ON RADIAL VARIATION OF HOLOMORPHIC FUNCTIONS WITH l^{p} TAYLOR COEFFICIENTS

by D. J. HALLENBECK and K. SAMOTIJ
(Received 24th May 1989)

Suppose $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is holomorphic in $\Delta=\{z:|z|<1\}$ and $\left(a_{n}\right) \in l^{p}$ where $1 \leqq p \leqq 2$. We prove that $\int_{0}^{r}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{1 / k} d t=o(\log 1 /(1-r))^{1-1 / p k}$ for $k=1,2, \ldots$, and almost every θ. This result is sharp in the following sense: Let $p \in[1,2]$ and $\varepsilon(r)$ be a positive function defined on $[0,1)$ such that $\lim _{r \rightarrow 1}-a(r)=0$. Then there exists a function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ holomorphic in Δ with $\left(a_{n}\right) \in l^{p}$ such that

$$
\varlimsup_{r \rightarrow 1^{-}} \frac{\int_{0|z|=1}^{r} \min \left|f^{(k)}(z)\right|^{1 / k} d t}{\varepsilon(r)\left(\log \frac{1}{1-r}\right)^{1-1 / p k}}=+\infty
$$

for each $k>1 / p$.
1980 Mathematics subject classification (1985 Revision): 30D55.

Introduction

In this paper we determine the precise almost everywhere radial variation of all derivatives of the class of functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ holomorphic in $\Delta=\{z:|z|<1\}$ and satisfying $\left(a_{n}\right) \in l^{p}$ where $1 \leqq p \leqq 2$.

Radial variation

We first prove the following technical lemma.
Lemma 1. For each $p \in[1,2]$ and $k=1,2, \ldots$ there is a constant $A=A_{p, k}$ depending only on p and k such that for each $\left(a_{n}\right) \in l^{p}$ we have

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{1}(1-t)^{p k-1}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{p} d t d \theta \leqq A \sum_{n=k}^{\infty}\left|a_{n}\right|^{p} \tag{1}
\end{equation*}
$$

where $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, z \in \Delta$.

Proof. Let T be an operator defined by

$$
\begin{equation*}
T\left(\left(a_{n}\right)\right)=g \tag{2}
\end{equation*}
$$

where g is a function on Δ defined by

$$
\begin{equation*}
g(z)=(1-|z|)^{k} \frac{d^{(k)}}{d z^{(k)}}\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right) \tag{3}
\end{equation*}
$$

Using the facts that $\left|f^{(k)}\left(t e^{i \theta}\right)\right| \leqq \sum_{n=k}^{\infty} n^{k}\left|a_{n}\right| t^{n-k}(k=1,2, \ldots)$ and $\int_{0}^{1}(1-t)^{p k-1} t^{p(n-k)} d t=$ $O\left(1 / n^{p k}\right)$ when $p=1$ or $p=2$ it is easy to prove that

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{r}(1-t)^{p k-1}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{p} d t d \theta=0\left(\sum_{n=k}^{\infty}\left|a_{n}\right|^{p}\right) \tag{4}
\end{equation*}
$$

when $p=1$ or $p=2$. It follows from (4) that T is a bounded linear operator from l^{p} to $L^{p}(\Delta, \mu)$ for $p=1$ or $p=2$ when $d \mu=1 /(1-r) d r d \theta$. The Riesz-Thorin interpolation theorem [3] implies that T is a bounded linear operator from l^{p} to $L^{p}(\Delta, \mu)$ for all $p \in[1,2]$. Hence (1) holds and the proof is complete.

