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1. Introduction

Suppose that we are given a group H and a set of words r(x), r ∈ r, involving a set
of indeterminates x ∈ x and elements of H. The datum P = 〈H, x : r〉 is called a
relative presentation with coefficient group H; the group defined by these data is the
quotient group G = H ∗F (x)/〈〈r(x)〉〉, where H ∗F (x) is the free product of H with the
free group F (x) having basis x and 〈〈r(x)〉〉 is the smallest normal subgroup of the free
product containing the words r(x), r ∈ r. In this paper we focus on relative presentations
involving a single indeterminate x and a single relator r(x) with positive exponents. Thus,
we study relative presentations of the form

P = 〈H, x : xh1 · · ·xhn〉, (1.1)

so that the defining relation is a positive equation of length n and the elements
h1, h2, . . . , hn are taken from the coefficient group H. One of the early results, due to
Levin [7], states that the natural homomorphism H → G is injective in this case. When
the relator r = xh1xh2 · · ·xhn is not a proper power, the conjectures would predict that

(A) G is torsion free,

(B) the relative presentation P is aspherical,

(C) the group-ring ZG has no zero-divisors.
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(C) implies (B) because, if P is not aspherical, then the Fox derivative ∂r/∂x must
be a zero divisor; this is essentially what Ivanov [6] noted. (B) implies (A); see [2].
The implication (A) =⇒ (C) (for all torsion-free G) is the Kaplansky zero-divisor
conjecture [8]. On the other hand, the implication (A) =⇒ (B) is open. Also, if (B)
implies (C), then these groups are torsion-free groups without zero-divisors.

All of this is supposed to create a legitimate reason for examining the asphericity of P

in this case. Asphericity of the relative presentations (1.1) has been addressed by several
authors (see [1,2,5,9]). They studied relative presentations over any group H without
mentioning the connection between asphericity and the zero-divisor conjecture. Scanning
these results, one finds that, for n � 5, these presentations are always aspherical when
H is torsion free. Also, the relative presentation 〈H, x : (xa)p(xb)q(xc)r〉 is aspherical
when H is torsion free, a, b, c ∈ H and p, q, r > 2. Recall that a relative presentation
P = 〈H, x : r〉 for a group G is aspherical if for some ordinary presentation Q = 〈a : s〉 for
H and for some lifted presentation P̂ = 〈a,x : s, r̂〉 for G, the second homotopy module
π2(P̂ ) is ZG-generated by π2(Q). It is then a consequence of the theory of aspherical
relative presentations that those new groups defined by the relative presentations are
also torsion free as long as the above relators are not proper powers in H ∗ F (x). The
main result of this paper can be stated as follows.

Theorem 1.1. A relative presentation P = 〈H, x : xh1xh2 · · ·xhn〉 with n � 6 is
aspherical if H is torsion free.

If this is the case, we have a corollary.

Corollary 1.2. The group defined by a relative presentation

P = 〈H, x : xh1xh2 · · ·xhn〉

with n � 6 is torsion free if H is torsion free and the relator xh1xh2 · · ·xhn is not a
proper power.

2. Pictures and tests for asphericity

2.1. Pictures

Most of definitions of this section are taken from [1,2]. A picture P is defined with the
following data: a finite collection of pairwise disjoint discs {∆1, . . . , ∆m} in the interior of
an ambient disc D2 and a finite collection of pairwise disjoint compact properly embedded
one-manifolds {α1, . . . , αn}, that is with ∂αi = αj ∩∂(D2−

⋃m
i=1 Int(∆i)). The picture P

is non-trivial if m � 1 and is connected if it has at most one component. The picture P

is spherical if it is non-trivial and if none of the arcs meet the boundary of D2.
We introduce the following labelling: each arc αj is equipped with a normal orientation,

indicated by a short arrow meeting the arc transversely, and labelled by an element of a
group H. If κ is a corner of a disc ∆i of P , then w(κ) is the word obtained by reading in a
clockwise order the labels on the arcs and corners meeting ∂∆i, beginning with the label
on the first arc we meet as we read the clockwise corner κ. If we cross an arc labelled x

in the direction of its normal orientation, we read x, otherwise we read x−1.
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A picture P is called a picture over the relative presentation P = 〈H, x : r〉 if the
picture consists of r-discs and x-arcs with the following additional conditions:

