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ABSTRACT 

A brief discussion is given of the basic features of de Sit ter 's theory. The 
main advantage of his theory is that it contains no small divisors, thanks to 
the use of elliptic ra ther than circular intermediate orbits in the first approxi­
mation. A 50-year extension of the satellite observations available to de Sitter 
makes it desirable to rederive the elements of his intermediate orbi ts , whose 
perijoves have a common re t rograde motion. Fur thermore , the theory suffers 
from a convergence problem, which can be avoided by reformulating the theory 
in t e rms of canonical var iables , a task that is begun he re . We adopt a formu­
lation in Po inca r l ' s canonical relative coordinates ra ther than, as customary, 
in ordinary relative coordinates or in the Jacobian canonical coordinates. By 
means of the generalized Newcomb operators devised by Izsak, the disturbing 
function is expanded in a form that is very convenient for use with the modified 
Delaunay variables , G, L - G, H - G, I + w + £1, I, and ft and their associated 
Poincare var iables . 

1. INTRODUCTION 

In a paper entitled "Outlines of a New Mathematical Theory of Jupi ter ' s Satel­
l i t e s , " de Sitter (1918) introduced an entirely new approach to the problem of 
the motions of the Galilean satell i tes (Io, Europa, Ganymede, and Callisto). 
In the many ea r l i e r t reatments of this problem, whose difficulty a r i ses from 
the strong mutual at tractions, Wargentin, Lagrange, Laplace, Souillart, 
Sampson, and others adopted c i rcular and coplanar intermediate orbits as a 
first approximation. The motions of the three inner satell i tes are charac ter ­
ized by an exact commensurability among their mean motions n^, n£, and n3, 

n 1 - 3 n 2 + 2n3 = 0 , (1) 

and the near-commensurabi l i t ies 

nx = 2n2 + K = 4n„ + 3/c , (2) 
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with 

K = n r 2 n 2 = n 2 - 2 n 3 ^ n 3 . 

The f irst relation resul ts in the famous Laplace libration condition on the mean 
longitudes X.̂ , X-2, and \ g , 

\ 1 - 3X2 + 2X3 = 180° + 9 , (3) 

where the libration argument 0 has a period of about 6 years and nearly zero 
amplitude. Equation (2) i s , in a sense, more troublesome since it gives r i se 
to small divisors and therefore slowly convergent ser ies for the mean longi­
tudes, de Sitter took advantage of the fact that, in a coordinate system having 
a prograde rotation with the angular velocity K, the satell i tes will have mean 
motions Cj = nj - K, i = 1 ,2 ,3 ,4 , the first three of which satisfy the relations 

c 1 - 3c2 + 2c 3 = 0 (4) 

and 

c1 = 2c 2 = 4c 3 . (5) 

Now, (4) corresponds exactly to (1), while in (5), the near-commensurabi l i t ies 
expressed by (2) are turned into exact ones. The c i rcular orbits mentioned 
are periodic orbits (Poincare 's f irst kind) for the special initial conditions 
.imposed by (1) and (2). de Sitter discovered that a set of elliptic periodic 
orbits (Poincare 's second kind) i s s imilarly associated with (4) and (5). The 
prograde rotation is imparted by giving the four perijoves a common r e t r o ­
grade motion, -K , in the fixed coordinate system, de Sitter derived numerical 
values of the elements of these so-called variation orbits by imposing the 
necessary periodicit ies on the equations of motion, with the disturbing function 
limited to i ts "secular" and "cr i t ica l" pa r t s . The resulting part icular solution 
of the problem thus limited turns into a general solution through the addition of 
the purely periodic "var ia t ions ," derived by the Lagrangian method of varying 
the arbi t rary constants. Finally, the remainder of the disturbing function 
gives r i s e to periodic t e r m s that de Sitter simply called "per turbat ions ," also 
derived by means of the Lagrangian method. 

The greatest advantage of de Si t ter 's approach is that no small divisors 
appear at any stage of the solution. Fur thermore , the elliptic intermediar ies , 
plus the relatively simple variat ions, include not only the troublesome long-
period t e r m s , which in the ea r l i e r theories contain the small divisors, but also 
the short-period "great inequalities" and the libration. However, de Sitter was 
disappointed to find that, owing to the presence of an infinite secular determin­
ant, exponential t e r m s of the type e^ exp (|3t) + e2 exp (-|3t) appeared in the 
expressions for the perturbations in longitude, and although «j and«2 are very 
small, this t e rm will ultimately cause divergence. In his Darwin Lecture, 
de Sitter (1931) discussed this problem and announced the future publication of 
the complete expressions for the perturbations beyond the first o rder . Prob­
ably because of a subsequent s ickness that caused his death in 1934, these 
expressions were not completed; at least they never appeared in print. This 
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incompleteness of the theory and the lack of convenient tables for ephemeris 
calculation, such as those published by Sampson (1910), have prevented p r a c ­
tical applications of the theory, a very unfortunate circumstance since recent 
resul ts (Aksnes and Franklin, 1975) indicate that de Si t ter 's theory, as far as 
it can be applied, is at least as accurate as that due to Sampson, although both 
are now in need of revision (Lieske, 1975; Aksnes and Franklin, 1976). 

