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Projective freeness and stable rank of
algebras of complex-valued BV functions
Alexander Brudnyi

Abstract. The paper investigates the algebraic properties of weakly inverse-closed complex Banach
function algebras generated by functions of bounded variation on a finite interval. It is proved
that such algebras have Bass stable rank 1 and are projective-free if they do not contain nontrivial
idempotents. These properties are derived from a new result on the vanishing of the second Čech
cohomology group of the polynomially convex hull of a continuum of a finite linear measure described
by the classical H. Alexander theorem.

1 Formulation of main results

1.1

Let BV(I) be the space of complex-valued functions of bounded variation on the
interval I = [a, b]. By definition, f ∈ BV(I) if and only if

VI( f ) ∶= sup
m
∑
i=0
∣ f (x i+1) − f (x i)∣ < ∞,(1.1)

where the supremum is taken over all partitions a = x0 < x1 < ⋯ < xm = b, m ∈ N, of I.
In this paper, we study algebraic properties of weakly inverse-closed complex Banach
function algebras generated by BV(I) functions. Here, by a complex Banach function
algebra, we mean a unital subalgebra A of the algebra of complex-valued functions on
a set X with pointwise sum and product equipped with a norm that makes A a Banach
algebra. Such an algebra A is called weakly inverse-closed if it satisfies the condition:
(wi) If f ∈ A, and supX ∣ f (x)∣ < 1, then 1

1− f ∈ A.

To formulate the results, recall that a unital commutative ring R is said to be
projective free if every finitely generated projective R-module is free (i.e., if M is an
R-module such that M ⊕ N ≅ Rn for an R-module N and n ∈ Z+ (∶= N ∪ {0}), then
M ≅ Rm for some m ∈ Z+). Let Mn(R) denote the ring of n × n matrices over R and
GLn(R) its unit group. In terms of matrices, the ring R is projective-free if and only
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if for each n ∈ N, every X ∈ Mn(R) ∖ {0n , In} such that X2 = X (i.e., an idempotent)
has a form X = S(Ir ⊕ 0n−r)S−1 for some S ∈ GLn(R), r ∈ {1, . . . , n − 1}; here, 0k and
Ik are zero and identity matrices in Mk(R) (see [9, Proposition 2.6]). (For some
examples of projective-free rings and their applications, see, e.g., [8, 17, 25] and the
references therein.)

Let A ⊂ �∞(I) be a weakly inverse-closed complex Banach function algebra such
that the subalgebra A∩ BV(I) is dense in A. We denote by 1I the unit of A (i.e., the
constant function of value 1 on I). For a nonzero idempotent p ∈ A, we set Ap ∶= {pg ∶
g ∈ A}. Then Ap is a closed subalgebra of A with unit p. If M is an A-module, then
Mp ∶= {pm ∶ m ∈ M} is a submodule which can be regarded as an Ap-module as its
annihilator contains ker (1I − p).

Theorem 1.1 Let M be a finitely generated projective A-module. Then there exist
idempotents p1 , . . . , pk ∈ A such that M = ⊕k

i=1 Mp i and each Mp i is a free Ap i -module.
In particular, if A ⊂ C(I), then it is a projective-free ring.

For instance, Theorem 1.1 holds true for weakly inverse-closed complex Banach
function algebras A ⊂ BV(I) and their uniform closures Ā ⊂ �∞(I).

In terms of matrices, Theorem 1.1 asserts that for every idempotent X ∈ Mn(A),
n ∈ N, there exist idempotents p1 , . . . , pk ∈ A with∑k

j=1 p j = 1 and I1 , . . . , Ik ∈ Mn(C),
k ∈ N, and an invertible matrix G ∈ GLn(A) such that G−1 XG = ∑k

j=1 p jI j (see Sec-
tion 4 for an operator-valued generalization of this result).

Let A be an associative ring with unit. For a natural number n, let Un(A) denote
the set of unimodular elements of An , i.e.,

Un(A) = {(a1 , . . . , an) ∈ An ∶ Aa1 +⋯+ Aan = A} .