Corollary 2. If $\left(a_{n}\right) \in l^{p}, p \in[1,2]$ and $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, z \in \Delta$ then

$$
\begin{equation*}
\int_{0}^{1}(1-t)^{p k-1}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{p} d t<+\infty \tag{5}
\end{equation*}
$$

for $k=1,2, \ldots$ and almost every θ.
Proof. This follows directly from (1) by using Tonelli's theorem.
Theorem 3. If $p \in[1,2],\left(a_{n}\right) \in l^{p}, k=1,2, \ldots, k p>1$ and $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, z \in \Delta$, then

$$
\begin{equation*}
\int_{0}^{r}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{1 / k} d t=o\left(\log \frac{1}{1-r}\right)^{1-1 / p k} \tag{6}
\end{equation*}
$$

for almost every θ.
Proof. Choose $\theta \in[0,2 \pi]$ so that (5) holds. Given $\varepsilon>0$ for this θ there exists $r_{0} \in(0,1)$ so that

$$
\begin{equation*}
\int_{r_{0}}^{r}(1-t)^{p k-1}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{p} d t<\varepsilon \tag{7}
\end{equation*}
$$

for all $r>r_{0}$. It follows easily from (7) and Hölder's inequality that

$$
\begin{equation*}
\frac{1}{\left(\log \frac{1}{1-r}\right)^{1-1 / p k}} \int_{0}^{r}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{1 / k} d t \leqq \frac{1}{\left(\log \frac{1}{1-r}\right)^{1-1 / p k}}\left(\int_{0}^{r o}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{1 / k} d t\right)+\varepsilon \tag{8}
\end{equation*}
$$

for all $r>r_{0}$. It is clear that (8) implies (6) for this θ and, since (5) holds for almost every θ, this completes the proof.

Remarks. When $p=1 \quad$ we have $\int_{0}^{r}\left|f^{(1)}\left(t e^{i \theta}\right)\right| d t=0(1) \quad$ and $\quad \int_{0}^{r}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{1 / k} d t=$ $o(\log 1 /(1-r))^{1-1 / k}$ for all $k \geqq 2$ and almost every θ. For $p=2$ we have $\int_{0}^{r} f^{(k)}\left(t e^{i \theta}\right)^{1 / k} d t=$ $o(\log 1 /(1-r))^{1-1 / 2 k}$ for $k=1,2, \ldots$ and almost every θ. When $k=1$, this last result $(p=2)$ was obtained by A. Zygmund in [2, p. 196].

We note that when $p=1$ both (1) and (5) and hence (6) can be sharpened by replacing $\left|f^{(k)}\left(t e^{i \theta}\right)\right|$ by $\max _{|z|=1}\left|f^{(k)}(z)\right|$.

When $p \in[1,2], f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\left(a_{n}\right) \in l^{p}$ then it follows essentially from the Hausdorff-Young theorem that $f \in H^{q}$ when $1 / p+1 / q=1$ [1, Theorem 6.1]. Hence f has nontangential limits at $e^{i \theta}$ for almost every θ. It follows [2, p. 181-182] that $(1-r)^{k} f^{(k)}(z) \rightarrow 0$ as $z=r e^{i \theta}$ tends nontangentially to $e^{i \theta_{o}}$ for $k=1,2, \ldots$ and almost every θ_{0}. For such an f it is easy to prove that $\int_{0}^{r}\left|f^{(k)}\left(t e^{i \theta}\right)\right|^{2} d t=o\left(1 /(1-r)^{\lambda k-1}\right)$ for $k=1,2, \ldots, \lambda>1 / k$ and almost every θ. It can be proved that given $p \in[1,2], \varepsilon(r)$ a positive function defined on $[0,1)$ and satisfying $\lim _{r \rightarrow 1^{-}}(r)=0$ then there exists $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ holomorphic in Δ such that $\left(a_{n}\right) \in l^{p}$ and

$$
\varlimsup_{r \rightarrow 1^{-}} \frac{(1-r)^{\lambda k-1}}{\varepsilon(r)} \int_{0}^{r} \min \left|f_{\mid=t}^{(k)}(z)\right|^{\lambda} d t=+\infty \text { for } k=1,2, \ldots \text { and each } \theta
$$