The reasons for undertaking a new formulation of de Si t ter 's theory can be 
summarized as follows. F i r s t , it i s desirable to derive new values for the 
elements of the variation orbits for a current epoch, on the basis of an almost 
50-year extension of the satellite observations available to de Sitter. Of 
part icular interest a re the ser ies of plates of the Galilean satell i tes taken by 
D. Pascu with the Leander-McCormick refractor during the last decade and 
the highly accurate photometric observations of the mutual satellite events in 
1973. Even more accurate observations, in the form of range or range-ra te 
data on the satel l i tes , can be expected in the near future from an on-going 
experiment with the Arecibo radio telescope. It is vital that the orbital e le ­
ments be as precise as possible since they enter the theory in numerical form 
and cannot be changed subsequently without redoing the theory. Second, 
de Sitter claimed that the afore-mentioned exponential t e rms can be avoided by 
using Delaunay's or von Zeipel 's perturbation method in t e rms of canonical 
elements, instead of the Lagrangian method in t e rms of Kepler e lements . 
Rather than adopting either of the two first-mentioned methods, we propose to 
use the more elegant canonical method due to Hori (1966), which is based on 
Lie se r i e s . A canonical formulation has the added advantage of simplifying 
the equations of motion and the construction of the theory, provided the d i s ­
turbing function is expanded in an appropriate way. 

Thus, the goal of our undertaking is not to revise de Si t ter 's theory in its 
original form, but to construct a new theory that will incorporate only the most 
essential features of the old one. In the two remaining sections, we present 
the first part of this work on the equations of motion and the expansion of the 
disturbing function, to be followed by la ter par ts on the derivation of the var ia ­
tion orbi ts , the variat ions, and the perturbations, in de Si t ter 's terminology. 

2. THE EQUATIONS OF MOTION 

To apply Hori 's perturbation method, we need a canonical formulation of 
the equations of motion with a common Hamiltonian. A formulation of this 
kind due to Jacobi has been widely used in investigations of the three-body 
problem, and Marsden (1964) adopted it in his thesis on the short-period t e rms 
in the motions of the Galilean satel l i tes . Jacobi 's method amounts to choosing 
a different origin for the coordinates of each body, such that the second body 
is refer red to the first and each succeeding body is refer red to the center of 
mass of all the preceding ones. Unfortunately, the use of the Jacobian coor­
dinates complicates the expansion of the disturbing function considerably. 
There is a simpler canonical formulation* due to Poincare (1897) and advocated 
by Charl ier (1902) for use on the three^body problem, although they did not 
attempt to apply the method. In the following adaptation of the method to the 
problem at hand, we shall use a notation s imilar to that introduced by Marsden. 

* 
I am indebted to Dr. Hori for pointing out the existence of this formulation. 
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192 K. ASKNES 

Let mp (p = 0 , 1 , . . . ,n) be the masses and £„, r]p , and Lp be the cartesian 
coordinates, refer red to the center of mass of tne system, of n + 1 interacting 
bodies. We take IIIQ (Jupiter) to be the central mass to which we wish to refer 
the coordinates x p , y p , z p (p = 1 , 2 , . . . ,n) of the remaining masses (satellites 
plus perturbing bodies): 

x
P

 = V^o ' y
P

 = , ? p - T , o ' z
P

 = VCo • <6> 
It i s well known that if Xp = mpXp, Yp = mpyp , and Z p = mpZp are taken as the 
momenta conjugate to the coordinates x p , yp, and Zp, only a semi-canonical 
formulation is achieved in which each body has i ts own Hamiltonian. If, instead, 
we define the momenta by 

X =22L Y = £ T z =!£- (7) 
P 9xp ' P 9yp ' P 9 z

p 

where, in t e rms of the inert ial velocities, 

n 

T = i y * m (|2 +h2 + l2) , (8) 
2 / J qVbq 'q *q' > w 

q=0 

we have Hamilton's canonical equations, dX „_, dY „_ dZ Q_, p _ 9F p _ 9F p _ 8F 
dt 9x ' ctt 9y ' dt dz 

P P P 

% 9F_ ^ £ 9F_ ^ £ 9F_ 
dt " 9X ' dt " 8Y ' dt " 9Z 

P P I 

P = l , 2 , 

(9) 
where the Hamiltonian F represents (the negative of) the total energy of the 
system, 

n q-1 
F = - T + k2 V V ^!l } ( 1 0 ) 

q=l 7i qr 

2 2 2 2 ? 
k being the constant of gravitation and r q r = (Xq - x r ) + ( y q - y r ) + ( Z q - z r ) . 
In o rder to derive explicit expressions for the momenta from (7), we must 
express the kinetic energy T in t e rms of the relative velocit ies. In deriving 
the transformation from the inertial frame to the relative frame, we consider 
only the x components, with the understanding that the y and z components 
transform in the same way. By means of (6) and the relation 

q=0 

m £ = 0 
Q q 

we readily deduce that 
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n 
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*0 = " M 2^ 
q=l 

m q X q ' 

! = x - ^ r 7 n i x , p p M ' * q q ' 
q= i 

p = l , 2 , . . . , n , (11) 

where M is the total mass of the system. If we differentiate the last two equa­
tions, and the corresponding ones for the r\ and t, components, with respect to 
t and substitute the resul t in (8), we find, after some straightforward manipula­
tion, 

1 V"» ,-2 _,_ -2 ^ -2. 1 

q=l 
qv q 2M 

vSm^)j=i[S 

m x 1 + 
q q) , _ 

, q= l / \ q = l 
SVq) 

