
Astrophysical Supercomputing Using Particles
fA U Symposium, Vol. 208, 2003
J. Makino and P. Hut, eds.

The GRAPE project: Current Status and Future Outlook

Junichiro Makino

Department of Astronomy, School of Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract. I'll briefly overview the present status and the future of the
GRAPE project. GRAPE (GRAvity PiPE) project is a project to de-
sign, develop and use special-purpose computers for astrophysical N-body
simulations to do large-scale N-body simulations. Our first machine,
GRAPE-1 was completed in 1989 and offered the speed of 240 Mfiops.
Since then, we have continued to develop newer and faster machines, and
the newest machine, the GRAPE-6, has achieved the peak speed of 32
Tfiops. I'll briefly discuss GRAPE-6 and its parallel architecture, and
then discuss the possible form of GRAPE-7, the next generation ma-
chines.

1. Introduction

In this paper, I give an overview of the present status and the future of the
GRAPE project. In section 2 I give a overview of basic concept of GRAPE
hardware and the algorithms used with GRAPE hardware. In section 3 I de-
scribe the GRAPE-6 system, which is completed recently. In section 4 we discuss
possible design and performance of the next generation machine. Section 5 is
for summary.

2. Overview of GRAPE hardware and software

2.1. Special-purpose hardware

GRAPE Project (Sugimoto et al. 1990, Makino and Taiji1998) is a project to
develop and use special-purpose computers to perform large-scale astrophysical
N-body (and SPH) simulations. Figure 1 show the basic concept of the GRAPE
hardware.

From the viewpoint of the calculation cost, the rather troublesome nature
of the gravitational interaction is that it is a long-range interaction. All particles
in a system interact with all other particles in the system, and we cannot apply
cutoff.

If we use straightforward direct force calculation, the calculation cost scales
as O(N2

) , where N is the number of particles in the system. If we can make
the special-purpose GRAPE much faster than the general-purpose host for force
calculation, we can speed up the overall calculation by a very large factor.

13

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


14

Figure 1.

Makino

Host
x, m

GRAPE
Computer

a, 'I'

Basic idea of GRAPE

Figure 2. GRAPE pipeline

Figure 2 shows the basic structure of the pipeline processor we developed.
In this processor, we organize the arithmetic units following the dataflow of the
force calculation. Thus, we can use a large number of arithmetic units connected
in a simple way. A single pipeline would contain around 30 arithmetic units. If
we choose to calculate the first time derivative, which is need to implement the
Hermite integration scheme, this number doubles to around 60. Thus, a single
pipeline needs very large number of arithmetic unit.

This need for very large number of arithmetic unit would have been a draw-
back when the number of transistors we can use to make one computer was small.
In 1960s, even the fastest supercomputers had arithmetic units which required
multiple clock cycles to produce one result. Thus, increased number of tran-
sistors were used to reduce the number of clock cycles needed to perform one
operation.

At present, however, the situation is totally different. A typical micropro-
cessor of year 2001 contains more than 107 transistors, about 100 times more
than what is needed to implement a single floating-point multiplier.

The reason why we do not have a personal computers with 100 processors
on a chip is that computer architects have not yet find out a way to connect
these 100 processors to each other and also to the memory units, and at the
same time achieve a good performance for wide range of applications.

If we limit the range of the problems to solve, however, to make use of a
large number of arithmetic unit is almost trivial. This is the essential reason
why we can achieve a much higher speed with special-purpose designs. In fact,

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


GRAPE Project 15

the present GRAPE-6 chip implements six force calculation pipelines for Her-
mite scheme, and one predictor pipeline for the individual timestep algorithm,
resulting in around 400 arithmetic units on a chip. Here, 400 is larger than 100,
the number given above, mainly because we adopted 32-bit format for most of
the operations. This is another advantage of the specialized architecture. Since
one arithmetic unit is used only for one purpose, we can optimize each of the
arithmetic units in the pipeline for the accuracy required for the operation it
performs. In general-purpose computers, it would be hard to change the ac-
curacy depending on the operation. More importantly, it would be difficult to
achieve any speedup from such a change, since full-accuracy calculation can be
done in single cycle anyway.