We now finish by proving that (6) is sharp in a strong sense.
Theorem 4. Let $p \in[1,2]$ and $\varepsilon(r), 0 \leqq r<1$ be a positive function satisfying $\lim _{r \rightarrow 1}-\varepsilon(r)=0$. Then there exists a holomorphic function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in Δ with $\left(a_{n}\right) \in l^{p}$ such that

$$
\begin{equation*}
\varlimsup_{r \rightarrow 1^{-}} \frac{\int_{0|z|=t}^{r} \min \left|f^{(k)}(z)\right|^{1 / k} d t}{\varepsilon(r)\left(\log _{\frac{1}{1-r}}\right)^{1-1 / p k}}=+\infty \tag{9}
\end{equation*}
$$

for each $k>1 / p$.
Proof. The function f will be constructed in the form

$$
\begin{equation*}
f(z)=\sum_{l=1}^{\infty}\left(n_{l} 2^{l}\right)^{-1 / p} \sum_{n=n_{l}+1}^{2 n_{l}} z^{2^{i_{n}}}(z \in \Delta) \tag{10}
\end{equation*}
$$

with a suitably chosen increasing sequence $\left(n_{t}\right)$ of positive integers. Let $n_{1}=2$ and if $n_{1}, n_{2}, \ldots, n_{l-1}$ are already selected then let n_{l} be such that

$$
\begin{equation*}
\varepsilon\left(1-2^{-2^{i+i} n_{1}}\right) \leqq \frac{1}{2^{l}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s=1}^{l-1} n_{s} 2^{2 s+1 n_{s}} \leqq \frac{1}{l}\left(n_{l} 2^{l}\right)^{-1} 2^{2^{l} n_{l}} \tag{12}
\end{equation*}
$$

Clearly such a choice is possible. It is obvious that the sequence of Taylor coefficients of f belongs to l^{p}.

Let

$$
A_{m}=\left\{z \in \mathscr{C}: \frac{1}{m} \leqq 1-|z| \leqq \frac{2}{m}\right\} \quad \text { for } m=2,3, \ldots
$$

Let us fix a positive integer k such that $k>1 / p$. First we prove that if l is sufficiently large then

$$
\begin{equation*}
\left|\left(n_{1} 2^{l}\right)^{-1 / p}\left(z^{2^{2 l n}}\right)^{(k)}\right|^{1 / k} \leqq 2\left|f^{(k)}(z)\right|^{1 / k} \tag{13}
\end{equation*}
$$

for $n_{l}+1 \leqq n \leqq 2 n_{l}$ and $z \in A_{2}{ }^{2^{i n}}$.
To this end it is enough to prove that

$$
\begin{equation*}
\left|\left(n_{l} 2^{l}\right)^{-1 / p}\left(z^{2^{2^{l n}}}\right)^{(k)}\right|^{1 / k} \geqq 2 \mid f^{(k)}(z)-\left(n_{l} 2^{l}\right)^{-1 / p}\left(z^{2^{2^{l} n}(k)}\right)^{1 / k} \tag{14}
\end{equation*}
$$

with n and z as in (13).
The left hand side of (14) can be estimated from below on $A_{2}{ }^{2{ }^{2 / n}}$ as follows (we assume here that $2^{2 i}>k$):

$$
\begin{align*}
\left|\left(n_{l} 2^{l}\right)^{-1 / p}\left(z^{2^{l^{\prime} n}}\right)^{(k)}\right|^{1 / k} & \geqq\left(n_{l} 2^{l}\right)^{-1 / p k}\left(2^{2^{i n}}-k\right)\left(1-\frac{2}{2^{2_{n} l_{n}}}\right)^{\left(2^{2^{\prime} n}-k\right) 1 / k} \\
& \geqq 2^{2^{l_{n}}\left(n_{l} 2^{l}\right)^{-1 / p k}\left(e^{-2 / k}+\delta_{l}\right)} \tag{15}
\end{align*}
$$

