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We characterize the test words of Z, * Z,. They are those elements not contained in a proper retract.

1991 Mathematics subject classification: 20E05, 20F55.

1. Introduction

An element w of a group T is a test element if every endomorphism of Y fixing w
is necessarily an automorphism. If F is a free group or a free product then the test
elements are called test words. The element w is called a test element for
monomorphisms if every monomorphism of T fixing w is necessarily an automorphism.
Given a test element w, the endomorphism <j> is an automorphism if and only if
<f>{w) = a(w) for some automorphism a. Thus, the use of test elements provides a
method for recognizing automorphisms of a particular group. In what follows we prove
these results (terminology explained in Section 2).

Theorem 1. If G = Zm * ZB and <f> is a monomorphism of G then the stable image of
<t> is a free factor ofG.

Corollary 2. The test words for monomorphisms of G are those words of infinite
order—i.e., those words not lying in a proper free factor.

Theorem 2. If G = Zm * Zn and cj) is an endomorphism of G then the stable image of
4> is a retract ofG.

Corollary 3. The test words ofG are those words not lying in a proper retract.

Specific examples of test words in a free product of two finite cyclic groups are given
in Section S. It should be noted that Turner [4] has proven the results listed above
for the case when G is a finitely generated free group. I would like to acknowledge his
contribution to this work as my dissertation advisor.
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2. Preliminaries

Definition 1. [1] If (j> : F ->• F is an endomorphism of an arbitrary group F then
the stable image of (j> is

f V . and ^ = ct>\<t>°°(T).

We shall see that the stable image plays an important part in our investigation of
test elements. Suppose that w is a test element in a group F. Then w may not lie in a
proper retract of F since otherwise, there would be a non-automorphism fixing w.
Conversely, if w is not a test element then there exists an endomorphism (j>: F -*• F
fixing w so that (j> is not an automorphism. If F is Hopfian then (f> cannot be a
surjection and 0°°(F) is a proper subgroup containing w. We shall exhibit groups in
which 0°°(F) is actually a proper retract containing w.

As motivation, we first examine the stable image of an endomorphism of a finite
group T and provide a retract characterization for test words of T. Recall that a group
satisfies the ascending chain condition on subgroups (ACC) if every ascending chain of
subgroups eventually stabilizes. Clearly every finite group satisfies the ACC.

Lemma 1. If<j>: F -*• F and F satisfies the ACC then (f)^ is an automorphism.

Proof. Consider the chain of maps

where <f>k is the restriction of <j> to the subgroup (^"'(F). Let \j/k = (t>k<pk-t . . . $ , :
F -*• (f>k(T). We have an ascending chain of subgroups ker^,) < ker(i/f2) < . . . < F so
there exists an N such that ker(i/^) = keT(\j/N) for every k > N. This shows that the
maps 4>k a r e eventually injective and hence (f)^ is also injective. We now show that ^
is surjective.

If g e <^°°(r) then g = <£"(0n) for every n and for some gn e F. Choose N so that
(f>N : <t>N~l(r) -*• 0W(F) is injective. For n> N the elements (j>"~l(gn) are in the subgroup
<f>s~l(T). Furthermore, $N($" '(SO) = 9 and by injectivity we get the equations

which means that <t>N~\gN) e 0°°(F) and that ^(^"'(ffjv)) = 4>N(gN) = g. D

Proposition 1. If T is a finite group then w e T is a test element if and only ifw does
not lie in a proper retract of T.

Proof. Suppose that w is not a test element and that $ is a non-automorphism
fixing w. Since T is finite there exists an N such that <i>k(T) = (f>N(T) for all k > N.
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Thus <p°°(T) = 4>N(T) giving a retraction

—*• <P (T) —*• <t> (T) —• <t> (J).

Since <j> is not surjective, 0°°(T) is a proper retract of T containing w. D

If F is any group containing a test element w then w cannot lie in a proper retract
of F; in particular, the cyclic subgroup (w) cannot be a proper retract. The next
proposition shows how to decide if a given element generates such a retract. We denote
the exponent sum of an element w on a generator Xj by \w\xj.

