ON FORMULAE OF MACBEATH AND HUSSEIN
by W. W. STOTHERS

(Received 3 September, 1987)

1. Introduction. In his thesis [1], Hussein considered regular permutations of order
2 and 3 in S, whose product is an n-cycle. For such a pair, we must have

n=6(2g—1) 1)

for some g = 1. Such a permutation pair corresponds to a free cycloidal subgroup of the
classical modular group (see, €.g., [3]). Previously the free subgroups and the cycloidal
subgroups of fixed genus had been enumerated ([4], [5})).

Hussein showed that C(g), the number of such subgroups, is given by

C(g) 2n/23n/3(n/2)' (n/3) Z ( 1)’a,b,/d,, (2)

where d, is the binomial coefficient "~'C,, and a, and b, are given by

n—1
(x + 1)(x2_ 1)—1+n/2= 2_:1 a’xn—r—l’ (3)
n—1
(x2 +x+4 1)(x3 _ 1)—1+n/3 = 20 b’xn—r—l. (4)

Macbeath [2] noted that, for the first few values of g, C(g) was given by the formula
| (6g = 3)!

g!(3g —2)12%13" )
Hussein checked this for g <17. The first few values are
c()=1
C(2)=105
C(3) = 50050 6)

C(4) = 56581525
C(5) = 117123756750.

We show that formula (5) is correct for all g.

Most of what follows was obtained by interactive use of an algebra system
(muMATH). Although the final proof could be undertaken by hand, it would be
misleading to disguise the réle of the machine in the enterprise.

2. Hussein’s formula. We note that Hussein’s a,, b,, ¢, are functions of n as well as
of r. We will rewrite the sum in terms of functions of a single variable.
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Six simple calculations show that, for the cases r=0,1,2,3,4,5 (mod 6),
(=1)a,b,/d,=(— 1y """ Bly(ya(n—1-r) )
where
a(r) = r/([r/21)([/3]). ®)
Fors=0,1,...,5, put
B(s, k) = a(6k + 5). C)]

Now the sum in (2) can be split into sums over residue classes modulo 6.

S(g)= nil (= ) A Bl (rya(n —1—r)

2g-2 5

= kgo (-1 §0 £(s)B(s, k)B(5 —s,28 —2— k) (10)

where e =¢e(5) =1, e(D)=eQ)=e3)=e@) = —1. Further, the term
B(s, k)B(5 —s, 2g —2 — k) is unchanged if we replace s by 5—s and k by (2g —2 - k), so
2

S(g)=2 2 (=1 S £()B(s, KBS — s, 28 —2— k). (1)

s=0

Now consider (8) for each residue class modulo 6 to get

B(L, k) = (6k + 1)B(0, k)
B(2, k) =2B(1, k)
B3, k)=3B(2, k) =06p(1, k) (12)
B4, k) =2B(3, k) = 12(1, k)
B(5, k) = (6k +5)B(4, k) = 12(6k + 5)B(1, k).
Then (11) can be rewritten as
2g—2

Sg)=72 k;o (= 1)*(4g — 6k — 3)B(0, k)B(1, 2g — 2 — k). (13)

Of course, after (12), the §(1, —) in (13) could be replaced but this does not seem to
help. It is our aim to establish recurrence relations for S(g).

3. Recurrence relations and power series. Since

B(0, k) = (6k)!/(2k)! (3k)!, (14)
calculation of B(0, k + 1)/B(0, k) gives
(k+ DO, k + 1) =12(6k + 1)(6k + 5)B(0, k). (15)
Similarly,
(k+ 1B, k+1)=12(6k + 7)(6k + 5)B(1, k). (16)
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We now express all our information using formal power series [the series involved
converge only at z =0, so no analytic significance should be understood]. Put

1@)= 3 (- 17B0,)7, an
82)= 3 (~17B(L, )7 (18)
To include the sum on the right of (13;,_ we put
H) = 3 (= 172k +1-65)B0, (1, k=) (19)
and define h(z) by
he)= 3 )" 20)

To recover the values for even arguments, we put

t(z)=h(z)+h(—-2)

—23 y2g-2)2% (1)

g=1

We now define S by
S(g) _ (2g —1)(6g —3)! 243_4335_4’