• 2 • 2 -2 
m ( M - m )(x +y + z ) 

qv q q q q 

^ ^ . . . 
" 2 2-1 2 ^ m q m r ( x q X r + y q y r + V r > 

From (7), (11), and (12), it then follows that 

V 
m 

m i — f̂-p p M m x = m | 
q q p p 

p = l , 2 , 

(12) 

(13) 

i . e . , in Poincare ' s canonical formulation, the momenta conjugate to the r e l a ­
tive coordinates are related to the inert ial velocities in the same way that they 
are related to the relative velocities in the semicanonical formulation. If we 
again make use of (6) and the relation 

mo^o = - 7 m k 
aM q q 

n 

Z ^ X P 
q=l q=l 

the desired form of T becomes 

(X2 + Y^ + Z2) + -L 
q q' m f 

where 

-J_ = _ L + _ L p = j o 
m* m p m 0 

P 

(14) 

(15) 
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If m 0 is much larger than mp (p = 1 , 2 , . . . ,n) or if the lat ter masses do not 
come very close to each other, we can obtain an approximate solution by 
neglecting the last t e rm in (14) and by limiting the potential to its main part 
with r = 0 in (10). The result ing intermediate orbits a re thus obtained with a 
Hamiltonian, 

n r m . 
F n = V * - • — • (X2 + Y2 + Z2) + p 2 — 

0 t-j 2m*v q q q; Hq r 
q = l L q 1 

and 

X 

P m* 
P 

1 9F 0 
* 3v P 

m * 8x P 3 

(16) 

2 2 2 2 2 2 
wherep q is a constant to be suitably chosen, and r q = TQQ = XQ + y„ + z„. With 
F = F 0 , it follows from (9) that 

(17) 

i . e . , elliptic motion. Hence, there exists an energy integral, 

(18) 

where a is the semimajor axis, by means of which (16) can be written as 

P X s , P 2 m * 
0 2a„ 

q=l 

It would seem natural to put p p = k (HIQ + mp) such that, in view of (10), (15), 
and (16), Fo would absorb the entire 1/rq part of the potential. The mean 
motion n p would then be related to a p precisely as for two-body motion, viz. 

n ^ = p ^ a ~ 3 / 2 . (20) 
P P 

However, to satisfy the periodicity requirements of the variation orbits, it is 
necessary to take 

P 2 ( l - ! x p ) = k 2 (m 0 + m p ) = k ' 2
m 0 m p 

m 
(21) 

where (j~ (de Sitter, 1918) is a small constant to be determined together with 
the elements of the variation orbi ts . The perturbing Hamiltonian, F\ = F - F Q , 
then becomes 

ri = - I > 
q=i 

* 

„ m 

q r q r 
H H q 

n q-1 

q=2 r = l 

".2 
k m m 
— ^ - ^ - m 7 ( X q X r + YqYr+Vr) 

qr 0 
(22) 
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It will be seen that F / m n = ( F 0 + F ^ / n i p can be regarded as the p t n body's 
Hamiltonian (we can neglect all t e rms not dependent on the elements of this 
body) to which corresponds a set of canonical var iables; e . g . , the Delaunay set 

Lp = Pp^ip , Gp = L p f / l - e p , Hp = Gp cos I p , i p , up, and fip. Here, e p is the 
eccentricity, I p the inclination, i p the mean anomaly, wp the argument of the 
pericenter, and ftp the longitude of the ascending node. It follows that the com­
bined, modified Delaunay set, 

\L = nT(3 TTT , G = L * / l - e ? , H =G„ cos I 1*6 VaT , G = L JT^( 
P P P ' P P T 

w._ 

P P P Vl,2( 
p p p 

obeys the canonical equations, 
(23) 

' dL Q_ dG „_, dH ,._, p _ 9F p _ 9F p _ 9F 
|dt ae » dt ~ aw ' dt an 

p p p 
, d * _ p = 9F_ % = 9 F _ % = 9 F . 
xdt 9L > dt 9G ' dt 9H 

p = l , 2 , . . . , n , 

(24) 
P 

with the common Hamiltonian 

F = F 0 + F 1 , (25) 

given by (19) and (22). 

By the principle of variation of arbi t rary constants, the elliptic formulas 
relating the Delaunay variables to the positions and velocities for unperturbed 
motion also hold for perturbed motion. However, in the lat ter case, we have 
to make an important distinction. Whereas the position x p in the perturbed 
intermediary must be equal to the true relative position, say xp t , 

Xpt = Xp ' P = l , 2 , . . . , n , (26) 

the same will not be true of the velocities i p and Xpt- This can be seen as 
follows. From (13), in which i p and xq must now be replaced by i p t and iq t , 
we have that i q t = i p t - Xp/mp + Xq/mq. If this expression is substituted 
back into (13), there resul ts 

M 
— X = Mx . m p p pt 

or, by means of (17), 

X 
Xpt 

i V ^ i n 
= - £ • + — > X = x + > — S i , p = 1 , 2 , . . . , n . (27) 

m m 0 L^l q P Z - f m
Q Q ' ' ' ' ' q = l 

q^p 

The intermediaries are therefore not osculating orbi ts , but this mat te rs very 
little. The only difference from the use of osculating orbits is that, at the very 
end, if we wish to compute the t rue relative velocities (which are usually not 
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needed anyway), they must be obtained from (27). The velocity-dependent 
indirect te rm under the double summation sign in (22) can be expanded, as we 
shall see, perhaps even more easily than can the corresponding indirect te rm 
in de Sit ter 's semicanonical formulation, and the direct t e rms are identical, 
apart from an extra mass factor in (22). Note that, while the present formu­
lation is closely related to de Sit ter 's formulation, the two do not lead to iden­
tical in termediar ies . 

