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Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a highmortality rate.,is study aimed to uncover the
underlying molecular features for different types of IPF. IPF microarray datasets were retrieved from GEO databases. Weighted gene
co-expression analysis (WGCNA) was used and identified subgroup-specific WGCNA modules. Infiltration-level immune cells in
different subgroups of microenvironments were analyzed with CIBERSORTalgorithms. ,e result is we classified 173 IPF cases into
two subgroups based on gene expression profiles, which were retrieved from the GEO databases. ,e SGRQ score and age were
significantly higher in C2 than in C1. Using WGCNA, five subgroup-specific modules were identified. M4 was mainly enriched by
MAPK signaling, which was mainly expressed in C2; M1, M2, andM3 were mainly enriched by metabolic pathways and Chemokine
signaling, and the pathway of M5 was phagosome inflammation; M1, M2, M3, and M5 were mainly expressed in C1. Utilizing the
CIBERSORT, we showed that the number of M1 macrophage cells, CD8 T cells, regulatory T cells (Tregs), and Plasma cells was
significantly different between C1 and C2. We found the molecular subgroups of IPF revealed that cases from different subgroups
may have their unique patterns and provide novel information to understand the mechanisms of IPF itself.

1. Introduction

Idiopathic pulmonary fibrosis is a chronic progressive dis-
ease characterized by excessive wound repair and interstitial
pneumonia [1, 2]. It is one of the most common refractory
diseases of the respiratory system that poses a serious threat
to the life and health of human beings. ,e worldwide in-
cidence of IPF is about (2∼29)/100,000 and has been in-
creasing annually, while the median survival period is 3∼5
years after diagnosis [3, 4]. Idiopathic pulmonary fibrosis
may be driven by abnormal epithelium and transformed by
heterogeneous fibroblasts in different activation states [5].
,e 5-year survival rate of patients with late-stage IPF is
much lower than that of early-stage IPF [6]. Although new

evidence suggests that there is a genetic association between
early and late disease, the differences in gene expression
among different stages of IPF have not been investigated.
,erefore, it is still difficult to fully understand the
mechanisms underlying the pathogenesis and progression
of IPF.

Microarrays are a recent high-throughput technology
used for gene expression analysis [7]. High-throughput
techniques are increasingly being used to identify the mo-
lecular mechanisms underlying the pathogenesis or pro-
gression of IPF. However, most studies have focused on the
differences between IPF cases and normal controls,
neglecting the differences among different stages of IPF. In
this study, we used bioinformatics analysis to analyze the
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gene expression data of 173 IPF patients and explored the
differences among different IPF subtypes.

2. Materials and Methods

2.1.Microarray Data Information. Microarray datasets were
downloaded from the Gene Expression Omnibus database
(GEO, http://www.ncbi.nlm.nih.gov/geo). ,e following
criteria were applied to select microarray datasets: expres-
sion profiles studies, the sample size of more than 5 samples,
and human idiopathic pulmonary fibrosis tissues. Studies
using nonhuman samples and a combination of expression
profiles were excluded from the analysis. Gene expression
datasets were retrieved using the key search terms “Idio-
pathic pulmonary fibrosis” from the GEO Datasets database.
,e datasets downloaded were GSE2052, GSE24206,
GSE32537, and GSE110147. GSE2052 included 11 normal
histology lung tissues and 14 idiopathic pulmonary fibrosis
tissues. GSE24206 consisted of 6 normal histology lung
tissues and 17 idiopathic pulmonary fibrosis tissues.
GSE32537 included 50 normal histology lung tissues and 120
idiopathic pulmonary fibrosis tissues. GSE110147included
11 normal histology lung tissues and 22 idiopathic pul-
monary fibrosis tissues. ,e following data were retrieved by
two researchers working independently: type of reference,
type of sample, gene expression data, number of cases and
controls, platform, and GEO accession number. Any dis-
crepancy in the data obtained between the two researchers
was resolved by the involvement of a third researcher or
through discussion. ,e study was approved by the Review
Boards of the Binzhou Medical University.

2.2. Consensus Clustering. ,e “sva” package in R software
(version 3.4) was employed to normalize raw data from the 4
datasets. Batch effects were removed from merged data as
previously reported, followed by classification of the datasets
into 2 categories: normal histology lung and IPF groups.
Data quality control for batch effect was performed using
principal component analysis. Consensus clustering was
used to classify the IPF patients into different subgroups
using the K means algorithm with the Spearman distance.
,emaximum cluster number was set as 10.,e final cluster
number was determined by the consensus matrix and the
cluster consensus score (>0.8).