Proposition 2. Suppose that F Aaj //ie presentation

r = ( x , , x 2 x, | r,,r2, . . . , r , )

w e F. Lef \R\X denote the t x s matrix whose ij"1 entry is |rf|xy and let \w\x denote
the 1 x s exponent sum vector of w on the generators x;. Then w generates a retract of T
if and only if there exists a solution to the equation:

If w has finite order then this is an equation over Zn where n is the order of w, otherwise
it is over Z and n = 0.

Proof. Suppose that p : T -*• {w) by p(xf) = wk'. Then r} is mapped to wl> where
Ij = fc,|ry|xi + . . . + ks\rj\Xi. Since p is a homomorphism, /; = 0 (mod n). The element w is
mapped to w' where / = /c,|w|Xl +... + k,\w\Xi. Since p is a retraction, / = 1 (mod n).
This argument reverses proving the converse. •

Corollary 1. Suppose that G is a quotient of the free group of finite rank F(X)
admitting the presentation G — (X | R) where R C [F, F]. IfweG has infinite order then
w generates a retract ofG if and only if the entries of\w\x are relatively prime.

Example 1. Suppose that T = (x,, x2 | x\, x\, [x,, x2]). Since T is abelian the retracts
of T are precisely the direct factors of T. Any proper direct factor of T is cyclic (this
is, in general, not true for any finite abelian group of rank 2). We first check which
elements of T generate proper retracts. Choose w e T and suppose that w = x^x2 where
s € Z2 and reZg. I f s = 0 or t = 0 then vv lies in a proper retract so we may ignore
these cases. By Proposition 2, vv generates a retract if and only if there exists a solution
vector K over ZM to the equation
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K =

This happens if and only if w ̂  xxx\ and w ^ x,x*. These are the possible test elements
of T. But since these elements are proper powers of only each other then neither lies
in a proper retract. Thus, these elements are precisely the test elements of T.

3. Test words for monomorphisms of Zm * Zn

For the remainder of this note G will denote the group Zm * Zn given the
presentation

G=(x,y\xm,f).

Any element w of G is defined by a unique reduced word

where the integers a,, b} are reduced modulo m and n respectively. All exponents are
nonzero except possibly a, and br. The length of w, denoted |w|, is the number of
nonzero powers of generators appearing in its reduced form. For example, in the group
Z4 * Z13 = (x, y | x4, yn) the length of x2y6 is 2 and the length of y'Vy"1 is 3.

By the Normal Form Theorem for free products, the only elements of finite order
in G are conjugates of powers of the generators x and y. Because of this, any
endomorphism <f> of G has one of the following four forms:

(1) x ^ gxkg~l (2) x !-• gxkg~x (3) x >-* gykg~x (4) x *-* gykg~l

yt-thy'h'1 y >-* hx'h~* yy-*hy'h~y y*-^hx'h~x

where g and h are arbitrary elements of G. We call the endomorphism in the z"1 column
a type i endomorphism, 1 < i < 4.

Our main concern will be to prove that <f>°°(G) is a retract of G. The previous
paragraph suggests a proof of this result by using a case by case analysis on the
conjugators g and h. This is in fact our approach. Arguments for type 3 maps are
analogous to those for type 2 maps so we will omit mention of type 3 maps in our
proofs. Notice that if $ is a type 4 map then 4>2 is type 1. From the definition of the
stable image <t>°°(G) it is clear that #°°(G) = ((/•2)°C(G). Thus to prove that the stable image
is a retract we need only concern ourselves with type 1 and type 2 endomorphisms.