To take advantage of the fact that the eccentrici t ies and inclinations are 
very small , we shall introduce the modified Delaunay set 

iG =m*S %/TTT^) , M =m*8 Va~(l --ill - e 2 ) , N =G (cosI - 1)) 
1 P p p r P P ' P p p P " P P P P I 

p P p p n 
(28) 

but since ep and Ip may pass through zero, it is convenient also to make use of 
the following set, in which the conjugate pai rs ( M p , i p ) and(Np,np) a re replaced 
by the associated Poincare variables (pp, qp) and (Up, Vp) given by 

p p = V2M^ cos 4 p , 

qp = V2M- p s in i p , 

u = V-2N_ cos Q p P p 

v = -V -2N sin £2 , 
P P P) 

(29) 

Finally, closely related to the set (28) is the Hill set, 

if +< + « 

N 

U 
(30) 

where fp is the t rue anomaly. The Hill variables may prove useful for obtain­
ing the perturbations in rp and i p which are of interest if range and range-rate 
observations of the satell i tes become available. The canonical equations for 
these three sets of variables can be written down immediately from (24) by 
replacing the conjugate pa i rs of variables there by the appropriate new ones. 
The sets (28) and (29) are part icularly convenient if we expand the disturbing 
function in powers of the auxiliary eccentr i t ies « p and the auxiliary inclinations 
Vp, defined by, 

le = V2M / G 1 P P P 
=V2(l-e2)"1 / 2-2 = e + 0(4) 

fv =V-2N /G n P P P 
2 sin ^ p = I + 0(lp) 

(31) 

ra ther than, as usual, in powers of ep and Ip (or sin Ip), whose derivatives 
with respect to Gp, M p , Np, and the Poincare variables are ra ther cumber­
some, de Sitter pointed out the advantages of the set (28) over the noncanonical 
Kepler var iables , which he introduced only to be able to make easy use of the 
existing expansions of the disturbing function in powers of ep and Ip. The new 
expansion proposed here is greatly facilitated today by utilizing an algebra 
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program on an electronic computer. In place of (28), Marsden (1964) adopted 
the canonical set 

(L = m*S Va~ , M = L (-Jl - e 2 - 1) , N = L Jl - e2(cos I n -1)} 
j P P P P ' P P\T P / ' P PI Pv P '( 

^ P P P P ' P P P ' P (32) 

which has the advantage that it contains only one "fast" variable, \ p . However, 
corresponding to (31), we now have 

172 

. ' o 1/4 I (33) 

and e p in the last equation introduces a considerable complication, since sin 
Ip/2 occurs quite naturally by itself in the disturbing function. We note that 
with the von Zeipel method used by Marsden, it is difficult to handle more than 
one fast variable at once, but this i s not so with Hori 's method. 

In the remainder of this section, we introduce a very convenient formula­
tion due to Marsden. Since Jupi te r ' s (mo's) oblateness has a pronounced 
effect on the Galilean satel l i tes (mi,m2,m3,1114), it i s necessary to add to F^ 
the potential 

4 r 1 
«, m . m 

J2R0 -3 P2<sin V + J4R0 - ? P4<sin V 
r r 

L q q J 

F u = " k 2 m o E 
q=l 

(34) 

where RQ is the equatorial radius and J2 and J4 are the dynamical form factors 
of Jupiter , cj>q i s the latitude of mq on Jup i te r ' s equator, and P2 and P4 a r e the 
second and fourth Legendre polynomials. Note that in this potential, unlike in 
the corresponding one in de Si t ter 's formulation, there i s no interaction 
between the oblateness and the indirect part of F\. There i s a converse effect 
of the satellites on the motion of Jupi ter ' s equator. This can be described by 
allowing the index p to take on also the value zero in the expressions (28) for 
Np and Qp, defining n o and Io to be, respectively, the longitude of the ascend­
ing node and inclination of Jupi te r ' s equator on the fixed reference plane, eo to 
be zero, and 

GQ = CnQ = constant (35) 

to be the angular momentum of Jupiter about i ts polar axis, no being the 
angular velocity of rotation and C the moment of inert ia about this axis. With 
these definitions, putting 

a = sin IQ sin n f l , (3 = -s in Ifl cos n , y = cos IQ , (36) 

sin <|>q in (34) can be written 

sin <\>q = Y- (axq + (3yq + yzq) . (37) 
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Finally, if we define m 5 to be the Sun, i ts attraction can be included by 
taking n = 5 in (19) and (22). It i s sufficient to adopt a fixed ellipse for the Sun's 
motion about Jupiter , such that for p = 5 in (32) all the variables are constants, 
except for \ s , which is a l inear function of t ime. (The use of the set (28) would 
lead to two time-dependent var iables , £5 and \ 5 . ) It follows that we can 
remove the t ime from the Hamiltonian by including the canonical pair (L5, X5) 
(provided that, as far as the Sun is concerned, F i is regarded as a function of 
L5, Xs, W5, and £25). Our problem, then, has altogether 14 degrees of f ree­
dom — three for each of the satel l i tes , one for Jupi ter ' s equator, and one for 
the Sun. The attractions of the remaining planets could, of course, be included 
in the same way, but according to de Sitter, even the perturbations by Saturn 
are entirely negligible to the o rder of accuracy that he aimed for, i. e . , 10"6 

radians in the longitudes of the satel l i tes . 

