 we assume the function to be strongly Pseudo-convex/strongly Pseudo-concave, which is weaker than convex/concave.

It may be noted here that the result does not hold only under Pseudo-convexity/Pseudo-concavity assumptions, and this follows from the following example: Let n = m = 1. Let $C_1 = \{x: x \ge 0\}, C_2 = \{y: y \ge 0\}$. Let $\psi(x, y) = \exp(x - y^2)$. Then it is easy to check that ψ is Pseudo-convex/Pseudo-concave on $C_1 \times C_2$. But in this case

$$f(0,2) = 9e^{-4} \le g(0,0) = 1,$$

which contradicts Theorem 1. However, the conclusion of Theorem 1 holds under Pseudo-convexity/Pseudo-concavity, provided we make use of an additional feasibility assumption. This has been discussed in [6].

The following results are also true under weaker assumptions on the function. Since the proofs use ideas similar to those used in [1], we state the theorems without proofs.

THEOREM 2. Suppose that (x_0, y_0) solves P_0 , and suppose that $\nabla_{yy}\psi(x_0, y_0)$ is negative definite. Then $(x_0, y_0) \in D$ and $f(x_0, y_0) = g(x_0, y_0)$. Further, if ψ is strongly Pseudo-convex/strongly Pseudo-concave with respect to scalar-valued functions $K_1 \ge 1$ and $K_2 \ge 1$, then (x_0, y_0) is an optimal solution of problem D_0 .

THEOREM 3. Suppose that (x_0, y_0) solves D_0 , and $\nabla_{xx}\psi(x_0, y_0)$ is positive definite. Then $(x_0, y_0) \in P$ and $f(x_0, y_0) = g(x_0, y_0) = \psi(x_0, y_0)$. Further, if ψ is strongly Pseudo-convex/strongly Pseudo-concave with respect to scalar-valued functions $K_1 \ge 1$ and $K_2 \ge 1$, then (x_0, y_0) is an optimal solution of problem P_0 .

3. Special case

We now consider a special case of the symmetric dual programs, namely the case when the vector y and the corresponding cone C_2 are deleted from the formulation. Denoting $\psi(x, y)$ by f(x) and C_1 by C, these two problems arise as special cases of P_0 and D_0 .

 P_1 (Primal): Minimize f(x) subject to $x \in C$.

$$D_1$$
 (Dual): Maximize $f(x) - x^t \nabla f(x)$ subject to $x \in C$ and $-\nabla f(x) \in C^*$.

Theorem 1 holds, that is $x \in C$, $u \in C$ with $-\nabla f(u) \in C^*$ when f is strongly Pseudo-convex with respect to a scalar function $K \ge 1$. To prove this, observe that f is strongly Pseudo-convex with respect to scalar function $K \ge 1$. So we have

$$K(u, x) \{ f(x) - f(u) \} \ge (x - u)^{t} \nabla f(u) = x^{t} \nabla f(u) - u^{t} \nabla f(u)$$
$$\ge -u^{t} \nabla f(u) \quad \text{as } x^{t} \nabla f(u) \ge 0,$$

that is

$$f(x)-f(u) \ge \frac{-u' \nabla f(u)}{K(u,x)} \ge -u' \nabla f(u) \text{ as } K(u,x) \ge 1,$$

that is $f(x) \ge f(u) - u' \nabla f(u)$, and this completes the proof.

It may be noted that since y is deleted from the problem, a direct application of Theorem 2 does not hold. However, the theorem is indeed true, that is, if x_0 solves P_1 then it solves D_1 . In order to show this we need the following Lemma.

LEMMA. Consider the problem: minimize f(x) subject to $x \in C$, where C is a closed convex cone. If x_0 solves the problem, then $-\nabla f(x_0) \in C^*$ and $x'_0 \nabla f(x_0) = 0$. If f is strongly Pseudo-convex with respect to an arbitrary positive scalar function K, then conditions are sufficient for x_0 to solve the problem.

PROOF. The first part of the proof is same as that of Lemma ([1], page 7) where no strong Pseudo-convexity is required. The second part of the proof is as follows.