Theorem 1. If G = (x, y | x™, y") and (j> is a monomorphism of G then the stable image
of<f>is a free factor ofG.
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Proof. By previous comments we can assume that 0(x) is a conjugate of x* and
<t>(y) is a conjugate of y' or x' for some k and /. Since </» is injective, k, is relatively
prime to m (otherwise <f>{xr) = 1 where r is the order of x*). But then x* is an element
of the multiplicative group of units of Zm and k' — 1 (mod m) for some s. Hence <j>'(x)
is a conjugate of x. Again, since #°°(G) = (0')°°(G) we may assume that <f> has the
form

<t>(x) = gxg~l.

As for the image of y, if it is a conjugate of a power of y then we may assume as we
did for x that

000 = Mr1.

To summarize thus far, we need only consider maps <f> of one of the following types:

(1) x •-• gxg~l (2) x >->• gxg~l

y i-> hyh~x y i-> hx'h~l

In determining the structure of the stable image </>°°(G) we will first consider the map
in the first column (a type 1 monomorphism). For this, we will need to consider several
different possibilities for g and h. In each case we will find that the stable image is
either trivial, the entire group G, or a proper free factor. Type 2 monomorphisms will
be considered after that.

Case 1: The map <j> is a type 1 monomorphism, g — \,h^\

x t~* x j;i-t hyh'1

Clearly we may assume that h does not end in a power of y. Also, if h e (x) then <f>
is an inner automorphism and the stable image is G. Thus h = ayxk or h = /?y-'x*
where a and /J are some elements of G not ending in y~l or y respectively and k ^ 0.
These two cases are similar so we shall deal only with the first case. We will not spell
out such assumptions for the remainder of this proof. Thus <j> is defined by

X H X yi-t (ayxk)y(x~ky~1a~i).

In this paragraph we will show that if w £ (x) then |#(w)| > |w|. If w =
xaiyblx°1ybl...x°'yb' then

<j)(w) = xaiayxk{ybl)x~ky~la~>x"1ayxk{yb2)x~ky~xa~l... xOrayx*(yv)x"*>'"la"1.

When reducing this word the powers of y in parenthesis will never vanish. We may lose
some of the original powers of x but only if a begins with a power of x. In this case,
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a power of x will be contributed by a"1. This shows that |#(w)| > |w|.
It is clear that if w ̂  (x) then $(w) ^ (x). But then we may apply the previous

paragraph to such a w to obtain an increasing sequence of integers

Thus if w ̂  (x) and w e <j>"(G) then \w\ > n and so w ̂  <f>°°(G). We conclude that
</>°°(G) = (x) which is obviously a proper free factor of G.

Case 2: The map 0 is a type 1 monomorphism, g ^ 1, h / 1

x i-> gxg'1 y i-> hyh~]

Write g = ecu and h — av so that the product w~'i> is reduced: a is the "common initial
piece" of g and fe. If both u and u are nontrivial then it is easy to see that the image
of any word w = x"1/1*"2/2 . . .x"'yb' grows in length and so <j>°°{G) is trivial. The
situation becomes more complicated if one of u or v is trivial (if both are trivial then $
is simply an inner automorphism). Without loss of generality we may assume that
u = 1. In this case <j> has the form

x « axa"' y i—* (jxv)y(v~la~l).

If w is written as above then

(f>(w) = xx"'vyl"(v~ixa2v)yhv~l. ..(v~lx^v)yb'v~loTl.

Since the products v~lx*v for i — 2...r can never be powers of y the only possibility
that \</>(w)\ < \w\ is that cancellation occurs at the beginning or end of this word.
Whether such a reduction occurs or not depends on the word v. We will show that
when t; = x~da~]xd the stable image <f>°°(G) is nontrivial but in all other cases the stable
image is trivial.

Suppose that v is as above so that <f> is defined by

x >-» axoT1 y i-» (ax"''a"lx'')y(x"''ax''a"1).

Here, the element xdyx~d is fixed so the stable image is clearly nontrivial. To determine
its structure we simply make a change of basis for the group G. Specifically, let
x = x̂ yx"1* and y = x. These elements are generators for the group and if we let a
denote the word a rewritten in terms of these new generators then <j> is the map

3c i—»• 3c y i—» aycTx.