3. EXPANSION OF THE DISTURBING FUNCTION 

Following de Sitter, we shall take Jupi te r ' s equator at a certain epoch, e .g . 
1950. 0, as our reference plane. This choice makes the inclinations of the 
satellite orbits less than about a tenth of that of the Sun's orbit, I5 ~ 3° . For 
simplicity, we shall take mo as the unit of m a s s and (n2 - ri^)' ~ 1.1222 
ephemeris days as the unit of t ime. We also put k = 1 (k will denote a dummy 
index in what follows), which leads to a unit of length of about 0.0070854 a . u . , 
being very close to the mean distance of the third satel l i te . 

The approximate values (de Sitter, 1918) of the various small parameters 
are given in Table I, where 

Table I. Collection of small pa ramete r s . 

p 

1 

2 

3 

4 

m p 

4 X 1 0 - 5 

| x i o " 5 

8 X 1 0 " 5 

| x i o - 5 

J 2 p 

| x i o " 3 

I x i o " 3 

fxio-4 

2 X 1 0 " 5 

- J 4 p 

I X I O " 6 

§x'°-7 

1 X 1 0 " 8 

1 X 1 0 - 9 

e p 

4 X 1 0 - 3 

9 X 1 0 - 3 

2 X 1 0 - 3 

f X 1 0 " 2 

h 
6 X 1 0 - 4 

8 X 1 0 - 3 

3 X 1 0 - 3 

4 X 1 0 - 3 

J i p = J i R 0 / a
P

 ; i = 2 ' 4 ; P = 1 , 2 , 3 , 4 , (38) 

with 

a
P = aP ( 1 - ep ) = iJir > v ( 1 _ V ( 1 + ,V ' (39) 

m p 

which relations follow from (15), (21), and (28). The values for ep include 
both the free and the forced eccentr ici t ies , and we note that the inclinations 
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enter the disturbing function only in the combination I J q (p, q = 1, 2 ,3 ,4 ) . If 
we regard ej> and I p as quantities of the first order , then m p and J2p are 
roughly of the second order , and J4p, of the third order . According to de Sitter, 
it is necessary to develop the principal t e rms of F i + F u , as given by (22) and 
(34), to the eighth order (sixth order in de Si t ter 's case, since our disturbing 
function contains an extra m a s s factor) to achieve an accuracy of 10~6 in the 
longitudes. Hence, we must include t e r m s of the order m p t imes 

m e , m e l , J 0 e , J 0 e l , J . e , J . e l . (40) 
P P P P P 2 P P 2 P P P 4 p p ' 4 p p p v / 

Since mjj/rjS = 2 , 1 X 10~3 is comparable to m p / r g (p = 1,2, 3,4), the t e rms in 
(22) that involve the Sun and one satellite and those that involve pairs of sa te l ­
lites will give r i se to perturbations of roughly the same order , but the former 
t e rms can be expanded much more easily on account of the smallness of 
l / r 5 * 1 . 4X10-3 . 

In the subsequent derivations, we need consider only one pair of bodies. 
To ease the notation, we shall drop the subscripts for the body numbers and 
attach pr imes to the symbols relating to the outer body, i . e . , a < a'; the d i s ­
tance between the bodies will be denoted by A. For the expansion of the 
indirect part of F\, we have the following formulas for elliptic motion, 

x = ( 3 a - 1 / 2 [ -P : s i n f + P~(e + cos f)] , 

-1 /2 
y = pa ' [ -P2 sin f + P2(e + cos f)] , (41) 

- 1 / 2 
z = (3a ' [ -P3 sin f + P3(e + cos f)] , 

2 2 
P , = c cos w + s cos ((o - 2U) , 

2 2 
P„ = c sin CJ - s sin (CJ - 2U) , (42) 
P„ = 2sc sin (<3 - ft) , 

and Pfc (k = 1,2, 3) can be obtained from the expressions for P^ by first replac­
ing "cos" by "sin" and "sin" by "cos" and then changing the signs of the argu­
ments. In (42), we have introduced the abbreviations 

I v I 
s = sin £ = •* , c = cos ^ • (43) 

In Cayley's tables (Cayley, 1861), we find the following expansions to the 
fourth order in e, 

00 

sin f = \ ^ &t sin i! = (l - | e 2 + - ^ e 4 ) sin i + (e - | e 3 ) sin 2i 

i = l 

+ ( | e 2 - | | | e 4 ) sin M + | e 3 sin 4i+ | | | e 4 sin U + 0(e5) , 

where 
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oo 

^ •> / 9 2 25 4\ I 4 3 \ 
e +cos f = y b. cos U = (,l--«e +-Tqoe ) c o s ^ + \ e - ' Q e / c o s 2-̂  

i = l 

+ ( | e 2 - | | | e 4 ) cos 31 + | e 3 cos U + | | | e 4 c o s 5i +0(e5) , 

(44) 
where the powers of e may easily be replaced by powers of e by means of (31). 
By using (15), (17), (21), (39), and (41), the indirect t e rm inside the double 
summation sign in (22) may now be written 

oo oo 3 

-(XX' + YY' + ZZ') = m m ' ( w ' f f a ' ) " 1 2 • Y j Y j J K i 

i=-oo j = l k=l 

X [(PkP^a.aj - P j ^ - b j b j ) cos (II + j i ' ) 