If x_0 solves the problem then $-\nabla f(x_0) \in C^*$ and $x'_0 \nabla f(x_0) = 0$. Now assume that f is strongly Pseudo-convex with respect to an arbitrary positive scalar function K, and $x_0 \in C$ with $-\nabla f(x_0) \in C^*$ and $x'_0 \nabla f(x_0) = 0$. Then, for each $x \in C$, we have

$$K(x_0, x) \{ f(x) - f(x_0) \} \ge (x - x_0)^r \nabla f(x_0) = x^r \nabla f(x_0) - x_0^r \nabla f(x_0)$$
$$= x^r \nabla f(x_0) \quad \text{as } x_0^r \nabla f(x_0) = 0$$
$$\ge 0 \quad \text{as } x \in C \quad \text{and} \quad -\nabla f(x_0) \in C^*$$
$$\Rightarrow f(x) - f(x_0) \ge 0 \quad \text{as } K > 0$$
$$\Rightarrow f(x) \ge f(x_0).$$

This completes the proof.

Strong pseudo-convexity

It may be noted that if x_0 is an optimal solution of the primal problem P_1 then $-\nabla f(x_0) \in C^*$, x_0 is indeed a feasible solution of the dual D_1 . In other words the optimality of P_1 ensures the feasibility of D_1 . The following theorem gives a parallel of Theorem 2.

THEOREM 4. Suppose that f is strongly Pseudo-convex with respect to a scalar function $K \ge 1$, and x_0 solves the problem P_1 . Then x_0 solves the problem D_1 .

PROOF. Let x be a feasible solution of D_1 , that is $x \in C$ and $-\nabla f(x) \in C^*$. Since x_0 solves the problem P_1 then by the above lemma $-\nabla f(x_0) \in C^*$ and $x'_0 \nabla f(x_0) = 0$. Since f is strongly Pseudo-convex with respect to a scalar function $K \ge 1$, we have

$$K(x, x_0) \{ f(x_0) - f(x) \} \ge (x_0 - x)' \nabla f(x) = x_0' \nabla f(x) - x' \nabla f(x)$$
$$\ge -x' \nabla f(x) \quad \text{as } x_0' \nabla f(x) \ge 1,$$

that is

$$f(x_0) - f(x) \ge \frac{-x' \nabla f(u)}{K(x, x_0)} \ge -x' \nabla f(x),$$

as $-x^{t} \nabla f(x) \leq 0$ and $K(x, x_{0}) \geq 1$, that is

$$f(x_0) \ge f(x) - x' \nabla f(x),$$

that is

$$f(x_0) - x_0' \nabla f(x_0) \ge f(x) - x' \nabla f(x),$$

as $x_0^t \nabla f(x) = 0$.

This shows that x_0 solves D_1 . The converse of this theorem can be obtained as a special case of Theorem 3, as long as $\nabla_{xx} f(x_0)$ is positive definite.

Acknowledgment

This paper was written while the first author was a teacher fellow at I. I. T. Kharagpur. He wishes to thank U. G. C. New Delhi and I. I. T. Kharagpur for providing a teacher fellowship, and D. A. V. College, Titilagarh, for grant of leave of absence.

References

- M. S. Bazaraa and J. J. Goode, "On symmetric duality in nonlinear programming", Oper. Res. 21 (1973), 1-9.
- [2] Suresh Chandra, "Strong Pseudo-convex programming", Indian J. Pure Appl. Math. 3 (1972), 278-282.
- [3] W. S. Dorn, "Duality in quadratic programming", Quart. Appl. Math. 18 (1960), 155-162.
- [4] G. B. Dantzig, E. Eisenberg, R. W. Cottle, "Symmetric duality in nonlinear programming", Pacific J. Math. 15 (1965), 809-812.
- [5] Manjulata, "Strong Pseudo-convex programming in Banach space", Indian J. Pure Appl. Math. (1976), 45-78.
- [6] M. S. Mishra, S. Nanda and D. Acharya, "Pseudo-convexity and symmetric duality in nonlinear programming", Report, Department of Mathematics, Indian Institute of Technology, Kharagpur, 1984.
- [7] B. Mond, "Generalised convexity in mathematical programming", Bull. Austral. Math. Soc. 27 (1983), 185-202.