If we have multiple pipeline processors sharing the same memory unit, we
can use them to calculate the forces on different processors in parallel. If we
have multiple pipelines with separate memory unit, we can use them either to
calculate the forces on different particles from the same particles, or to calculate
the forces from different particles to the same particles.

2.2. Barnes-Hut treecode

At least for some applications where the requirement for the accuracy of the
calculated gravitational force is not too stringent, we can apply approximate
methods such as the Barnes-Hut treecode (Barnes and Hut 1986) and achieve
the reduction of the calculation cost from O(N2 ) to O(N log N) per timestep.
Even so, calculation time usually limit the number of particles N, and therefore
the resolution and accuracy, of the simulations we can do. In cosmologies and
galactic dynamics, the accuracy required for the forces on particles is rather
low, simply because the overall accuracy of the result is limited by two-body
relaxation (Makino et al. 1990, Hernquist et al. 1993). To obtain more accurate
result, it is more important to increase the number of particles than to improve
the accuracy of the particle-particle force.

It turned out that we can also use the simple hardware as shown in figure
1 to accelerate the tree algorithm(Makino 1991, Athanassoula et al. 1998). In
the tree algorithm, we calculate the force on a particle by traversing the tree
structure.

To implement the tree traversal itself in hardware would be a challenging
task, but we can make use of the special-purpose machine of figure 1, by doing
the tree traversal on the host. Of course, if we do the tree traversal for each
particle, the calculation cost would not be reduced. However, we can slightly
change the algorithm and traverse the tree for a group of particles. The list of
nodes and particles constructed during the tree traversal can then be used to
calculate the force on all particles in the group. The tree structure itself provide
a good way of grouping particles. as we increase the size of the group, the
calculation cost of the host is reduced, but the calculation cost of the GRAPE
side increases since the length of the list becomes longer. Thus, there is an
optimum value for the size of the group.

This algorithm is quite powerful, resulting in the speedup of a factor of 10
to more than 100, depending on the required accuracy. The speedup is higher for
higher accuracy. We can even use high-order multipole expansions with GRAPE
hardware, using the pseudoparticle multipole method in which we express the

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


16 Makino

multipole expansions by means of a distribution of particles(Makino 1999, Kawai
and Makino 2001).

2.3. Individual timestep

For many astrophysical problems, the use of the individual timestep (Aarseth
1963) is essential to achieve high accuracy and reasonable calculation speed.
When the density contrast is high, there could be O(N) difference in the speed of
individual timestep algorithm and shared timestep algorithm. Thus, for GRAPE
hardware it is clearly necessary to support efficient implementation of individual
timestep algorithm.

This can be achieved with relatively small additional cost. The difference
between the force calculation in the individual timestep algorithm and that in
the shared timestep algorithm is that we need to predict the positions of particles
which exert the forces on particles in the present block. By adding the hardwired
pipeline to evaluate the predictor polynomial, we can let GRAPE hardware do
this prediction (Makino et al. 1997).

Thus, GRAPE hardware can handle two most widely used algorithms, the
individual timestep algorithm and the tree algorithm, and therefore can cover
most of astrophysical N-body simulations, except for those with very small num-
ber of particles. The wide range of scientific results obtained by using GRAPE
hardwares are described in a number of contributions to this proceedings. So
here I'll concentrate on the description of GRAPE-6 hardware, and possible
directions of the next generation machines.

3. GRAPE-6

GRAPE-6 is the successor of the GRAPE-4, which has achieved the peak speed
of 1 Tflops in 1995. The processor chip of GRAPE-4 implemented a single force
pipeline, which calculates the force between two particles in every three clock
cycles. GRAPE-4 chip was made using a 1J.1,m design rule and the number of
transistors was around 400K.