(i) for each corner κ of P , w(κ) ∈ r∗, where w(κ) is a word obtained by reading around
a disc containing κ clockwise, and r∗ is the set of all cyclic permutations of the
elements of r ∪ r−1 which begin with an element of x;

(ii) if h1, . . . , hl is the sequence of corner labels encountered in a clockwise traversal of
the boundary of an inner region F of P , then the product h1 · · ·hl = 1 in H—we
say that h1 · · ·hl is the label of F .

A dipole in a labelled picture P over P consists of corners κ, κ′ of P together with an
arc joining the two corners such that κ and κ′ belong to the same region, and such that
if w(κ) = Sh, where h ∈ H and S begins and ends with an element of x ∪ x−1, then
w(κ′) = S−1h−1. The picture P is reduced if it does not contain a dipole. An injective
relative presentation P is aspherical whenever every connected spherical picture over P

contains a dipole if no element of r is a proper power. If P is not aspherical, there is a
reduced spherical picture over P (see [1]).

2.2. Tests of asphericity

In this section, we introduce the n step and see various known techniques to determine
asphericity of a relative presentation. For the definition of lifting relative presentation,
see [2, § 1.6]. Here π2(−) is the second homotopy module. (For more information about
the second homotopy module, see [1,3].)

Lemma 2.1 (n steps). Let the relative presentation P = 〈H, x : r〉 define a group G

and let Q = 〈G, t : s〉 be another relative presentation. If Q and P are both aspherical,
then the relative presentation R = 〈H, x ∪ t : r ∪ s̃〉 is aspherical, where s̃ is an element
of H ∗ F (x) ∗ F (t) obtained from s by lifting.

Proof. Let K be the standard model (two-dimensional CW-complex) of a chosen
ordinary presentation for H and let L and M be the standard models of presentations
P and Q, respectively. Since both P and Q are aspherical, we have

π2(L) = Zπ1(L) · Im(π2(K) → π2(L)),

π2(M) = Zπ1(M) · Im(π2(L) → π2(M)),

where Im(π2(K) → π2(L)) and Im(π2(L) → π2(M)) are the images of the natural maps
induced by embeddings. To prove the lemma, we will need to deduce that

π2(M) = Zπ1(M) · Im(π2(K) → π2(M)).

Let ξ be an element in π2(M); then ξ can be expressed as ξ =
∑

i λiσi, where λi ∈
Zπ1(M) and σi ∈ Im(π2(L) → π2(M)) for each i. We identify the elements of π2(L) with
their images in π2(M). Since P is aspherical, we can write each σi as

∑
j µijτij , where
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µij ∈ Zπ1(L) and τij ∈ Im(π2(K) → π2(L)). Again, we identify the elements of π2(K)
with their images in π2(L). Then, in π2(M),

ξ =
∑

i

λiσi =
∑

i

λi

∑
ij

µijτij ,

so ξ is an element of Zπ1(M) · Im(π2(K) → π2(M)). This completes the proof. �

The star-complex P st of P is a graph whose edges are labelled by elements of the
coefficient group H. The vertex and edge sets are x ∪ x−1, r∗, respectively. For r ∈ r∗,
write r = Sh, where h ∈ H and S begins and ends with x symbols. The initial and
terminal functions are given by ι(r), the first symbol of S, and τ(r), the inverse of the
last symbol of S. The labelling function on the edges is defined by λ(r) = h−1.

A non-empty cyclically reduced cycle (closed path) in P st will be called admissible
if it has trivial label in H. Each inner region of a reduced picture over P supports an
admissible cycle in P st.

A weight function θ on P st is a real-valued function on the set of edges of P st which
satisfies θ(Sh) = θ(S−1h−1) with Sh = r ∈ r∗. A weight function θ on P st is weakly
aspherical if the following two conditions are satisfied.