An element (a1 , . . . , an) ∈ Un(A) is called reducible if there exist c1 , . . . , cn−1 ∈ A such
that (a1 + c1an , . . . , an−1 + cn−1an) ∈ Un−1(A). The stable rank of A is the least n such
that every element of Un+1(A) is reducible. The concept of the stable rank introduced
by Bass [2] plays an important role in some stabilization problems of algebraic
K-theory. Following Vaserstein [24], we call a ring of stable rank 1 a B-ring. (We refer
to this paper for some examples and properties of B-rings.)

Theorem 1.2 Each weakly inverse-closed complex Banach function algebra A ⊂ BV(I)
is a B-ring.

Example 1.3 Since every closed unital subalgebra of a weakly inverse-closed com-
plex Banach function algebra is weakly inverse-closed (see Lemma 2.1), Theorems 1.1
and 1.2 are applicable to closed unital subalgebras of the following weakly inverse-
closed function algebras: (a) (BV(I), ∥⋅∥BV), where ∥ f ∥BV ∶= supI ∣ f ∣ + VI( f ); (b)
(AC(I), ∥⋅∥AC)—the algebra of absolutely continuous complex-valued functions on I,
where ∥ f ∥AC ∶= maxI ∣ f ∣ + ∫I ∣ f ′(t)∣ dt; (c) (Lip(I), ∥⋅∥Lip)—the algebra of complex-
valued Lipschitz functions on I, where ∥ f ∥Lip ∶= maxI ∣ f ∣ + supx≠y

∣ f (x)− f (y)∣
∣x−y∣ ; and

(d) (Ck(I), ∥⋅∥C k)—the algebra of complex-valued Ck functions on I, k ≥ 1, where
∥ f ∥C k ∶= ∑k

i=0 maxI ∣ f (i)∣.
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1.2

Theorems 1.1 and 1.2 are derived from a general result presented in this section.
For its formulation, recall that for a commutative unital complex Banach algebra A,
the maximal ideal space M(A) ⊂ A∗ is the set of nonzero homomorphisms A→C

endowed with the Gelfand topology, the weak-∗ topology of A∗. It is a compact
Hausdorff space contained in the unit sphere of A∗. The Gelfand transform defined
by â(φ) ∶= φ(a) for a ∈ A and φ ∈M(A) is a nonincreasing-norm morphism from
A into C(M(A)), the Banach algebra of complex-valued continuous functions on
M(A). Also, recall that the covering dimension of a topological space X, denoted by
dim X, is the smallest integer d such that every open cover of X has an open refinement
of order at most d + 1. If no such integer exists, then X is said to have infinite covering
dimension.

Theorem 1.4 Let A ⊂ �∞(I) be a weakly inverse-closed complex Banach function alge-
bra such that A∩ BV(I) is dense in A. Then dimM(A) ≤ 2 and the Čech cohomology
group H2(M(A),Z) = 0.

Note that for a weakly inverse-closed complex Banach function algebra A ⊂ �∞(I)
with uniform closure Ā, the maximal ideal spaces M(A) and M(Ā) are homeomor-
phic (see, e.g., [19, Proposition 3]).

Example 1.5 (1) As a Banach algebra, BV(I) = �1(I) ⋊ BV+(I)—the semidirect
product of the closed ideal �1(I) and the Banach subalgebra BV+(I) of right-
continuous BV functions (see, e.g., [6, Corollary 2.2]). Thus, the uniform closure
BV(I) = c0(I) ⋊ R+(I)—the semidirect product of the closed ideal c0(I) of functions
with at most countable supports converging to 0 and the Banach subalgebra
R+(I) ⊂ �∞(I) of right-continuous functions having first kind discontinuities. Then
each homomorphism in M(BV(I)) is uniquely determined by its restrictions to
c0(I) and R+(I). This leads to a continuous injection r ∶M(BV(I)) →M(c(I)) ×
M(R+(I)), where c(I) ∶= C ⋅ 1I ⊕ c0(I). Next,M(c(I)) is homeomorphic to the one-
pointed compactification of the discrete set I. In particular, dimM(c(I)) = 0. In turn,
there is a continuous surjection p ∶M(R+(I)) →M(C(I)) = I, the transpose of the
embedding C(I) ↪ R+(I), whose fibres consist of two points over interior points of I
and of one point over the endpoints of I. (Specifically, if φ ∈ p−1(x), then φ( f ) is equal
either to f (x−) or to f (x+).) Moreover, dimM(R+(I)) = 0 (see, e.g., [7, Theorem
1.7]). These imply that r embeds M(BV(I)) into the zero-dimensional compact
Hausdorff space M(c(I)) ×M(R+(I)); hence, dimM(BV(I)) = dimM(BV(I)) =
0 and H i(M(BV(I)),Z) = 0 for all i ∈ N.