This map was studied in case 1 where we showed its stable image was a proper free
factor of G.
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In this final paragraph we assume v ^ x~dct~lxd for any choice of d and show that
°°(G) is trivial by a length argument. If w = x"lyhxaiyh . . . x V ' then

It is possible that \4>{w)\ < \w\ only if v = x'oT'x1 for some t and s. When t = - s (mod m)
we have the situation in the previous paragraph. For all other choices of t and s it may be
verified that |$2(w)| > |w|. Thus for any element weGwe have an increasing sequence

This proves that the stable image of <f> is trivial.

Case 3: The map 0 is a type 2 monomorphism

x i-> gxg'1 y i-> hx'h~l

We will not give many details here as the approach is similar to the first two cases.
It should be noted that not all type 2 maps are injective but this will not affect our
arguments. First, if g = h then <j>°°{G) = {gxg~l) and there is nothing to show here. If
g = 1 and h ^ 1 then another length argument will show that w £ (x) implies that
\<f>2(w)\ > \w\ so that 4>°°(G) = (x). If g ^ 1 and h = 1 then we may as well assume that
g ends in a power of y. If g = x~r'/ for some r then yrxy~r is fixed and another change
of basis argument will revert this case back to the previous one. For all other choices
of g the length of the image of a word is bigger than the length of the word and so
<p°°(G) is trivial.

As before, the most complicated case is when both g and h are nontrivial. We write
g = OLU and h = <xv so that u~lv is reduced. If both « and v are not the identity then
(t>°°(G) is trivial. If u = 1 and v ^ 1 then we may assume that v ends in a power of y.
This is enough to show that the stable image is trivial by checking that \(f>2(w)\ > |w|
for every w e G. Finally, assume u / 1 and v — 1. In this case,

x >-* auxu"'a"' yt-* ax'oT1.

The situation here is similar to case 2. If u = x~wa~'/ f°r some r then /xy~r is fixed
and it may be shown by a change of basis that (t>°°(G) = (/xy~r). In all other cases the
lengths of words grow under the forward image of <f> so that <t>°°(G) is trivial. •

Corollary 2. The test words for monomorphisms of G are those words of infinite
order—i.e., those words not lying in a proper free factor.

Proof. If w lies in a proper free factor then w is a power of a generator a since
any proper free factor must be cyclic. Let 0 be a generator of G so that G is equal to
the free product (a) * (/?). The map

https://doi.org/10.1017/S0013091500024019 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024019


558 DANIEL A. VOCE

a •-> a jS i-» (jSoOflor'/

is a monomorphism since |0(g)| > \g\ for every g e G. Furthermore, cf> is not surjective
proving that w is not a test word for monomorphisms. •

4. Test words of Zm * Zn

Now that we have determined that the stable image of a monomorphism of Zm * Zn

is a free factor we may begin to examine the structure of the stable image when (f> is an
arbitrary endomorphism. We will not need to use a case by case analysis this time.

Lemma 2. If G = (x, y | xm, y") and 0 is an endomorphism of G then the map
<t>x : <f>°°(G) -*• 0°°(G) is an automorphism.

Proof. To show that 0 ^ is an automorphism we need only prove that the maps
<f>k : <t>k~\G) -*• <f>k(G) are eventually injective (see Lemma 1). We consider the chain

G -X 4>{G) -X

The subgroups <f>'(G) all have rank less than or equal to 2. By the Kurosh subgroup
theorem [2], each subgroup in the chain must be a free product of at most two finite
cyclic groups where the ranks on the free factors are divisors of m and n. There are
only finitely many such groups up to isomorphism so we may choose N > M with
<j)N{G) £* <f)M(G). The composition

<f> (G) —>• 0 (G) -»• . . . -> <p (G) —• 0 (G) S 0 (G)

is a surjective endomorphism of <t>M{G) and so it must be injective as well. This implies
that the maps 4>k, k > M, are also injective. •

Theorem 2. If G = Zm * ZB anrf 0 is an endomorphism of G then the stable image of
<f> is a retract ofG.