(i) Let r ∈ r∗, with r = xε1
1 h1 · · ·xεn

n hn. Then

n∑
i=1

(1 − θ(xεi
i hi · · ·xεn

n hnxε1
1 h1 · · ·xεi−1

i−1 hi−1)) � 2.

(ii) Each admissible cycle in P st has weight at least 2.

It is known [2] that if P st admits a weakly aspherical weight function, then P is aspherical.
Let l be a positive integer. An l-wheel over P is a non-trivial connected picture W

over P which has discs {∆0, ∆1, . . . , ∆l}, and which satisfies the following conditions:

(i) each arc of W meets a disc ∆j for some j ∈ {1, . . . , l};

(ii) each arc of W meets either ∆0 or ∂W ;

(iii) each disc of W has a corner which lies in a region of W that meets ∂W and the
disc ∆0 is the hub of the l-wheel.

Let p be a positive integer. Then P satisfies C(p) if there are no reduced l-wheels over
P for l < p. Let q be a positive integer. Then P satisfies T (q) if there are no admissible
cycles in P st of length m for 3 � m < q. If P satisfies C(p), T (q), where 1/p+1/q = 1/2,
then P is aspherical.

An angle function on a picture P is a real-valued function φ on the set of corners of P .
Associated with φ is a curvature function c defined on the discs ∆ of P by

c(∆) = 2π −
∑

κ⊆∂∆

φ(κ)
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and on the regions F of P by

c(F ) = 2π −
( ∑

κ⊆∂F

(π − φ(κ))
)

.

If P is a connected spherical picture, then there is the fundamental curvature formula
∑
∆

c(∆) +
∑
F

c(F ) = 2πχ(S2) = 4π.

The sums are taken over all discs and regions of P . It follows immediately that, for
any angle function on any connected spherical picture, some disc or region has positive
curvature.

An application of the curvature formula we use in this paper is due to Edjvet [4]
and is called curvature distribution. More specifically, let φ be an angle function with
associated curvature function c. Suppose also that every disc ∆ of P is flat in the sense
that c(∆) = 0. Then the curvature formula implies the existence of at least one region
F such that c(F ) > 0. If F ′ is a region of P that neighbours F across an arc α in the
boundary of F , then we can subtract any real number η from one of the corners of F

that touches α and then add η to the adjacent corner in F ′. This results in a new angle
function on P with associated curvature function c∗. Obviously, c∗(∆) = c(∆) for each
disc ∆ of P , c∗(F ) = c(F ) − η and c∗(F ′) = c(F ′) + η. Other regions are unaffected.
More generally, if F is the set of regions of P , we can define a distribution scheme on P

as the function η : F × F → R.

3. Reduction to special cases

First, we start with the following lemma.

Lemma 3.1. The relative presentation P = 〈H, x : xmgxnh〉, where g and h are
non-trivial elements of H, is aspherical for any positive integers m and n if H is torsion
free.

Proof. The star-complex of P has just two vertices with labels x and x−1, two edges
with labels g−1 and h−1, and has other edges with label the identity. We assign a weight
function in such a manner that each edge with label the identity has a weight 1 and
g−1, h−1 have a weight 0. It is sufficient to consider admissible cycles with weights up
to 2. Also, there are no admissible cycles of weight 0 since H is torsion free. Therefore,
possible admissible cycles are (gh−1)ig±1 for non-negative integer i or its conjugates. But
this means that g is in 〈gh−1〉. Then, since the subgroup generated by 〈g, h〉 equals the
subgroup generated by 〈g, gh−1〉, the group generated by coefficients is infinite cyclic.
This implies asphericity by [1, Lemma 3]. �

This result also holds if m and n have opposite signs. One can show this by using a
weight test.
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For convenience, we will write a length-6 relative presentation with a torsion-free coef-
ficient group H as

P = 〈H, x : xaxbxcxdxexf〉,
where each coefficient is in H.

If the relator is a proper power, then it is aspherical by applying Lemma 2.1. So
we assume that the relator xaxbxcxdxexf is not a proper power and assume that the
group H is torsion free. Our aim in this section is to classify the relative presentation
P = 〈H, x : xaxbxcxexexf〉 in all the possible cases to show that P is aspherical.