+ ( P k
P

k ~ a i b j + P k
p k ajbi> s i n (« + V')] , (45) 

where it is understood that aj = -a_i (and therefore ao = 0), bj = b_j, and 
bo = 0. Now, 

3 

Z 2 2 
P k P k = c c ' c o s & ~ " ' ) + 2 s s ' c c ' c o s (w - w' - n + &') 

k=l 

+ s s ' cos (w - i o ' - 2 f i + 2 n ' ) + s c ' c o s ( u + w ' - 2 n ) 

+ s ' c cos (w + w ' - 2 n ' ) - 2 s s ' c c ' c o s (c3 + o3' - f t - f t ' ) , (46) 

and by changing the signs of the last three t e r m s , this expression turns into 
that for 2 > k P k " , while £ P k Pk = ( £ P k p k ) > f r o m w h i c h 12Pkpk" obtains, of 
course, by interchanging the primed and unprimed quantities. Substituting 
these resul ts in (45), we find after a considerable amount of calculation, 

00 

-(XX' + YY' + ZZ') = m m ' ( v v ' a a ' ) " 1 ' 2 \ ~ * I^+bj) 

i , j = -oo 

X ft a'. - b'.) { c 2 c ' 2 cos (ii + j i ' +co - w') + 2 s s ' c c ' cos (ii + j i ' +o3- w' -f i + « ' ) 

+ s 2 s ' 2 c o s ( i i + j i ' + co-o3'-2fi + 2fi')} + (a'. + b'.) { s 2 c ' 2 c o s ( i i + j i ' 

2 2 
+ c3+cj ' -2n) + s ' c cos (ii + j i ' +53+c3'-2n') - 2 s s ' c c ' cos (ii + j i ' 

+ o3 + o3'-n -Q')}] (47) 

As a part ial check, we observe that the d'Alembert rule is obeyed since the 
lowest powers of e, e ' , s, and s ' occuring in the coefficients a re the same as 
the respective multiples of i , i ' , n , and Q'. As was to be expected, the 
indirect t e rm has no secular part since there are not t e rms with i = j = 0. We 
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shall la ter show that the indirect t e rm can be conveniently combined with the 
direct t e rm whose expansion we take up next. 

We have that 

A - 1 = (r 2 + r ' 2 - 2 r r ' cos i/)f l / 2 , (48) 

where ip is the angle between the radius vectors r and r ' . We note that the 
expression (46) is the dot-product of the unit vectors directed along the apses 
of the two orbi ts , so that we may obtain cos 4> from the same expression 
merely by replacing ST and co' by the t rue longitudes v = w + f and v' = 3 ' + f', 
respectively: 

C O S * = E P k P k ) | C V v ' <49> 

Since we are forced to t rea t the motions of all the bodies simultaneously, the 
usual expansions of A - 1 in powers of the mutual inclinations of pai rs of bodies 
cannot be used here . For the expansion in s and s ' , we proceed as follows, 
aided by a novel t reatment of the planetary disturbing function by Yuasa and 
Hori (1975). For this expansion it i s sufficient to consider c i rcular orbi ts , in 
which case we denote A by Ao- Then, in view of (46), (48), and (49), 

A" 1 = [a2 + a'2 - 2aa ' {cos (X-X') + 6}]~ , (50) 

where 6 is a quantity of the order s s ' given by 

6 = ( c 2 c ' 2 - 1) cos (X-X') + 2 s s ' c c ' cos ( X - X ' - « + « ' ) 

+ s 2 s ' 2 cos ( X - X / - 2 f l + 2 n ' ) + s 2 c ' 2 cos (X + X'-2Q) 

+ s ' 2 c 2 cos (X + \ ' - 2 n ' ) - 2 s s ' c c ' cos (X + X ' - f i - f t ' ) . (51) 

Yuasa and Hori define 6 slightly differently such that cos (X-X') in (50) will 
contain an additional factor ( c c ' - s s ' ) ^ . They found that the convergence of 
the expansion is thereby improved with the remarkable resul t that it even holds 
for intersecting orbi ts . However, since convergence is no problem in our case 
because s and s ' a re very small , and in order to introduce the familiar Laplace 
coefficients, we have replaced this factor by unity. By expanding the r ight-
hand side of (50) by means of the binomial theorem, we find 

oo oo 

A ^ = ^ ^ (26) i a ' " 1 b j i ) exp[V^Tj (X-X' ) ] , (52) 

i = 0 j=-oo 

where the b p ' s a re the coefficients in the expansion 

("Y2) (-a)1 [1 + a2 - 2a cos (X-X' ) f * = b ^ + Y ^ 2 b ^ cos(jX-jX') 

j=-00 

bjx> exp [V^l j(X-X')] (53) 
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with a = a/a' < 1 and where b p = blf depends on a only (bj ' here would be 
written 

1 / - l /2 \ i , .(j) 
2 ^ i / ( _ a ) b l /2+i 

in the usual notation for the Laplace coefficients). In our problem we need con­
sider values of i only up to two, and we may then readily perform the expansion 