(2) If A is one of the algebras (b),(c), or (d) of Example 1.3, then M(Ā) is
homeomorphic to I and, hence, dimM(Ā) = 1 and H i(M(Ā),Z) = 0 for all i ∈ N.

(3) If A is a weakly inverse-closed algebra generated by f1 , . . . , fn ∈ BV(I), then
M(A) is homeomorphic to the polynomially convex hull of the range of ( f1 , . . . , fn) ∶
I → C

n described by the Alexander theorem [1] presented in the next section (see, e.g.,
[19, Proposition 1] and [14, Chapter III, Theorem 1.4]).
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1.3

In the sequel, H 1 denotes the Hausdorff one-dimensional measure. Furthermore,

K̂ ∶= {z ∈ Cn ∶ ∣p(z)∣ ≤ supK ∣p∣ ∀p ∈ C[z1 , . . . , zn]}
stands for the polynomially convex hull of a bounded subset K ⊂ C

n . If X ⋐ C
n ,

then P(X) ⊂ C(X) denotes the uniform closure of the restriction of polynomials
C[z1 , . . . , zn]∣X . A compact connected subset of Cn is called a continuum.

The following result is due to Alexander [1, Theorem 1].

Theorem A Suppose that � ⊂ C
n is a compact subset of a continuum of finite H 1-

measure. Then �̂ ∖ � is a (possibly empty) pure one-dimensional complex analytic subset
of Cn ∖ �. If H1(�,Z) = 0, then �̂ = � and P(�) = C(�).

For historical remarks and further developments related to this theorem, see [21].
Using Theorem A, we prove the following.

Theorem 1.6 Suppose that � ⊂ C
n is a compact subset of a continuum of finite H 1-

measure. Then (a) dim �̂ ≤ 2 and (b) H2(�̂,Z) = 0.

Theorem 1.6 describes the algebraic–topological structure of the polynomial con-
vex hull in the Alexander theorem and fills a gap in this area of study. Theorem 1.4 is
derived from Theorem 1.6.

The proof of Theorem 1.6 goes along the following lines. Part (a) of the theorem
follows from Theorem A by virtue of some standard results of dimension theory. Then,
using that a continuum with finite H 1-measure in C

n is contained in a rectifiable
curve (see, e.g., [13, Chapter 3]), part (b) of the theorem reduces to a similar result
for the cohomology of the maximal ideal space M(A) of a closed finitely generated
subalgebra A ⊂ Lip(I). Each such A is weakly inverse-closed. Therefore, M(A) is
homeomorphic to the polynomially convex hull of a rectifiable curve in some C

n

which is the image of I under the map I → C
n whose coordinates are generators

of A. Then, part (a) of the theorem implies that dimM(A) ≤ 2. In turn, due to
the Novodvorskii–Taylor theory [23], to prove that H2(M(A),Z) = 0 under the
condition dimM(A) ≤ 2, one must show that 2 × 2 matrix idempotents of rank 1
with entries in A are similar over A to constant idempotents. The space of such
idempotents over C is a two-dimensional complex algebraic subvariety of C4 of the
form X1 ⊔ X2 ⊔ X3 such that X1 ≅ X2 ≅ C and the projection C

4 → C
2 onto the first

two coordinates is constant along X1 and X2 and maps X3 biholomorphically onto
C ×C

∗, where C
∗ ∶= C ∖ {0}. Using this, Theorem A, and part (a) of the theorem,

we deduce that H2(M(A),Z) = 0 from the known result on the vanishing of two
cohomology of a polynomially convex subset of C2 (see, e.g., [21, Chapter 2.3]).