First of all, if the coefficients a, b, c, d, e and f are all distinct, then each disc is
connected to at least four more discs and so there are no reduced l-wheels for f < 4.
Therefore, the presentation satisfies C(4). On the other hand, the star complex P st of P

consists of five edges oriented from x−1 to x with labels a, b, c, d, e, f . Hence, the smallest
admissible cycle in P is of length 4 and therefore P satisfies T (4). This implies that P

satisfies the small cancellation condition C(4)–T (4). So P is aspherical. In fact, one can
observe that if the unknown variable x has all positive exponents, then the number of
discs of any region in a picture over P is even and so P automatically satisfies T (4).
Thus, we may assume that some coefficients are the same. Then, use the substitution
t = xg, where g is the coefficient with the most consecutive appearances. For example,
if the relator is x3gxgxgxh, then, taking t = xg, we have t4g−1htg−1tg−1 up to cyclic
permutation. It is sufficient to show that 〈H, x : x4hxgxg〉 is aspherical with torsion-free
coefficients. If there are no consecutive repeats of coefficients, then we choose t = xa

so that the relation starts with t2. Without loss of generality, we can assume that the
relation begins with the largest power of x at least two. But the relative presentations
〈H, x : x6g〉, where g 	= 1, are clearly aspherical and 〈H, x : x5gxh〉 is aspherical by
Lemma 3.1. So we have three special cases:

P1 = 〈H, x : x4gxhxk〉,
P2 = 〈H, x : x3gxhxkxl〉,
P3 = 〈H, x : x2gxhxkxlxm〉,

where 1 /∈ {g, h, k} in the relative presentation P1, 1 /∈ {g, l}, neither g = h = k nor
h = k = l in P2, and 1 /∈ {g, m} and any two consecutive coefficients are not the
same in P3. Next, we shall consider further special cases which come from the relative
presentations P1, P2 and P3.

In presentation P1, if we suppose that all the coefficients are different, then the pre-
sentation satisfies the condition C(4)–T (4) and so P1 is aspherical. If all the coefficients
are the same, then the coefficient group is cyclic and again it is aspherical. Thus, we can
consider three special cases obtained from P1, that is, g = h, g = k or h = k. But the
case h = k is equivalent to the case g = h, because taking the inverse of the relation
gives us x−4h−1x−1h−1x−1g−1, and then we use the substitutions t = x−1, h−1 = g1

and g−1 = g2. Therefore, we have two more relative presentations to consider:

Q1 = 〈H, x : x4gxgxk〉,
Q2 = 〈H, x : x4gxhxg〉,

where all the coefficients in each relation are different and not equal to 1.
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In presentation P2, if all the coefficients are different and not equal to 1, then P2

satisfies C(4)–T (4) and so it is aspherical. If the coefficients are all the same, then P2

is also aspherical by [1, Lemma 3]. Thus, we can consider three special cases, i.e. h = 1
and k 	= 1, h 	= 1 and k = 1, and h 	= 1 and k 	= 1. We can see that the case h 	= 1 and
k = 1 is equivalent to the case h = 1 and k 	= 1 by using substitutions and taking the
inverse. Thus, two special cases come from the relative presentation P2. Firstly, consider
the case h = 1 and k 	= 1, i.e. x3gx2kxl. If all coefficients are distinct, then P2 satisfies
the condition C(4)–T (4) so that P2 is aspherical. Thus, we have three subcases, g = k,
g = l and k = l, and so we have three relative presentations to consider:

Q3 = 〈H, x : x3gx2gxl〉,
Q4 = 〈H, x : x3gx2kxg〉,
Q5 = 〈H, x : x3gx2kxk〉,

where all coefficients in each relation are different and not equal to 1. Secondly, in the case
h 	= 1 and k 	= 1 in P2, if all coefficients are distinct then P2 also satisfies C(4)–T (4) so
that P2 is aspherical. Thus, we obtain three subcases, g = h (equivalently) k = l, g 	= h.
Look at the case g = h. If k 	= l, then P2 satisfies C(4)–T (4) and so P2 is aspherical.
Thus, we have one relative presentation from the case g = h:

Q6 = 〈H, x : x3gxgxkxk〉,

where all the coefficients are different and not equal to 1. In the case g 	= h, we again
have two subcases, g = k and g 	= k. From the case g 	= h, g = k, we have three more
subcases: g, h and l all different, g = l and h = l. But the case g = l is equivalent to
Q5 by using the substitution t = xg followed by taking the inverse. Thus, we have two
relative presentations to consider:

Q7 = 〈H, x : x3gxhxgxl〉,
Q8 = 〈H, x : x3gxhxgxh〉,

where all coefficients in each relation are different and not equal to 1. Consider the case
g 	= h, g 	= k. We may assume that g = l in this case, for otherwise P2 satisfies C(4)–T (4)
and so is aspherical. If h 	= k, then x3gxhxkxg satisfies C(4)–T (4) so that it is aspherical.
Therefore, we have just one more case to consider:

Q9 = 〈H, x : x3gxhxhxg〉,

where all coefficients are different and not equal to 1 in Q9. All remaining cases with
h 	= 1 and k 	= 1, that is, h = k, h = l and k = l, are equivalent to the above cases.

For presentation P3, we can see by similar arguments that we have the following relative
presentations to consider:

Q10 = 〈H, x : x2gx2kx2m〉,
Q11 = 〈H, x : x2gx2gx2m〉,
Q12 = 〈H, x : x2gx2gxlxm〉,
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Q13 = 〈H, x : x2gx2kxgxm〉,
Q14 = 〈H, x : x2gx2kxgxk〉,
Q15 = 〈H, x : x2gxhx2gxm〉,

where all coefficients in each relation are different and not equal to 1.
Thus, there is a total of 15 relative presentations Qj (1 � j � 15) to be considered

and this is done in the next section.

4. Proof of Theorem 1.1

We prove Theorem 1.1 by the following sequence of lemmas.

Lemma 4.1. The relative presentations Q4, Q10, Q11 and Q15 are aspherical.

Proof. We use the n-steps technique for the relative presentation Q4 = 〈H, x :
x3gx2kxg〉. Consider the relative presentation 〈H, y : y2k〉. This is aspherical, since the
length of the equation is less than 6. Also, this presentation defines a torsion-free group
F by [1, Theorem 1]. Consider the presentation 〈F, x : xgx2y−1〉. Then the relation
xgx2y−1 is not a proper power and has length 3, so the presentation is aspherical. There-
fore, the presentation 〈H, x, y : y2k, xgx2y−1〉 is aspherical by n steps. By solving the
second relation for y and substituting into the first, we conclude that Q4 is aspherical.
The other cases are almost the same. �

Lemma 4.2. The relative group presentations Q2, Q3 and Q8 are aspherical.

Proof. Consider the relative presentation

〈H, x : x2(xgxh)a1(xgxh)a2〉,

which, by using s = xgxh, can be transformed to

R1 = 〈H, x, s : xgxhs−1, x2sa1sa2〉.

Figure 1a shows the star complex over R1.
For Q2, with h = a2 = 1 and a1 	= 1, we assign a weight function θ in such a way that

θ(g) = θ(a1) = 0, one edge with label 1 from x−1 to x in the star complex has weight
1 and the other edges have weight 1

2 . Thus, there are no admissible cycles with weight
less than 2 to avoid a non-cyclic coefficient group, so the star complex over Q2 admits
an aspherical weight function. Thus, Q2 is aspherical.

For Q3, with h = a1 = 1 and a2 	= 1, we assign a weight function θ in such a way that
θ(g) = θ(a2) = 0, one edge with label 1 from x−1 to s in the star complex has weight
1 and the others have weight 1

2 . Then the star complex over Q3 admits an aspherical
weight function, so Q3 is aspherical.

For Q8, with a1 = a2 = 1 and h 	= 1, the weight function is given in the same way as
for Q3. This completes the proof. �

Lemma 4.3. The relative group presentations Q5, Q9, Q13 and Q14 are aspherical.
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Figure 1. Star complexes.

Proof. Consider the relative presentation

〈H, x : (xgx)xa1(xgx)hxa2〉,

which, by using s = xgx, can be transformed to

R2 = 〈H, x, s : xgxs−1, sxa1shxa2〉.