(26)1 = c0()0() + 2£s 3 g , 4
 CW ^ ( k ^ + I^X' + kgQ + k ^ ' ) 

I I I I ' 
= 2 > 3

 S ' 4 c { c
i )

k k k exp[vri(k1X + k2V + k3n+k4n') | ,(54) 
1 z (J 1 

where the first expression includes a finite number of terms for all the occur-
ing combinations of the k's with ki > 0. In the last sum we include for each of 
these terms (except when all the k's are zero) an additional term with coeffi­
cient c'y i i i = ci1' , , , . We finally substitute (54) in (52) to 
obtain -kl>-k2>-k3,-k4 k!,k2,k3,k4 ' > ' 

00 °° Ik I Ik I 
A o 1 = E £ E a'"lbMi)s s ' -pfvnia.kpx 

i =0 j =-00 k 

+ (-j + k 2 ) \ ' + k3fi + k4nf] , (55) 

where k is an abbreviation for k, ,k„,k„, and k,. 

The expansion in powers of s and s' having been completed, we may in the 
following regard AQ as a function of only a, a', \, and W We see from (50) 
that A-* is the same function of r, r ' , v, and v' and hence may be obtained 
from (55) if the former variable set is replaced by the latter. This replace­
ment can be done most easily by introducing the complex variables 

w, = exp (V^I\) , w', = exp (V^IX/) 

w„ = exp (V^lv) , w' = exp (V^lv') 

w3 = exp (V^lJt) , w' = exp (V^li') 

w. = exp (V l̂f) , w^ = exp (V^lf) 

(56) 

and the differential operators, 

D = a8/da , D' = a'9/8a' , D : = w19/8w1 , D^ = w^d/dw' . (57) 

Reference is made to Izsak et al. (1964) for a detailed exposition of the follow­
ing method. It is easy to show that we may write symbolically 

D D' 
A-1 = (r /a)D(r ' /a ' )D ' (w4/w3) V^/w'g) ^ ( a , a', w p w'L) , (58) 

where the D's may be treated formally as if they were exponents, and (r/a)*-* 

and (w,/w,) are supposed to be expanded in Laurent series in positive and 
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negative powers of W3, and similarly for the primed quantities. The product 
of these series for the inner body will be of the form 

D °° 
(r/a)D(w4/w3) l=^2 £ n S ( D ' D l ) e Q w 3 ' ( 5 9 ) 

n=-oo q 

where q is summed over all values for which q - | n| = 0, 2, 4, . . . , » . The 
corresponding result for the outer body is obtained by adding a prime on all the 
symbols in (59). The Newcomb operator n§(D, Di) is a polynomial of degree q 
in D and D\. 

to 
ig >-\y m e l a w i u i o \j -r 1^1/ * cuiu \ - j T- m^) ', i c o p c u t i v e l y . 

We have thus succeeded in reducing the four D-operators to the single one, D, 
and we have the combined result 

n ^ ; ( D , j , k p k 2 ) - n j j p j + t y • r $ ( - D - i , -j+k2) . (60) 

We note that the only structural difference between this equation and the 
corresponding equation (26) in Izsak et al. (1964) is that we have two distinct 
indices ki and k2 where they have only one. This is due to the fact that only 
one mutual inclination and one common node occur in their expansion which is 
equivalent to ours with s' = 0 and ft = SI'. We are otherwise led to precisely 
the same Newcomb operators which may be taken from an existing table or 
generated by means of the very convenient recursion formulas developed by 
those authors. Izsak and Benima (1963) have also published a computer algo­
rithm for computation of the Laplace coefficients and their Newcomb deriva­
tives. 

By means of (55) and (58) to (60), we now get 

'kJ k. 

i =0 -00 k, q, q' 
j , n , n ' 

Xcos [n i+n ' i '+ ( j + k1)X + (-j + k2)V + k 3 «+k 4 n ' ] , (61) 

where q - |n | and q - |n ' | take one the values 0, 2, 4, . . . , 00. This expression 
does not yet have the desired form, since we wish to replace e and e' above by 
e ande ' . We could, of course, do this by direct substitution by means of (31), 
but we also wish to replace a and a' by o and C which involve only the canonical 
variables G and G', according to (39). Now, we may replace a by 0" and a' by 
C in (55), (57), and (58) provided that we alter the meaning of a, as it enters 
through b|^)(a), to a = a/O' < 1. Furthermore, we may change a into o and e 
into e in (59) where n^(D, Dj) will now be a different polynomial but of the same 
structure as before. This polynomial is a special case of the generalized 
Newcomb operators devised by Izsak et al. (1964) with /q = -1/2 and aj = 0" 
(where the subscript I for "Izsak" has been added to avoid confusion with the 
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meanings of K and a in the present paper). If we in place of (28) and (31) had 
adopted (32) and (33), we would have jq = 0 and aj = a. Izsak et al . have 
derived recursion formulas also for the generalized Newcomb operators . 