2 Proof of Theorem 1.6

(a) Let dimH denote the Hausdorff dimension. By the Szpilrajn theorem (see, e.g.,
[15, pp. 62–63]) and because H 1(�) < ∞,

dim � ≤ dimH � = 1.(2.1)
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In turn, as �̂ ∖ � ≠ ∅ is a one-dimensional complex analytic space, its compact subsets
have covering dimension ≤ 2. These imply that dim �̂ ≤ 2 (see, e.g., [18, Chapter 2,
Theorems 9–11]).

(b) In the proof, we use the following results.

Lemma 2.1 Let A be a weakly inverse-closed complex Banach function algebra on a
set X. Then every closed unital subalgebra B ⊂ A is weakly inverse-closed.

Proof Suppose that f ∈ B is such that supX ∣ f ∣ < 1. Since the algebra A is weakly
inverse-closed, 1

1− f ∈ A. Also, the function 1
1− f is the sum of the uniformly convergent

on X series∑∞k=0 f k . By the formula for the spectral radius of f (see, e.g., [14, Chapter
I, Theorem 5.2]),

sup
M(A)

∣ f̂ ∣ = lim
k→∞

∥ f k∥ 1
k ;(2.2)

here, f̂ is the Gelfand transform of f and ∥⋅∥ is the norm on A.
On the other hand, since A is weakly inverse-closed, [19, Proposition 1] implies

that

sup
M(A)

∣ f̂ ∣ = sup
X
∣ f ∣.(2.3)

Combining (2.2) and (2.3), we get for some c ∈ (supX ∣ f ∣, 1) and all sufficiently large
k ∈ N,

∥ f k∥ ≤ ck .(2.4)

This shows that the partial sums of the series ∑∞k=0 f k form a Cauchy sequence in A.
Since these partial sums belong to the closed subalgebra B ⊂ A, the series converges
to an element of B. This implies that 1

1− f ∈ B, as required. ∎

Proposition 2.2 Suppose that A is a complex Banach function algebra defined on its
maximal ideal space M(A). If dimM(A) ≤ 2, then there are bijections:
(a) c1 ∶ Vect1(M(A)) → H2(M(A),Z), where Vect1(M(A)) is the set of isomor-

phism classes of complex rank-1 vector bundles over M(A).
(b) h ∶ [M(A), S2] → H2(M(A),Z), where [M(A), S2] is the set of homotopy

classes of continuous maps from M(A) to the two-dimensional unit sphere S2.
(c) i ∶ [ID1(A2)] → [M(A), S2], where [ID1(A2)] is the set of connectivity compo-

nents of the class of idempotent 2 × 2 matrices with entries in A of constant rank 1.

Proof In (a) and (c), the condition dimM(A) ≤ 2 is not required. In fact, the
bijection c1 is determined by assigning to a bundle its first Chern class, whereas the
existence of the bijection i follows from the Novodvorskii–Taylor theory (see [23,
Section 5.3, p. 186]). Finally, the existence of the bijection h under the condition
dimM(A) ≤ 2 follows from the Hopf theorem (see, e.g., [16]). ∎

Let us proceed to the proof of part (b) of the theorem.
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Let E ⊂ C
n be a continuum with H 1(E) < ∞ containing �. Then, according to

[13, Chapter 3, Exercise 3.5], there are functions f1 , . . . , fn ∈ Lip(I) such that

E ⊂ K ∶= ( f1 , . . . , fn)(I) and H 1(K) ≤ 2H 1(E).

By A ⊂ Lip(I), we denote the closed unital subalgebra generated by f1 , . . . , fn . Since
it is clear that Lip(I) is weakly inverse-closed, by Lemma 2.1, A is also weakly inverse-
closed. Then the maximal ideal space of A is naturally identified with K̂ (see, e.g., [19,
Proposition 1] and [14, Chapter III, Theorem 1.4]). Moreover, according to part (a) of
the theorem, dim K̂ ≤ 2.