2.3. Comparison of the Clinical Characteristics between the
Two Subgroups. Data on the gender, age, smoking history,
and SGRQ score of IPF cases from the GSE32537 dataset
were used to compare the clinical characteristics of the two
subgroups. ,e chi-square test was used to analyze the data
on gender and smoking history, while the unpaired t-test
was used to analyze the data on age and SGRQ score.

2.4. Subgroup-Specific Differentially Expressed Genes. We
then compared the gene expression patterns among the
different subgroups to identify subgroup regulatory genes.
,e T-test was implemented with the R Limma package to

determine differentially expressed genes.,e cutoff selection
criteria of the DEGs were P< 0.05 along with |log2fold
change (FC)|>2.

2.5. Weighted Gene Co-Expression Network Analysis. ,e
WGCNA method is commonly utilized to construct a scale-
free weighted gene co-expression network based on sub-
group-specific gene expression data. In this study, we used
the R package “WGCNA” to identify potential functional
modules that could characterize the biological function of
each subgroup. In brief, we converted the adjacency matrix
into a topological overlap matrix (TOM). ,e genes were
then grouped into various modules using the TOM-based
dissimilarity measure. ,e soft threshold for the scale-free
network was determined based on the maximal R2 (pow-
er� 16). In the end, five functional modules were identified.

2.6. GO and KEGG Pathway Enrichment Analyses of Co-
Expression Network Analysis Modules. Clusterprofiler was
employed to determine the biological processes involved in
the pathogenesis of IPF by identifying enriched functions
and cascades. Clusterprofiler analyses and visualizes critical
data on GO along with KEGG analyses. A P value <0.05 was
considered to be significant.

2.7. Determination of Immune Infiltration with CIBERSORT.
,e CIBERSORT deconvolution algorithm was used to
compare the infiltration levels of 22 immune cells among the
molecular subgroups. Gene expression data were converted
into levels of immune cells. Samples that showed P< 0.05
were selected. Correlation of immune cells in different
subgroups was presented via a corheatmap plot. A violin plot
was used to display the differences in expression of 22 in-
filtrating immune cells with the vioplot package of R. In the
same subgroup, the correlation between different immune
cells was analyzed by Spearman correlation analysis. For the
same immune cells, the expression differences in different
subgroups were analyzed by the unpaired T-test.

3. Results

3.1. IdentificationofMolecular Subgroups inPatientswith IPF.
,e Limma package was used to analyze the 4 IPF gene
expressionmicroarray datasets. Data preprocessing included
background correction, normalization, and summarization.
,e scatter-plot based on PCA of normalized expression
revealed that the batch effects arising from the use of dif-
ferent platforms had been removed (Figures 1(a) and 1(b)).
Based on the gene expression data of 173 IPF patients, a
consensus clustering algorithm was used to divide all
samples into C1 and C2, with 103 and 70 samples, re-
spectively (Figure 2(a)). ,e samples are divided into two
categories based on the cumulative distribution function
(CDF) and consistency score. CDF analysis showed that in
the two categories, there was no significant increase in the
area under the CDF curve (Figure 2(b)). At the same time,
only in the two subgroups, the cluster consistency score of
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each subgroup was higher than 0.8, which shows that the
classification with two subgroups is more robust than with
the other subgroups (Figure 2(c)). Finally, two categories
were selected for downstream analysis.

3.2. Comparing the Clinical Characteristics of Two Subgroups.
To further explore the clinical significance of the sample
classification, we compared the age, gender, SGRQ score,
and smoking history between the two groups of samples. We
did not observe any significant differences in age and
smoking history between the two groups (Figures 3(a) and
3(c)). However, the mean age (P � 0.0147, Figure 3(d)) and
the SGRQ score (P � 0.0283, Figure 3(b)) were significantly
higher in the C2 group than in the C1 group. Higher SGRQ
scores indicate worse health status of the patient, suggesting
that patients in the C2 group had a higher grade of IPF.