Before writing down the new version of (61), we shall reformulate (47) to 
enable a convenient combination of the indirect and direct t e r m s . We notice 
the similari ty of the coefficients in (47) to those in (54) with i = 1. If we put 
u> = \ - I and w' = X' - i ' in (47), it is easy to show that that equation may be 
written 

- (XX' + YY' + ZZ') = mm'(vv ' f f f f ' ) " 1 ' 2 E* «Vl + bn+l> 

X(an'-l-bn'-l> c o s <* + * ' i ' + X-X') + (VrVlK ' + l + W 
^ |k | | k | 

X c o s ( n i + n ' i ' - \ + \ ' ) } + 2 ^ s s ' ^ ( a ^ + ^ b ^ ) 

X ( a n ' + k 2
 + k 2 b n '+k 2

) C 0 S < n i + n ' i ' + k 1 \ + k 2 \ / + k 3 0 + k 4 n ' ) (62) 

where, in view of (51), k1 and k2 have only the values ±1. Let p be ±1. Then 

a- ._ + p b „ _ = P ( a i n l + 1 + b U + 1 ) i f p n > 0 , 
n+p n+p | n |+ l ' 

= - p ( a | n | - l - b U - l > i f P n ^ - i > 
(63) 

and because of (44) we can write, 

a | n | + l + b | n | + l = Z ) Q q | n | e q | n | = 0 , 1 , , 

a | n | - l - b | n | - l = 2 > q | n | e q ' | n | = 1 , 2 , (64) 

a , + pb , n+p r n+p qn n = 0 , ± 1 , . . .,±oo , 

where q - |n | = 0, 2, 4, . . . , «> and the coefficients of e a re pure numbers . If 
we rewri te (62) by means of the last of equations (64) and add the result to the 
new version of (61) multiplied by mm' , we finally obtain for the te rm inside 
the square brackets in (22), 

mm - - (XX' + YY' + ZZ') =mm'Yj V^ ^ 
0 .-«> . k,q,q' j ,n ,n ' >M'M i = l 

n^a'-y1) 
j nn' 

* 
The coefficients a. + b . and a. - b . are also listed in Cayley's tables . 

https://doi.org/10.1017/S025292110006228X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110006228X


NEW FORMULATION OF DE SITTER'S THEORY 205 

, (J+V (-J+k
2) 1/2 

8 qn q'n' v ' 
c ( i ) s l k 3 l s J k 4 l e V q ' 

k 

Xcos [ n i + n ' i ' + ( j + k1)X + (-j + k 2 ) \ ' + k3f2+k4n ' ] , (65) 

where, for each i, k is summed over a finite number of values of k\, k2, k3, 
and k4, and q - |nl and q' - |n'J take on the values 0, 2, 4, . . . , oov and where 
b / tya) = b<J(a), c ^ ) ( s , s') = c ^ ( s , s ' ) , and n<$, (D, j , l q , k2) = nSH .nf(D,-j,-klt-k2) 
are defined by (53), (54), and (60) with 

a = 0 / 0 ' , D = a9/9a . (66) 

Fur thermore , the a-coefficients are given by 

o^J = 0 if [ p | * l o r i > 1 , 

= pa I I if pn > 0 and | p | = 1 and i < 1 , 

= -pp I I if pn < - l and | p | = 1 and i < 1 , (67) 

where the only nonzero values of a q j n | and P a | n | , and with q and | n | below five, 
ins of (31), (44); and (64): are easily found to be, 

a00 
Qll 
a22 
a33 

= 2 , 

= 2 , 

= 9/4 , 

= 8/3 , 

by means or(i 

a20 = 

a31 = 

a42 

033 

-2 , 

-13/4 , 

= -81/16 

= 1/6 , 

*1), 

a40 

> 

(44f,' ah 

= 55/32 

P22 = 

d(6 

> 

1/4 P 4 2 = - 1 1 / 4 8 

a 4 4 = 625/192 , p 4 4 = 9/64 . (68) 

In view of (40), we need include only the t e r m s with i < 2 and q + q' + | IC31 + jk^ | ^4 
in (65), and de Si t ter 's variation orbits depend on only the secular and cr i t ical 
t e rms which do not involve the inclinations, i. e . , i = kj = k2 = k3 = k j = 0 and 
c k = c tr = *• ^ n e s e c u l a r a n ( i c r i t ica l . te rms in addition satisfy the respective 
conditions n = n ' = j = 0 and ni. + n ' i ' + j \ - j \ ' = 0. 

00 

Since o / r = 1 + e cos f = 1 - e 2 + £ e b j cos U, we obtain readily the 

following expansion for the t e rm under the first summation sign in (22), 

a2 m* am H. 2 , 3 4 , . 3 3 , „ 

^ — = a( i^i) L1_€ *€ + ( £ - r ' c o s i 

+ (€
2 - | 6

4 ) cos 21 + | e 3 cos 31 + | r e 4 cos 4i + 0(€5)| , (69) 

where a, like m, is of the second order , according to de Sitter. 

We do not give here an expansion for the disturbing potential (34) due to 
Jupi ter ' s oblateness since it may turn out to be simpler to obtain the resulting 
perturbations from Brouwer 's (1959) theory for an artificial satel l i te . 
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NOTE ADDED IN PROOF 

After this work had been completed, I became aware that Poincare ' s canonical 
relative coordinates had, in fact, been considered for use on the planetary 
problem by Izsak et al . (1965), who showed how to develop the associated d is ­
turbing function. Although their resul ts do not apply here , since the develop­
ment was made in t e r m s of the mutual inclination, they pointed out that the 
indirect te rm in (22) can be written 

2 
-(XX' + YY'+ ZZ') = - m m ' ( v v ' a a ' f l / 2 -^p i^r^os $) , (70) 

and hence can be expanded by means of the Newcomb operators , affording a 
somewhat s impler derivation than that presented he re . 
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