We set F ∶= ( f1 , . . . , fn) ∶ I → C
n . The algebra A is isomorphic to its Gelfand

transform Â—a complex Banach function algebra on K̂ =M(A)with a norm induced
from A such that the pullback of Â by F coincides with A (hence, C[z1 , . . . , zn]∣K̂ is a
dense subalgebra of Â). Since M(Â) = K̂ as well, in the notation of Proposition 2.2,
each

G = [ g1 g2
g3 g4

] ∈ ID1(Â2)(2.5)

can be viewed as a map from K̂ to M2(C) with coordinates in the algebra Â whose
image ID1(C2) consists of idempotent matrices of rank 1. Thus,

Z = [ z1 z2
z3 z4

] ∈ ID1(C2)

if and only if rank Z = 1 and

Z2 − Z = [ z1 z2
z3 z4

] ⋅ [ z1 − 1 z2
z3 z4 − 1 ] = [

0 0
0 0 ] ,

which implies that

z4 = 1 − z1 and z3 =
z1(1 − z1)

z2
, if z2 ≠ 0,

z1 ∈ {0, 1}, z3 ∈ C, if z2 = 0.
(2.6)

Let S ∶= G(K) = (G ○ F)(I) ⊂ M2(C) ≅ C
4. Since the entries of the map G ○ F

lie in Lip(I), S is a continuum with H 1(S) < ∞. Moreover, Â is contained in
the uniform closure of C[z1 , . . . , zn]∣K̂ , which implies that G(K̂) ⊂ Ŝ ⊂ ID1(C2). In
addition, dim Ŝ ≤ 2 by part (a) of the theorem. By the definition, the identity map
C

4 ⊃ ID1(C2) → ID1(C2) ⊂ M2(C) determines the holomorphic idempotent Z on
ID1(C2) whose pullback by G coincides with G ∈ ID1(Â2). According to Proposition
2.2, Z∣Ŝ determines a complex rank-1 vector bundle over Ŝ whose triviality implies
that Z∣Ŝ and, hence, G belong to the connectivity components (in ID1(C(Ŝ)2) and
ID1(Â2), respectively) of the constant idempotent I1 ⊕ 01. If the latter is true for
all G ∈ ID1(Â2), then Proposition 2.2 implies that H2(K̂ ,Z) = 0. However, �̂ ⊂ K̂
and dim K̂ ≤ 2 and so the previous condition implies that H2(�̂,Z) = 0 by the Hopf
theorem, as required. Thus, to complete the proof of the theorem, it suffices to prove
the following lemma.

https://doi.org/10.4153/S000843952300005X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952300005X


850 A. Brudnyi

Lemma 2.3 Each complex rank-1 vector bundle over Ŝ is trivial.

Proof Let V be a complex rank-1 vector bundle over Ŝ. Consider the projec-
tion onto the first two coordinates π ∶ C4 → C

2 and π(z1 , z2 , z3 , z4) ∶= (z1 , z2).
For w i = (i , 0), i = 0, 1, the sets π−1(w i) ∩ ID1(C2) are biholomorphic to C (see
(2.6)). Thus, Z i ∶= π−1(w i) ∩ Ŝ are homeomorphic to compact subsets of C; hence,
H2(Z i ,Z) = 0, i = 0, 1. This implies that V ∣Z i are trivial bundles. In particular, there
are disjoint open neighborhoods U i ⊂ Ŝ of Z i and nonvanishing continuous sections
s i ∶ U i → V , i = 0, 1. Since

Z i = ⋂
O i∈N(w i)

π−1(O i) ∩ Ŝ , i = 0, 1,

where N(w i) is the set of all open neighborhoods of w i , without loss of generality,
we may assume that U i = π−1(O i) ∩ Ŝ for some O i ∈ N(w i), i = 0, 1. Let U2 , . . . , Uk
be relatively compact open subsets of Ŝ ∖ π−1(w i) such that (U i)k

i=0 is an open
cover of Ŝ and each V ∣U i is trivial. Due to (2.6), π maps Ŝ ∖ (π−1(w0) ∪ π−1(w1))
homeomorphically onto π(Ŝ) ∖ {w0 , w1}. Thus, there exist (relatively compact) open
subsets O i ⊂ π(Ŝ) ∖ {w0 , w1}, 2 ≤ i ≤ k, such that π−1(O i) ∩ Ŝ = U i . Let s i ∶ U i → V
be nonvanishing continuous sections of V ∣U i , i = 2, . . . , k. Then V is determined by a
continuous cocycle {c i j}0≤i , j≤k ,

c i j ∶= s−1
i ⋅ s j ∈ C(U i ∩U j ,C∗), 0 ≤ i , j ≤ k.