3.3. Molecular Characterization of the Molecular Subgroups.
To identify the molecular differences between IPF sub-
groups, WGCNA was performed based on the expression
levels of specifically upregulated genes in each subgroup.
Differential expression analysis between the two subgroups
identified 505 and 270 genes specifically regulated in sub-
groups C1 and C2, respectively (adjusted P< 0.05 and the
absolute difference of means> 0.2).

,e Limma package was used to further explore the
molecular differences between the two groups. A total of
1751 differential genes were identified and classified into five
modules, named M1–M5, using unsupervised clustering
(Figure 4(a)). Gene set enrichment analysis revealed that the
M4 gene module was mainly enriched in MAPK signaling

and was mainly expressed in C2. ,e M1, M2, and M3 gene
modules were mainly enriched in metabolic pathways and
Chemokine signaling, while M5 was mainly enriched in
phagosome inflammation. M1, M2, M3, and M5 were
mainly expressed in C1 (Figures 4(b) and 4(c)).

3.4. Immune Cell Infiltration Landscape in the Molecular
Subgroups. Analysis with the CIBERSORT algorithm
revealed significant differences in the proportions of 22
infiltrating immune cell types between C1 and C2. C1 and
C2 tissues were then filtered and used for further analysis,
where 95 C1 and 66 C2 samples were left. ,e differences in
immune cell proportions may be an intrinsic feature that can
be utilized to characterize different differences. To further
examine the overall expression pattern of infiltrating im-
mune cells in C1 and C2 samples, correlation analysis be-
tween immune cells was undertaken. ,e correlation
coefficient between 22 immune cells in C2 was observed, in
which CD8 T cells and naive B cells had the strongest
positive correlation (r� 0.43), whereas resting mast cells had
the strongest negative correlation with activated mast cells
(r� -0.64) (Figure 5(a)). However, these results were dif-
ferent from results obtained using C1 (Figure 5(b)). ,is
outcome further proved the abovementioned speculation.
,is suggests a specific communication mode between im-
mune cells. ,e violin plot illustrated the probable distribution
of different immune cells in C1 and C2 tissues. Compared with
C1 samples, C2 samples contained a higher proportion of M1
macrophages, resting mast cells, and CD8 T cells, whereas the
proportions of activated mast cells, regulatory T cells (Tregs),
and Plasma cells were relatively lower (Figure 5(c)). ,ese
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Figure 1: Principal component analysis of the 4 gene expression datasets. (a) Data before normalization. (b) Data following normalization.
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Figure 2: Consensus-based cluster analysis of gene expression in idiopathic pulmonary fibrosis. (a),e consensus matrix using a two-group
model (k� 2). (b) ,e plot of the cumulative distribution function (CDF) for each number of clusters tested. (c) ,e consensus scores
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Figure 3: Comparison of clinical characteristics in different subgroups. (a, c) ,e status of gender and smoking in different subgroups is
shown. (b, d) ,e status of age and SGRQ score in subgroups showed significant differences.
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results showed that the proportion of infiltrating immune cells
might help to distinguish C1 from C2 subgroups.

4. Discussion

Idiopathic pulmonary fibrosis is a chronic and progressive
fibrotic interstitial lung disease.,e clinical course of IPF varies
considerably and can be divided into three subtypes: slow
progress, moderate progress, and rapid progress. However, the
lack of a standard staging system to distinguish these subtypes
makes it difficult to make clinical decisions such as when to
initiate treatment, palliative care, and lung transplantation.
,erefore, there is a need to define the molecular subtypes of
IPF to support research on the pathogenesis of IPF.,e aim is
to stratify patients into groups with coherent and homoge-
neous genetic and molecular biomarker profiles. We used
bioinformatics methods to analyze gene expression data of
173 IPF patients and explore the differences in molecular
characteristics, age, gender, degree of inflammation, and
related pathways among the subgroups of IPF patients. ,e
goal was to identify the molecular subtypes of the disease that
will help in the development of targeted therapy.

In this study, we successfully divided 173 IPF cases into
two molecular subgroups based on gene expression profiles
and found a significant correlation between clinical features
and molecular subtypes. C2 cases had a higher SGRQ score
and mean/median age than C1 cases. ,e Saint George
Respiratory Questionnaire (SGRQ) is currently one of the
most widely used scales for assessing the level of health
impairment and quality of life of adult patients with re-
spiratory diseases [8, 9]. ,e SGRQ questionnaire mainly
measures the impact of chronic airflow limitations on the
quality of life from the three dimensions of symptoms,
activity capacity, and daily life impact [8]. ,e more severe
the impact on life, the higher the weight and the greater the
score. ,e high SGTQ score associated with C2 suggested
that the cases in this group had more advanced IPF.