where $\delta_{l} \rightarrow 0$ as $l \rightarrow+\infty$.
To estimate the right hand side of (14) from above on $A_{2}{ }^{2^{2 n}}$ we note that

$$
\begin{equation*}
\left|f^{(k)}(z)-\left(n_{1} 2^{l}\right)^{-1 / p}\left(z^{2^{2 / n}}\right)^{(k)}\right|^{1 / k} \leqq A^{1 / k}+B^{1 / k}+C^{1 / k} \tag{16}
\end{equation*}
$$

where

$$
\begin{gathered}
A=\left|\left(\sum_{s=1}^{l-1}\left(n_{s} 2^{s}\right)^{-1 / p} \sum_{m=n_{s}+1}^{2 n_{s}} z^{2^{2 v_{m}}}\right)^{(k)}\right|, \\
B=\left|\left(\left(n_{1} 2^{l}\right)^{-1 / p} \sum_{n_{l}+1 \leqq m>n} z^{2^{2^{2} m}}\right)^{(k)}\right| \text { and } \\
C=\left|\left(\left(n_{l} 2^{l}\right)^{-1 / p} \sum_{n>m \leqq 2 n_{l}} z^{2^{2!m}}+\sum_{s=l+1}^{\infty}\left(n_{s} 2^{5}\right)^{-1 / p} \sum_{m=n_{s}+1}^{2 n_{s}} z^{2^{2 \cdot m}}\right)^{(k)}\right| .
\end{gathered}
$$

It follows that

$$
\begin{align*}
A^{1 / k} & \leqq\left(\sum_{s=1}^{l-1}\left(n_{s} 2^{s}\right)^{-1 / p} n_{s}\left(2^{2 s \cdot 2 n_{s}}\right)^{k}\right)^{1 / k} \\
& \leqq \sum_{s=1}^{l-1} n_{s} 2^{2+\cdots n_{0}} \leqq \frac{1}{l}\left(n_{l} 2^{l}\right)^{-1 / p k} 2^{2^{\prime} n} \tag{17}
\end{align*}
$$

where the last inequality follows from (12). Also we have

$$
\begin{align*}
B^{1 / k} & \leqq\left(n_{l} 2^{l}\right)^{-1 / p k} \sum_{m=0}^{n-1}\left(2^{\left.2^{2}\right)^{m}}\right. \\
& =\left(n_{l} 2^{l}\right)^{-1 / p k} \frac{2^{2^{\prime} n}-1}{2^{2^{l}}-1}<\frac{1}{2^{2^{t}}-1}\left(n_{2} 2^{l}\right)^{-1 / p k} 2^{2^{l} n} . \tag{18}
\end{align*}
$$

To estimate $C^{1 / k}$ note that the exponents corresponding to $s>l$ are all different and all of the form $2^{2{ }^{2} m}$ with some $m>2 n_{1}$. Therefore

$$
\begin{aligned}
C^{1 / k} & \leqq\left(n_{l} 2^{l}\right)^{-1 / p k} \sum_{m=n+1}^{\infty} 2^{2^{1} m}\left(1-\frac{1}{2^{2^{\prime} n}}\right)^{2^{2^{2} m} / k-1} \\
& =\left(n_{l} 2^{l}\right)^{-1 / p k} 2^{2^{2} n}\left(1-\frac{1}{2^{2^{l_{n}}}}\right)^{-1} \sum_{m=1}^{\infty} 2^{2^{2} m}\left(\left[\left(1-\frac{1}{2^{2^{l_{n}}}}\right)^{2^{2^{2} n}}\right]^{1 / k}\right)^{2^{2^{2} m}}
\end{aligned}
$$