Furthermore, since each nonvoid U i ∩U j is a subset of Ŝ ∖ (π−1(w0) ∪ π−1(w1)), due
to (2.6), there exist d i j ∈ C(O i ∩ O j ,C∗) such that π∗d i j = c i j . The family {d i j}0≤i , j≤k

is a 1 cocycle on the cover (O i)0≤i≤k of π(Ŝ), which determines a bundle V ′ on Ŝ such
that π∗V ′∣Ŝ = V . Thus, to complete the proof, it suffices to show that V ′ is a trivial
bundle.

Indeed, by definition, π(Ŝ) ⊂ π̂(S) ⊂ C
2. Since S is a continuum with H 1(S) < ∞,

the set π(S) =∶ (π ○G ○ F)(I) is also a continuum with H 1(π(S)) < ∞ and so part
(a) of the theorem implies that dim π̂(S) ≤ 2. In addition, π̂(S) is a polynomially
convex subset of C2; hence, H2(π̂(S),Z) = 0 (see, e.g., [21, Corollary 2.3.6]). These
imply that H2(π(Ŝ),Z) = 0 by the Hopf theorem. In particular, each complex rank-
1 vector bundle over π(Ŝ) is trivial; hence, the bundle V ′ is trivial as well, as
required. ∎

The proof of Theorem 1.6 is complete.

3 Proofs of Theorems 1.1, 1.2, and 1.4

Proof of Theorem 1.4 Let D be the set of all finite subsets of A∩ BV(I) directed
by inclusion ⊂. If α = { f1,α , . . . , fkα ,α} ∈ D, we let Aα be the closed subalgebra of
A generated by α. For α ⊂ β, we have Aα ⊂ Aβ and we denote by iβ

α ∶ Aα ↪ Aβ the
corresponding inclusion map. Then {Aα , iβ

α} is the injective system whose limit
A∗ ∶= lim'→Aα is a subalgebra of A containing A∩ BV(I). In particular, A∗ is dense
in A by the hypothesis, and hence the same is true for the images of A∗ and A in
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C(M(A)) under the Gelfand transform. Since by the hypothesis A is weakly inverse-
closed, the latter along with Propositions 3 and 9 of [19] imply that the maximal
ideal spaceM(A) = lim←'M(Aα)—the projective limit of the adjoint projective system
{M(Aα), (iβ

α)∗}of the maximal ideal spaces. Since Aα is generated by f1,α , . . . , fkα ,α ∈
BV(I), the range of the map Fα = ( f1,α , . . . , fkα ,α) ∶ I → C

kα denoted by �α is
contained in a continuum with finite H 1 measure (see, e.g., [13, Chapter 3, Exercise
3.1]). Moreover, by Lemma 2.1, Aα is weakly inverse-closed. Therefore, M(Aα) is
homeomorphic to �̂α (see, e.g., [19, Proposition 1] and [14, Chapter III, Theorem 1.4]),
and dim �̂α ≤ 2 and H2(�̂α ,Z) = 0 by Theorem 1.6. Then, since M(A) = lim←'M(Aα),
dimM(A) ≤ 2 (see, e.g., [12, Theorem 3.3.6]), and H2(M(A),Z) = 0 (see, e.g., [11,
Theorem 3.1, p. 261]), as required. ∎

Proof of Theorem 1.1 Let M be a finitely generated projective A-module deter-
mined by an idempotent I ∈ Mn(A). The rank of M is a continuous Z+-valued
function on M(A) equal to the rank of the Gelfand transform of I at points of M(A)
(see, e.g., [23, Section 7.6]). Let 0 ≤ i1 < ⋯ < ik ≤ n be the range of this function, and
let Ms ⊂M(A) be the clopen subset where Î has constant rank is . Then M(A) =
⊔k

s=1Ms , and by the Shilov idempotent theory (see, e.g., [14, Chapter III, Corollary
6.5]), there exist idempotents p1 , . . . , pk ∈ A with ∑k

s=1 ps = 1A such that the maximal
ideal space of Aps is Ms . We have A = ⊕k

s=1Aps , which leads to the decomposition
I = ⊕k

s=1 ps ⋅ I, where ps ⋅ I ∈ Mn(Aps) is the idempotent determining the projective
Aps -module Mps .