Proof. By the proof of Lemma 2 we may choose M so that the map

<f>M+l : 4>M(G) -*• 0M+I(G) is a monomorphism. Regardless of the rank of </>M(G), the

subgroup (0M+|)°°(0M(G)) is a retract of <t>M(G) (Theorem 1 or the proof of Proposition

1). However, it is clear that <f>°°(G) = ($M+I)°° ($ M (G)) SO if p is the retraction mentioned

above the composition

—• <P (G) -> 0 (G) —• </> (G)

is a retraction of G onto the stable image of <f>. •

https://doi.org/10.1017/S0013091500024019 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024019


TEST WORDS 559

Corollary 3. The test words ofG are those not lying in a proper retract.

Example 2. Let G = (x, y \ x \ y12) and suppose that $ is the map X ^ X ' . J / M / .

Then (f>°°(G) = <f>(G) = (x \ y*). This gives an example of a proper retract of G which is
not a proper free factor (since it has rank 2). In particular, the word xiy* is a test word
for monomorphisms but not a test word.

5. Retracts

In light of Corollary 3 it becomes interesting to determine the structure of the
retracts of Zm * Zn. Example 2 shows that they are not just the free factors of this
group.

Suppose that K is a retract of G = (x, y | xm, y") and p : G —> K is a retraction. Then
K must have rank less than or equal to 2. Since we have already described cyclic
retracts in general (Proposition 2), we will assume that K has rank 2 for the remainder
of this section. Recall that p has one of the following forms:

(1) x y-> gxkg~l (2) x •-» gx V (3) x •-» 0)> V (4) x >-» gykg~l

y t-> hy'h'1 y *-* hx'h~l y*-*hy'h~l y i-» /JX'/T1

Theorem 3. Suppose that G = {x,y\ xm, y") and that K is a rank 2 retract of G with
retraction p . Then p is type 1, 2, or 3.

(a) If p is a type 1 retraction then K = (gxkg~\ hy'h'1) such that
(1) k1 = k (mod m) and I2 = I (mod n), and
(2) g,h e «x5, / ) ) , the normal subgroup generated by x' and / , where s (resp. t)

is the order ofxk (resp. y').

(b) If p is a type 2 retraction then K = (gxkg~\ hx'h'1) such that
(3) k2 = k (mod m) and kl = I (mod m), and
(4) g e {{x', /)) where s (resp. t) is the order ofxk (resp. x').

(c) If p is a type 3 retraction then K = (gykg~i,hy'h~l) such that
(5) kl — k (mod n) and I2 = I (mod n), and
(6) h e ({xJ, y» where s (resp. t) is the order of yk (resp. y').

Proof. Since p2 = p, this map is clearly not type 4. Therefore, first suppose that p
is a type 1 retraction given by

x i-» gxkg~l y •-• hy'hr1.

Again, since p2 = p we have the equation
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and (1) clearly holds by abelianizing G. Replacing k2 with k we see that

and a standard result of free products [3] states that the elements g~]p(g)g and xk are
in the same conjugate of a free factor of G or are both powers of the same element
w e G. In either case g~lp(g)g is some power of x. Our map p now looks like

and the conjugator may be assumed to be an element of the kernel. Hence p is a map
defined by

x •-> g'xk(gTl y " h'y'ihT1

where g',h' e ker(p).
We will now show that the kernel of p is normally generated by elements x5 and y'

as outlined in (2). If s and t are as stated then it is clear that «x5, /)) is a normal
subgroup of ker(p). We will prove that ker(p)/((x5, y'» is trivial. By Kurosh,
p(G) = {gxkg'l}*(hy'h~i)^Z,*Zt and by the Noether Isomorphism Theorems,
p(G) <* G/((xJ, y»/ker(p)/«xJ, y')>. Furthermore, G/({x', y')> = {x,y\ xm, y", x*. y') ~Z, * Z,
which finishes the proof in this case.