$$
\begin{align*}
& =\left(n_{l} 2^{2}\right)^{-1 / p k} 2^{2^{l_{n}}}\left(1-\frac{1}{2^{2^{\prime} n}}\right)^{-1} \sum_{m=1}^{\infty} 2^{2^{l_{m}}}\left(e^{-1 / k}+\gamma_{l}\right)^{2^{2 / m}} \\
& \leqq\left(n_{l} 2^{2}\right)^{-1 / p k} 2^{2^{l_{n}}}\left(1-\frac{1}{2^{2^{l_{n}}}}\right)^{-1} \sum_{j=2^{2^{l}}}^{\infty} j\left(e^{-1 / k}+\gamma_{l}\right)^{j} \\
& =\left(n_{l} 2^{2}\right)^{-1 / p k} 2^{2^{l_{n}}} \beta_{l} \tag{19}
\end{align*}
$$

where $\gamma_{l} \rightarrow 0$ and $\beta_{l} \rightarrow 0$ as $l \rightarrow+\infty$. It follows from (15), (16), (17), (18) and (19) that (14) holds. Hence (13) also holds for all sufficiently large values of l. Now fix such an l and set $r=1-2^{-2^{2+1} n_{1}}$. Then we have from (13) that

$$
\begin{align*}
\int_{0|z|=t}^{r} \min \left|f^{(k)}(z)\right|^{1 / k} d t & \geqq \sum_{n=n_{l}+1}^{2 n_{l}} \int_{1-2^{-2^{\prime \prime+}}}^{1-2^{-2 / n}} \min _{|z|=t}\left|f^{(k)}(z)\right|^{1 / k} d t \\
& \geqq \frac{1}{2} \sum_{n=n_{l}+1}^{2 n_{l}} 2^{-2^{l_{n} n}} \min _{z \in A^{22^{2 / n}}}\left|\left(n_{l} 2^{l}\right)^{-1 / p}\left(z^{2^{l^{\prime} n}}\right)^{(k)}\right|^{1 / k} \\
& \geqq \frac{1}{2} \sum_{n=n_{l}+1}^{2 n_{l}} 2^{-2^{l_{n}} 2^{2_{n} n}\left(n_{l} 2^{l}\right)^{-1 / p k}\left(e^{-2 / k}+\delta_{l}\right)} \\
& =n_{l}^{1-1 / p k} 2^{-1-l / p k}\left(e^{-2 / k}+\delta_{l}\right) . \tag{20}
\end{align*}
$$

where $\delta_{l} \rightarrow 0$ as $l \rightarrow+\infty$.
It follows from (11) and (20) that

$$
\begin{align*}
\frac{\int_{0|z|=t}^{r} \min }{}\left|f^{(k)}(z)\right|^{1 / k} d t & \geqq \frac{n_{l}^{1-1 / p k} 2^{-1-1 / p k}\left(e^{-2 / k}+\delta_{l}\right)}{\varepsilon(r)\left(\log \frac{1}{1-r}\right)^{1-1 / p k}} \\
& =\frac{\left(e^{-2 / k}+\delta_{l}\right) \cdot l}{\left.\varepsilon\left(1-2^{2^{l+1} n_{l}}\right)\left(2^{l+1} n_{l}\right)^{1-1 / p k}\right) l 2^{l} 2^{2-1 / p k}} \geqq l \cdot 2^{1 / p k-2}\left(e^{-2 / k}+\delta_{l}\right) . \tag{21}
\end{align*}
$$

since $l 2^{1 / p k-2}\left(e^{-2 / k}+\delta_{l}\right) \rightarrow+\infty$ as $l \rightarrow+\infty$ we see that (21) implies (9) and this completes the proof.

Remark. We note that for $p=2,(9)$ is a sharpening of Theorem 3 in [2, p. 196].

REFERENCES

1. P. L. Duren, Theory of H^{p} Spaces (Academic Press, 1970).
2. A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.
3. A. Zygmund, Trigonometric Series, Vol 2, 2nd Ed. (Cambridge University Press, London and New York, 1968).

Department of Mathematical Sciences
University of Delaware
Newark, Delaware 19716

Instytut Matematyki
Politechniki Wroclawskiej
Wybrzeztc St. Wyspiañskiego 27
Wroclaw
Poland