Then the star complex is shown in Figure 1b.
If g = 1 and h = a2, then the relative group presentation is exactly Q5. We assign the

weight function θ as follows: the edge with label h from x to s−1 has weight 0, edges with
label 1 from x−1 and s to x have weight 0, and the others have weight 1. The cases Q9,
with a1 = 1 and h = a2, Q13, with a2 = 1 and h 	= a1, and Q14, with a2 = 1 and h = a1,
have the same weight function, which is given as follows: θ(g) = 0 and the others have
weight 1

2 . One can show that all the star complexes admit aspherical weight functions.
This completes the proof. �

There remain just four cases Q1, Q6, Q7, and Q12: we now apply the curvature distri-
bution to these relative presentations.

One can observe that the four remaining relative presentations satisfy the condi-
tion C(3). This means that if we assume that there is a picture over Q1, Q6, Q7 or
Q12, then there is no 2-wheel on the picture. Thus, each disc on the picture is an l-wheel,
where l � 3.

Define an angle function called the standard angle function on a picture over relative
group presentations Q1, Q6, Q7 or Q12 such that each corner within a double bond has
angle 0 and every other corner has angle 2π/ deg(∆), where deg(∆) is the degree of the
disc ∆. With this angle function we have the curvature c(∆) = 0 for each disc ∆ and
any double bond is flat. Since each disc is an l-wheel, where l � 3, any n-region has the
maximum curvature

c(∆) = 2π − n

(
π − 2π

3

)
=

(6 − n)π
3

.
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Figure 2. Positive curved regions and curvature distributions.

If n � 6, then it has non-positive curvature. By the fundamental curvature formula, we
know there is at least one region with positive curvature, so the picture has at least
one 4-region. If such a 4-region contains discs ∆ with deg(∆) � 4, then the maximum
curvature

c(∆) � 2π − 4
(

π − 2π

4

)
= 0.

By the fundamental curvature formula, this leads to a contradiction. We therefore have
at least one 4-region with at least one disc containing a 3-wheel. If such a 4-region does
not exist, then we conclude that there is no picture over Q1, Q6, Q7 and Q12 and so
we can say that Q1, Q6, Q7 and Q12 are aspherical. Recall that if we read off corner
labels counterclockwise in each inner region on a picture, then the word obtained in
such a manner is the identity in H and if such a word gives us that H is cyclic, then
the relative presentation is aspherical. Therefore, we will focus on finding each possible
4-region satisfying the condition that it has no dipole and corner labels of such a 4-region
does not give that H is cyclic.

Lemma 4.4. The relative group presentation Q6 = 〈H, x : x3gxgxkxk〉 is aspherical.
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Proof. For Q6, we observe that there does not exist a 4-region without a dipole. This
proves that Q6 is aspherical. �

Lemma 4.5. The relative group presentation Q1 = 〈H, x : x4gxgxk〉 is aspherical.

Proof. Suppose that Q1 is not aspherical. First, we need to find 4-regions with at least
one 3-wheel. One can find there are four such regions without a dipole up to inversion
with corner labels 1 · 1 · g · g−1 or 1 · 1 · 1 · 1 (see Figure 2). The maximum curvature of
these regions is π/6. Define a distribution scheme as follows:

η(F, F ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π/6 if c(F ) > 0 and F is separated from F ′ by a single bond
with corner labels (g−1k)±1 or if c(F ) > 0 and F is separated
from F ′ by a double bond with corner labels (k1)±1,

0 otherwise.

Since 4-regions do not have corners with labels k±1, F ′ has at least six corners. One can
easily show that two inward bonds in F ′ are not adjacent. Now we compute the curvature
of F ′. Let n be the number of total discs in F ′, let m be the number of inwardly oriented
bonds in F ′ and let p be the number of other discs in F ′. Therefore, we have n = 2m+p,
and

c∗(F ′) � 2π − m

(
π − 2π

3

)
− m

(
π − 2π

4

)
− p

(
π − 2π

3

)
+

mπ

6

=
2π − (m + m + p)π

3

=
(6 − n)π

3
.