Next, due to the Novodvorskii–Taylor theory (see [23, Section 7.5, Theorem]), there
exists a bijection between isomorphism classes of finitely generated projective Aps -
modules and complex vector bundles over Ms . In our case, the isomorphism class of
Mps corresponds to the isomorphism class of a bundle Es over Ms of complex rank
is . Since dimMs ≤ 2 and H2(Ms ,Z) = 0 by Theorem 1.4, the bundle Es is trivial (i.e.,
isomorphic to Ms ×C

is ), which implies that Mps is isomorphic to the free module
(Aps)is , as required. ∎

Proof of Theorem 1.2 Let J ⊂ A ⊂ BV(I) be a closed ideal. Its hull Z(J) ⊂M(A)
is given by

Z(J) ∶= {x ∈M(A) ∶ f̂ (x) = 0 ∀ f ∈ J}.

Consider the closed unital subalgebra AJ ∶= {c ⋅ 1A + f ∶ c ∈ C, f ∈ J} ⊂ A. By QJ ∶
M(A) →M(AJ), we denote the continuous map transposed to the embedding AJ ↪
A. Then QJ is a surjection which is one-to-one on M(A) ∖Z(J) and sends Z(J) to
a point (see, e.g., [3, Proposition 2.1] for the proof of a similar result). On the other
hand, AJ ⊂ BV(I) is weakly inverse-closed by Lemma 2.1, and so by Theorem 1.4,
dimM(AJ) ≤ 2 and H2(M(AJ),Z) = 0.

According to [22, Theorem 1.3], to prove that the stable rank of A is 1, it suffices
to show that the relative Čech cohomology groups H2(M(A),Z(J),Z) = 0 for all
ideals J ⊂ A. However, due to the strong excision property for cohomology (see, e.g.,
[20, Chapter 6, Theorem 5]), the pullback map Q∗J induces an isomorphism of
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the Čech cohomology groups H2(M(AJ),Z) ≅ H2(M(A),Z(J), Z). In particular,
H2(M(A),Z(J), Z) = 0, as required. ∎

4 Concluding remarks

There are some applications of Theorems 1.1 and 1.2 to operator-valued BV(I) func-
tions and to interpolating problems for BV(I) maps into some complex manifolds
analogous to those of [4, Section 1.2] and [5, Theorems 1.4, 1.6]. These results will be
published elsewhere. Here, we formulate one of such results.

Let A ⊂ BV(I) be a weakly inverse-closed complex Banach function algebra, and
let L(X) be the Banach algebra of bounded linear operators on a complex Banach
space X equipped with the operator norm. Let α be either the projective cross norm
π or the injective cross norm ε on the algebraic tensor product A⊗ L(X), and let
A⊗̂α L(X) be the completion with respect to α. If α = ε, we additionally assume
that the algebra A is uniform (i.e., ∥a2∥ = ∥a∥2 for all a ∈ A). Then A⊗̂α L(X) is
also a Banach algebra (see, e.g., [10, Section 1.3] for the references). We denote by
(A⊗̂α L(X))−1 and id A⊗̂α L(X) = {F ∈ A⊗̂α L(X) ∶ F2 = F} the group of invertible
elements and the set of idempotents of A⊗̂α L(X).

We say that idempotents F1 , F2 ∈ id A⊗̂α L(X) are equivalent if F2 = G−1 ⋅ F1 ⋅G for
some G ∈ (A⊗̂α L(X))−1.

An idempotent F ∈ id A⊗̂α L(X) is said to be locally constant if there exist idempo-
tents p1 , . . . , pk ∈ A with ∑k

j=1 p j = 1I and I1 , . . . , Ik ∈ L(X), k ∈ N, such that

F =
k
∑
j=1

p j ⊗ I j .

With the above notation, we have the following generalization of Theorem 1.1.

Theorem Suppose that X is isomorphic to one of the spaces: a Hilbert space, c0, or
�p , 1 ≤ p ≤ ∞. Then every idempotent in id A⊗̂α L(X) is equivalent to a locally constant
idempotent.

Acknowledgment I thank the anonymous referee for useful remarks and comments
improving the presentation of the paper.
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