,e role of molecular pathways in the pathogenesis,
progression, and diagnosis of IPF is constantly being ex-
plored. ,e current theory believes that the pathogenesis of
IPF is heterogeneous and involves epithelial injury, wound
healing, innate and adaptive immunity, and inflammatory
infiltration. In these macrocategories, many molecules in-
teract in different pathogenic pathways and may become
targets for new therapeutic drugs. It is worth noting that we
identified 1751 differentially expressed genes in IPF patients,
which were further classified into 5 modules, named
M1–M5, using unsupervised clustering. Further analysis
revealed that the modules were associated with a number of
key pathways that regulate inflammation and metabolism.
For example,M4 was enriched byMAPK signaling and B cell
receptor signaling pathways. ,e MAPK signaling pathway
is closely connected with IPF. Nie et al. [10] found that
Shikonin suppresses the activation of pulmonary fibroblasts
by regulating MAPK signaling pathways. TRB3 regulates
mouse pulmonary interstitial fibrosis through the MAPK
signaling pathway [11]. ,e M1 gene module was enriched
by Phospholipase D signaling pathways. PLD has six sub-
types, PLD1-6, with PLD1 and PLD2 subtypes having the
ability to hydrolyze phospholipids. ,ese two subtypes have
been associated with various human pathophysiological
processes, including cancer, hypertension, neurological
diseases, diabetes, and acute lung injury [12–14]. Bleomycin
can activate PLD in lung endothelial cells and lead to the
production of reactive oxygen species, thereby regulating the
process of lung fibrosis [15, 16]. ,e M5 gene module was
mainly enriched in immune-inflammatory pathways, such
as phagosome and PD-L1 expression. Wang et al. [17] found
that PD1 affects the progression of pulmonary fibrosis by
regulating Tregs. ,e effect of Gancao Ganjiang decoction is
mediated in idiopathic pulmonary fibrosis by the PD-1
pathway [18].

CIBERSORT-based analysis of subtypes of infiltrating
immune cells revealed marked differences between C1 and
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Figure 4: Molecular characterization of the molecular subgroups. (a) Expression heat map of five weighted gene co-expression network
analysis modules. (b) GO analysis of 5 modules. (c) KEGG analysis of 5 modules.
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C2. ,ere was a significant difference in the number of M1
macrophage cells, CD8 Tcells, regulatory Tcells (Tregs), and
Plasma cells between C1 and C2.,e CD8+ Tcell is a type of
cytotoxic T lymphocyte that secretes various cytokines to
participate in immune function. CD8+ T cells have been
associated with the levels of dyspnea and disease severity in

IPF patients, suggesting that they may play a role in its
pathogenesis [19–21]. Regulatory T cells (Tregs) are crucial
in maintaining immune tolerance and immune homeostasis.
,e proportion of activated regulatory T cells is negatively
correlated with severity of idiopathic pulmonary fibrosis
[22]. Animal experiments also proved that regulatory T cells
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Figure 5: ,e difference of 22 immune cell infiltration proportions between C1 and C2. (a) ,e correlation matrix for 22 immune cell
proportions in C1. (b) ,e correlation matrix for 22 immune cell proportions in C2. Red means positive correlation, blue means negative
correlation, and the darker the color, the stronger the correlation. (c) Distribution of immune cells between C1 and C2. P values show the
significance of distribution.
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limit the deterioration of fibrosis in mice [23]. Over the past
decade, macrophages have been shown to play a significant
role in IPF pathogenesis. Depending on the local micro-
environments, macrophages can be polarized to either
classically activated (M1) or alternatively activated (M2)
phenotypes [24]. Scholars have now applied nanoengineered
immunosuppressive therapeutics to adjust the M1/M2
balance to enhance the treatment of idiopathic pulmonary
fibrosis [25].

Although our study provided new insights into IPF,
there were some limitations. First, our findings need to be
interpreted with caution since they were not validated using
in vitro or in vivo experiments. Second, since used publicly
available data, we cannot guarantee the quality of the data.

5. Conclusions

Different IPF subgroups have unique gene expression pat-
terns, which provide further insights into the pathogenesis of
IPF. ,e expression patterns may also have predictive value.
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