Since n � 6 we deduce that c∗(F ′) is non-positive. This is a contradiction. �

Lemma 4.6. The relative presentation Q12 = 〈H, x : x2gx2gxlxm〉 is aspherical.

Proof. If we suppose that Q12 is not aspherical, then there is a picture with at least
one 4-region with at least one 3-wheel up to inversion. We assign the standard angle
function to the picture. Let F be such a 4-region. Then the maximum curvature is
c(F ) = π/6 if it has a triple bond and c(F ) = π/15 otherwise. Now apply the curvature
distribution scheme to adjacent regions with at least six discs as follows. Define

η(F, F ′) =

⎧⎪⎨
⎪⎩

π/6 if c(F ) > 0 and F has a triple bond,

π/15 if c(F ) > 0 and F has a double bond,

0 otherwise.

Let m be the number of triple bonds in F ′, let n be the number of total vertices and let
p be the number of remaining vertices. So we have n = 2m + p, where p = p1 + p2. We
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Figure 3. Corner labels hg±1.

note that triple bonds are not adjacent in this case. Then

c∗(F ′) � 2π − m

(
π − 2π

3

)
− m

(
π − 2π

4

)
− p2

(
π − 2π

3

)

− p1

(
π − 2π

5

)
+

mπ

6
+

p1π

15

= 2π − (m + m + p2 + p1)π
3

− p14π

14
+

p1π

15

� (6 − n)π
3

.

Since n � 6, it is non-positive. This leads us to a contradiction. �

We will show the last relative presentation Q7 is aspherical. In this case, the argument
is a little more complicated.

Lemma 4.7. The relative presentation Q7 = 〈H, x : x3gxhxgxl〉 is aspherical.

Proof. As before, we find possible 4-regions with at least one 3-wheel up to inversion.
One can see that there are nine possible 4-regions, and they give us the following relations
in H:

(hg)±1, (hgl−1)±1, (h−1lg)±1, (h−1l2)±1, (l−1h2).

Recall that each coefficient is not the identity and any two of coefficients are not the same.
Then, it may be shown easily that two such relations are not satisfied simultaneously, thus
avoiding an infinite cyclic subgroup. We therefore observe that 4-regions with different
relations cannot be present in the same picture. Consider a spherical picture containing
the relation (hg)±1 (see Figure 3). Since any 4-region in it does not have corner labels
(l1)±1, if we apply the curvature distribution as shown in Figure 3, then the adjacent
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region F ′ has at least six corners because two bonds with corner labels 11 are not adjacent:

η(F, F ′) =

⎧⎪⎨
⎪⎩

π/6 if c(F ) > 0 and F is separated from F ′ by
a double bond with corner labels 11,

0 otherwise.

Let m be the number of discs of inwardly oriented double bonds in F ′ and let n = m+ p

be the total number of discs. Then

c∗(F ′) � 2π − m

2

(
π − 2π

3

)
− m

2

(
π − 2π

4

)
− p

(
π − 2π

3

)
+

m

2
π

6

= 2π − (m + p)
π

3

=
(6 − n)π

3
.

Since n � 6, it has a non-positive curvature. This is a contradiction. In pictures with
corner labels (l−1hg), F ′ has at least six corners because each 4-region does not have
(h−11)±1, (1l)±1. Also, two such bonds are not adjacent. In this case,

c∗(F ′) � 2π − m

(
π − 2π

4

)
− p

(
π − 2π

3

)
+

m

2
π

3

=
(6 − n)π

3
.

For the reason given above, this leads us to a contradiction.
In a picture with corner labels (h−1lg)±1, F ′ has at least six corners and two such

bonds are not adjacent. Then

c∗(F ′) � 2π − m

(
π − 2π

4

)
− p

(
π − 2π

3

)
+

m

2
π

6

� (6 − n)π
3

.

For the same reason, this leads us to a contradiction. It is shown in the same way, i.e. in
pictures with corner labels (l−1h2)±1. This completes the proof. �

We have now proved that all 15 relative group presentations are aspherical. This com-
pletes the proof of the theorem.
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