3.1. GRAPE-6 chip and board

For GRAPE-6 chip, we used a 0.25J.1,m design rule. As a result, we could use
aboout 7 million transistors in one chip to implement six pipelines each of which
can calculate one interaction per clock cycle. Also, the clock speed was increased
from 32 MHz of GRAPE-4 to 90 MHz. These two improvements combined give a
factor of 50 improvement in the speed of a chip. In other words, single GRAPE-6
chip offers the speed slightly faster than that of a single GRAPE-4 board with
48 GRAPE-4 chips.

A single GRAPE-6 chip integrates all basic functions of a GRAPE system,
including the interface to memory chips and interface to host. The memory
interface has the width of 72 bit (with ECC) and operates at 90MHz. It takes 8
clock cycles to read the data of one particle. Therefore, we use one pipeline as
eight virtual pipelines. One chip calculates the force on 48 particles in parallel.

Current configuration of GRAPE-6 consists of 1024 GRAPE-6 chips, for
the peak speed of 32 Tflops.

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


From
Host

To
Host

Figure 3. A GRAPE-6 board

GRAPE Project 17

Figure 3 shows the structure of single board. 32 GRAPE-6 chips, each with
its own memory unit, is connected to the external interface by one broadcast
network for data input and one reduction network for data output. GRAPE-6
board is designed so that different chips calculate the forces on the same particles,
but from different set of particles. Thus, it is necessary to have some hardware
to take summation of forces .calculated on 32 different chips. This hardware is
implemented using FPGA chips from Altera. For the output data format, we
used block floating point format with the exponent pre-specified. By this way,
we can obtain exactly the same result on machines with different number of
GRAPE-6 chips. Also, the use of the fixed-point format simplified the design of
the reduction network.

3.2. The network architecture

The overall architecture of GRAPE-6 is radically different from that of GRAPE-
4. The changes are introduced primarily to achieve a good performance with
available technology.

GRAPE-6 is around 50-100 times faster than GRAPE-4. This means that
even when we use O(N2 ) direct summation, the host computer and the com-
munication must be 10-100 times faster than what was used with GRAPE-4.
To improve the speed of the communication turned out to be the harder. For
GRAPE-4, we originally used DEC TURBOChannel and then moved to PCI.
Both offered the speed of around 100 MB/s. Thus, we need at least 1 GB/s, as
the throughput for the link between the host and GRAPE.

What we adopted as the interface for GRAPE-6 is still PCI, since practically
speaking there was no other choice. PCI is the standard I/O bus for PCs, which
at present offer r the best price-performance. The problem with PCs is that a
single PC is not fast enough, but right now they are so cheap that we can use
as many PCs as we like as the hosts for GRAPE-6.

Thus, the simplest way to construct a 100 Tflops GRAPE-6 is to construct
100 copies of small GRAPE-6s (32-chip, single-board system connected to a PC),
and connect all the host PCs with fast network (see figure 4).

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


18 Afakino

Figure 4. A simple parallel GRAPE system

Figure 5. A n x n GRAPE-6 configuration

One problem with this setup is that it is not well suited to run the simple
direct summation algorithm, though it works perfectly for the parallel version of
the tree algorithm. In the case of the direct summation, we have basically two
possibilities. One is let all host processors to have complete copies of the system.
Each processor calculates the force on its share of particles, and updates their
orbits. After that, they exchange the updated particles so that all processors
have all particles updated. In this case, the communication cost is O(N) and is
independent of the number of processors p, while calculation cost is O(N2 / p).

The other is let each processor to have only its share of particles. In order
to calculate the force on them, each processor still need to receive the data of
all other particles in some way. Thus, the communication cost is again O(N).

With GRAPE-6, we solved this problem by attaching an elaborate commu-
nication network to the side of the GRAPE hardware. Figure 5 shows the con-
ceptual view. The problem with the parallel system was that each GRAPE, and
therefore each host, needed to receive the data of all particles at each timestep.
GRAPEs have to receive the data, but they do not have to receive them from
their host. In figure 5, we organize 16 GRAPE boards into 4 x 4 grid, so that if
we regard 4 boards in one column as a whole, it can receive data from all four
hosts. We add an additional path, through which host i can broadcast the data

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


GRAPE Project 19

From
Host or

otherNB

To HOST

Network
Board

Figure 6. Actual GRAPE-6 network interface

to all GRAPE-6 boards in row i. We use this path to distribute the data from
all hosts to all GRAPE-6 boards. GRAPE-6 board with index ij is connected to
host i, but it can receive the data from host j as well. Each host can obtain the
forces on its particles, by broadcasting the data to GRAPEs in its column and
take summation of partial forces. In actual GRAPE-6 hardware, this summation
is performed by hardware.