§1Cg-2) 2
and put
u(z) = ;::1 S(g)z*2 (23)
Macbeath’s assertion now becomes (in view of (2), (10), (13), (19), (20), (21))
u(z) = t(z). 24)
Note that, considering S(g +1)/5(g),
(28 — (g + 1)S(g + 1) = 273%(2g + 1)(6g — 1)(6g + 1)S(g). (25)
4. Relations among derivatives From (12) and (17)-(20),
s(z) =22¢'(2)f (z) — 428(2)f '(z) + f (2)g(2)- (26)
Also, from (12), (15), (17) and (18),
6zf'(z) = g(~z) = f(2). 27)
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Similarly, from (12), (16), (17) and (18),

432z%g'(z) = —360zg(z) + g(z) — f( - 2). (28)
Now #(z) and u(z) are even functions, so we define

F(z) =f(2)f (~2)

G(z)=g(z)g(~2)

M(z)=f(z)g(z) — f(—2)g(~2) (29)
P(z) =f(2)g(z) + f(—2)g(~2).

Then, from (26), (27), (28), (29),
21621(z) = M(z) — 2882G(2). (30)
Also, from (26), . . ., (29),
6zF'(z) = P(z) — 2F(z)
432z°G’(z) = —7202G(2) + M(z)

432z°M'(z) = P(z) — 2F(z) — 432zM(z2) G
4322°P'(z) = 144zG(z) — 432zP(z) + M(2).
Observe that the first and third of these yield
432z(zM(2))' = 62F'(2). (32)
Hence, on comparing constant terms,
72zM(z)=F(z) - 1. (33)

Also, using (30) and (31) we can express any derivative of #(z) as a linear combination of
F(z), G(z), M(z) and P(z) with coefficients rational functions of z. For example,

9(z) = [ 1 1 ] 3 160
7776z* 2799362* 272

+[ 1, 4 ]M -1
403107842° * 9722317 ¥ T 933124°

F(z)+ G(2)

P(2). (34)

Using (33) and expressions for t9)(z), . . ., £3(z), we could eliminate F, G, M, Pto get a
fourth order linear differential equation for ¢(z) (with polynomial coefficients). [In fact
this was done, but the output was of little use since we have an easier alternative. Without
Macbeath’s guess, however, this would have yielded a recurrence relation of considerable
length for the y(2g —2).]

Recall that the S(g) (a simple multiple of the conjectured C(g)) satisfies the
recurrence relation (25). Then we can construct a differential equation for its generating
function u(z) (see (23)).

We consider the coefficient of z% (g =1) and the constant terms of each side to see
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that
22uP(z) +2zu(z) — 2u(z) + 4
=12°2%(92*u(z) + 1442°u®(2) + 665uP(z) + 965zuV(2) + 315u(z)). (35)

Now to prove #(z) = u(z) we need only check that the function #(z) satisfies (35) and that
the first four coefficients agree. Since the derivatives of #(z) can be calculated in terms of
F, G, M, P, this is a simple (machine) verification. The comparison of the coefficients was
essentially done by Hussein and the results are implicit in (6).

5. Postscript. We observe that a recurrence for the C(g) could have been obtained
without Macbeath’s conjectured value but, as indicated in §4, this would have been much
more complicated than that implicit in (25).

Finally, we make an observation which might stimulate some further (experimental
or theoretical) work. If we use the relation between subgroups and permutation pairs in
(3, Lemma 1.2], then the number of regular permutations of order 2 and 3 in S, whose
product is an n-cycle is (from (5))

(12g —7)! (6g —3)!

g!'(Bg—2)12%13g" (36)
On the other hand, the number of regular permutations of order 2 in §,, is
(12g — 6)!
2%73(6g — 3)! (37)
and the number of order 3 is
(12g - 6)!
3%2(4g —2)1 (38)

Since n = 6(2g — 1) is congruent to 2 modulo 4, the product of such permutations must be
odd. Now, we have 3(12g — 6)! odd permutations, of which (12g — 7)! are n-cycles. Hence
the “expected” number of pairs giving rise to an n-cycle is (from (37) and (38)),
(12g = 7! (12g - 6)!
6g—274g~3" (39)
(6g —3)! (4g —2)1 2%7°3"%

A tedious calculation using Stirling’s formula shows that; asymptotically, (36) and (39)
agree. It would be interesting to investigate whether this occurs for other cycle patterns.
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