Now suppose that p is a type 2 retraction given by

x i—> gxkg~l y >—• h x ' h ~ l .

The proof we give here will obviously work in the case that p is a type 3 retraction.
Item (3) holds by previous arguments. The element g can be assumed to be an element
of ker(p) as before. Finally, if g ^ h then

KeHgx*g-l)*{hx'h-l)<*Z,*Z,

and the proof of (2) also holds for (4). If g = h then K is cyclically generated by the
element gxdg~l where d — gcd(k, I) which cannot happen since K has rank 2. •

Example 3. The element w = xy is a test word of Zm * Zn.

It is evident that xy cannot lie in a cyclic retract or a rank 2 retract of type 2 or type
3. If xy is an element of a type 1 retract K = (gxkg~\ hy'hT1) where k2 = k (mod m)
and Z2 = /(modn) then k = l=l. This is easily seen by abelianizing G to get the
equations fed, = 1 (mod m) and ld2 = 1 (mod«) for some d,. By Theorem 3, the
conjugators g, h e ((xm, y")> which implies that K is not proper.

Example 4. The commutator [x, y] is a test word of Zm * Zn.
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Every nontrivial element of a cyclic retract (gxkg~x) has nonzero exponent sum on
x so it is impossible for such a retract to contain the commutator element.

Suppose

is a type 2 retraction and that [x, y] e K. Then the image of [x, y] is fixed under p so
that

xyx-'y"' = gx\g-lh)xl(h-ig)x-\g->h)x-'h-i.

If the right hand side of this equation has length 4 then g~lh must be a power of x.
But then K would be cyclic and we have dealt with this case already. Clearly type 3
retractions may be disposed of in the same manner.

Finally, suppose

p:G^ K={gxkg-\hy'h-1)

is a type 1 retraction. In case 2 of Theorem 1 we dealt with similar maps where
fe = / = 1. It was shown there that such maps had proper nontrivial stable images if
and only if h = \g, xd], or symmetrically, g = [h, yd] for some d. The same arguments
apply here for the map p. But any non-identity map of the form

x i-> gxkg~l y^\g, xd]y'[g, x1*]"1

can never fix the commutator, proving that [x, y] does not lie in K.

Example 5. The element w = xkyk (fe > 1) is not a test word of Zm * Zn for certain
m and n.

The endomorphism of the group (x | x10) which maps x to x6 is a retract onto (x6).
Thus x2)*2 lies in a proper retract of (x, y | x10, y10). If fe > 3 then choose m = fc2 — fe. In
this case, the subgroup (x\ y*) is a proper retract of (x, y \ xm, y"1) containing x*y*.

Example 6. The test words of Z^ * TL^ (p, ^ p2 are primes) coincide with the test
words for monomorphisms.

Suppose x and y are generators for Z^ *Z^. We need to show that the retracts of
this group are precisely the free factors. Any endomorphisms of this group must be a
type 1 map so any retract is a type 1 retract. Let H be a nontrivial proper retract of

* Z^ generated by the elements gxkg~1 and hy'h'1 for some fe and /. The equation
= k (mod p") implies that fe = 0,1 (mod p"). Similarly, / = 0, 1 (mod P2). Since H is a

nontrivial subgroup, one of fc or I is zero but not both. In particular, assuming fe = 0,
H = (hyh~x) and is a proper free factor.
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Example 7. PSL(2, Z)
The special linear group SL(2, Z), of 2 x 2 integral matrices with determinant 1 is

generated by the elements

/ 0 1\
= (-i o]

. / 0
a n d * = (

The modular group PSU1, Z) is the quotient of SL(2, Z) by «x2)) and has the
presentation

2,Z) = (x,y\x2,y3).

It follows that this group contains the test words

=("i -I) a n d
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