At present, we have two clusters of GRAPE-6, each with 16 GRAPE-6
boards and 4 host computers. The lateral broadcast is actually done through a
tree-like network (see figure 6), so that we can use the machine as four indepen-
dent machines each with 4 boards, 2 hosts with 8 boards, and 4 hosts with 16
boards.

For larger configurations, it is possible to extend the 4 x 4 grid to 8 x 8 or
even larger grid. However, we plan to make more 4 x 4 clusters, and connect
the hosts by Gigabit Ethernet. We can still use this 4 clusters of 4 x 4 system
as single 8 x 8 system, by using half of the hosts as the network nodes.

In principle, we could use a system with 64 host-grape pairs as 8 x 8, by using
56 out of 64 hosts as network nodes. However, we did not take this approach
because the host computer, or actually the network interfaces and switches,
would be too costly.

3.3. Measured performance

Here, I present the performance of 4 x 4 single cluster GRAPE-6 for simple
individual timestep code and treecode. The host computer is a 1.7 GHz Intel P4
box with i850 chipset, under Linux Kernel version 2.2.17. All timings are done
with g++/gcc compilers version egcs-2.91.66.

Figure 8 shows the speed of the individual timestep algorithm in terms of
Tflops, as functions of the number of particles for clusters of different sizes. We
used the Plummer model in the standard unit as the initial condition. The
softening is 1/64 for all calculations..One can clearly see that the performance
scales quite well with the number of hosts and GRAPE boards.

With the network architecture discussed in the previous section, the host
computers need not exchange any particle data between them. However, still

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


20 Makmo

Figure 7. A 32-board GRAPE-6 system

Figure 8. Calculation speed for individual timestep algorithm

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


GRAPE Project

0.10
CD
+'en
<,
o
CD
en

:::>
CL
u 1

N

Figure 9. Calculation speed for treecode

21

they need to synchronize at the beginning of the each blockstep, and they also
need to compare the global minimum time and the local minimum time, to decide
if it can perform time integration of particles in its current block. At present,
the hosts communicate with MPICH/p4 software with TCPlIP on 100M bit fast
ethernet. The startup overhead of the communication is visible for very small
values of N. Of course, for systems with small core, the average number of
particles that share the same time becomes small, and communication overhead
becomes somewhat larger.

Figure 9 shows the performance of treecode. This treecode is a newly
written version based on orthogonal recursive multi-section, a generalization
of widely used ORB tree which allows a division to arbitrary number of domains
in one dimension, instead of allowing only bisection. In this particular timing
result, however, the result is the same as that for ORB.

The distribution of the particles is again the Plummer model. One can see
that the scaling is again pretty good. 4 processor calculation is 1.9 times faster
than 2 processor calculation. We can see that the 100 Mb ethernet is fast enough
for treecode with accelerated with GRAPE. Clearly, the performance bottleneck
is the speed of the host computer. Over the time GRAPE-6 will be used, we
expect the speed of the host computer by a large factor, which almost directly
will be reflected to the speed of the treecode.

4. Next generation?

Since GRAPE-6 is just finished (well, the full configuration is yet to be deliv-
ered), it would sounds too early to talk about the next machine. On the other
hand, if we want to have a faster machine in 5 to 6 years from now, we have to
start pretty soon since making a big machine is a time-consuming process.

The first question to ask is what kind of systems are primary target for
the full-size system. The second question would be what algorithm should we

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


22 Makino

use. Of course, to some extent what system we want to model depends on
what hardware we have. So, in the following we discuss primarily what kind of
hardware we can develop.

Let us start with predictions for the available technology. For GRAPE-4,
we have used 0.251-tm design rule. Assuming that we will get the sample chip
by 2003 or 2004, 0.131-tm or somewhat finer rules should be available. Assuming
the standard scaling, this offers a factor of 6 improvement in the gate density
(another 50% comes from improved wiring etc)and a factor of two improvement
in speed, and about the same power consumption. Actually, there were a few
problems with the physical design of GRAPE-6 chip, which limited its clock fre-
quency below 100 MHz. With appropriate physical design it should be possible
to achieve at least 300 MHz with the next generation chip. This, in theory, will
give us a chip with the speed of 600 Gflops, 20 times faster than GRAPE-6 chip.

This improvement is somewhat less than what was achieved with GRAPE-
6, which is a factor of 50 faster than GRAPE-4. This is simply because we
have used rather conservative technology with GRAPE-4, and fairly aggressive
one with GRAPE-6. Even so, by putting together 3,000 chips, we can reach 2
Petaflops. This speed will allow us to perform 1M particle simulation of thermal
evolution of globular clusters, for cosmological simulations, around 1010 particles
would be possible.

There are a number of design decisions at all levels of architecture which we
have to make correctly to complete a usable machine within the project .period
and budget. In the following, we'll briefly discuss a few of them.

The first question is how to interface the memory and pipelines. With
GRAPE-4, we can let 48 chips to share a single memory unit. With GRAPE-
6, we changed this design so that each chip has its memory. This change was
necessary to keep the number of pipelines visible from the software becoming
t09 large. With individual timestep algorithm, it is necessary that the hardware
gives acceptable performance when asked to calculate forces on relatively small
number of particles. GRAPE-4 needed the minimum of 96 particles to keep
all pipelines on board busy. A single GRAPE-6 chip needed 48 particles. A
GRAPE-6 board also needed 48 particles, since all chips on a board calculate
the forces on the same set of 48 particles. However, boards connected to different
hosts calculate the forces on different particles. Thus, a 64-board system needs
about 400 particles.

A GRAPE-7 (well, for the time being, I'd call the next machine GRAPE-7)
chip gives 20 times faster computing speed. Thus, to keep the visible number
of pipelines to be the same as GRAPE-6, we will need 20 times faster memory
interface, or the speed of about 15 GB/s compared to 720MB/s of GRAPE-6.
Even if we could make the interface work at 300MHz, we'll need around 500 pins
and minimum of 15 memory chips per processor chip, which will push up the
production cost by a fair factor.

Other possibilities are (a) to reduce the memory chips to two or so, to
achieve similar pin counts as GRAPE-6 or (b) integrate memory and processor to
a single chip. From pure technological point of view, option (b) is the best, since
we can achieve very high memory bandwidth without any problem. However,
SRAM (or even DRAM) cells which can be integrated with logic gates are large,
and it will be difficult to integrate more than a few Mbits. This size will be too

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


GRAPE Project 23

small for small systems with 10 or less chips. Thus, practically speaking, the
only option would be to use a small number of separate memory chips, as we
did with GRAPE-6. This will push the number of particles to around 200.

Next concern is the interface to the host. GRAPE-6 chip has one input
port and one output port, and both operate at 90MB/s. Currently, this speed
is not really a bottleneck, since calculations on the host take more time than
the communication. However, if the host is sufficiently fast, the communication
would become the bottleneck.

In the timescale of 5 years or so, we can expect the calculation speed of the
single CPU host to be improved by a factor of 5 to 10. Thus, though a factor of
10 improvement in the communication speed is not a real necessity, a factor of
5 or so would be desirable.

The question is what interface protocol we should use. Right now, PCI is
okay, since there is no real alternative. However, the speed of standard PCI is
limited to 133MB/s, and 64-bit, 66MHz PCI is not popular yet. Also, there are
several other potential alternatives like PCI-X, next-generation IEEE-1394, In-
finiband, 3GIO etc, etc. It would be perhaps better to not to choose a particular
interface now, but just to assigning a some level of speed to the host interface
of the single chip.

Most of the next-generation I/O standards offers the speed in the range of
500MB/s to 1GB/s. In order to match to this speed with a single-chip system,
a single chip must have the I/O port with the speed of 500MB/s or so." With
currently available technology, it is not too difficult to achieve this level of speed.
The simplest is to use the LVDS signal level standard, which works easily with
1GHz or higher clock. With 1.2 GHz clock, 600 MB/s needs only 4 or 5 signal
pairs, or just 10 wires. With such a high-speed transfer, however, error detection
and correction will become necessity.

The next thing we need to consider is the way we assemble hundreds or
thousands of chips to a single machine. Our "traditional" approach has been to
design a board with fairly large number of chips (16-48), and assemble relatively
small number of these boards to achieve massively parallel system. The implicit
assumption we took for granted is that the number of host computers (or the
I/O port of the host) is much smaller than the number of the boards even if
we design large boards. In other words, a single-CPU host is significantly more
expensive than a board with, say, 32 chips.

This assumption is however no longer true. Now we can buy an Intel P4 box
with the theoretical peak floating point speed of 4 Gflops for around 1000 USD,
and no matter how much money we pay, we cannot get any single-processor
system which is faster than this box by a factor of two. Thus, if the connection
between hosts is fast enough, we can use a rather small board with 4-8 chips
attached to host. It may be possible to design the board as standard PCI(-X)
card, which leaves the work of designing the enclosure and power supply system
unnecessary. Also, small boards without complex interconnection network makes
the development process simpler.

To summarize, the overall design of GRAPE-7 will be rather different from
that of GRAPE-6. The basic building block will be a set of an inexpensive
frontend and a small board with around 8 chips, with the peak speed of 5 Tflops.
A petaflops system is constructed as 256-node Beowulf-type cluster, connected

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979


24 Makino

by Gigabit or faster network. Faster system can be constructed by adding more
nodes. The development cost for a petaflops system will be around 3-4 M USD,
with additional cost of around 1.5 M USD per petaflops for larger machine.

A potential problem with this architecture is that the number of particles for
which the forces must be calculated in parallel would be too large for petaflops
or larger configuration, since it would reach 3,000 for 256-node system. This,
however, is probably not a serious limitation. It would be unlikely to use the
whole machine for just one simulation for very long time. Therefore, for most of
production runs, the machine will be divided into 4 or 16 small pieces, for which
the required degree of parallelism is factor 2 or 4 smaller.

5. Summary

I overviewed the present state of GRAPE-6, highlighting the performance of
parallel-host configurations on both the individual-timestep direct summation
code and treecode. For both application, parallel-host system proved to be quite
effective.

We also present a conceptual study for the design of GRAPE-7, a multi-
petaflops next-generation GRAPE. It will further extend the concept of parallel-
host architecture, by putting most of the communication network from GRAPE
side to host side. This change, in theory, allows us a fast development of the
machine and more flexible use, with additional possibility of improving the per-
formance of overall system by upgrading the host computers only.

References

Aarseth, S. J. 1963, MNRAS, 126 223

Athanassoula E., Bosma A., Lambert J. C., and Makino J. 1998, MNRAS, 293
369

Barnes J. and Hut P. 1986, Nature, 324 446

Hernquist L., Hut P., and Makino J. 1993, ApJ, 411 L53

Kawai A. and Makino J. 2001, ApJ,550 L143

Makino J. 1991, PASJ, 43 6~1

Makino J. 1999, Journal of Computational Physics, 151 910

Makino J., Ito T., and Ebisuzaki T. 1990, PASJ, 42 717

Makino J. and Taiji M. 1998, Scientific Simulations with Special-Purpose Com-
puters - The GRAPE Systems, John Wiley and Sons, Chichester.

Makino J., Taiji M., Ebisuzaki T., and Sugimoto D. 1997, ApJ, 480 432

Sugimoto D., Chikada Y., Makino J., Ito T., Ebisuzaki T., and Umemura M.
1990, Nature, 345, 33

https://doi.org/10.1017/S0074180900206979 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900206979

