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ON RADIAL VARIATION OF HOLOMORPHIC FUNCTIONS
WITH /' TAYLOR COEFFICIENTS

by D. J. HALLENBECK and K. SAMOTIJ

(Received 24th May 1989)

Suppose /(z) = J^0=oanz" is holomorphic in A = {r. |r |<l} and {a,,)el* where Igpg2 . We prove that
J>

0|/
(*)(re")|"*<fc = o(logl/(l-r))1~1"* for fc=l,2,..., and almost every 0. This result is sharp in the following

sense: Let pe[l,2] and e(r) be a positive function defined on [0,1) such that limr_,-e(r)=0. Then there exists
a function f(z)=Y^=oanf holomorphic in A with (an)el* such that

= + 0 0

- 1 / p k

for each k>\/p.

1980 Mathematics subject classification (1985 Revision): 3OD55.

Introduction

In this paper we determine the precise almost everywhere radial variation of all
derivatives of the class of functions /(z)=X"=oanz" holomorphic in A = {z:|z|<l} and
satisfying (an)elp where 1 ^ p ^ 2 .

Radial variation

We first prove the following technical lemma.

Lemma 1. For each pe[l ,2] and k=l ,2, . . . there is a constant A = Apk depending
only on p and k such that for each (an)elp we have

j" Ul-ty-^ite^l'dtdBZA t kl" (1)
0 O n = k

where f(z) = Y^=o,/,

475

https://doi.org/10.1017/S0013091500004879 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004879


476 D. J. HALLENBECK AND K. SAMOTIJ

Proof. Let T be an operator defined by

T{(aH))=g (2)

where g is a function on A defined by

(3)

Using the facts that \flk)(teie)\^n=kn
k\an\t

n-k (fe = l,2,...) and \1
0(i-t)

pk~1tpln'k)dt =
0(l/npk) when p= 1 or p = 2 it is easy to prove that

lit r / oo

=o( I k

when p = 1 or p = 2. It follows from (4) that T is a bounded linear operator from /" to
Lp(A,/i) for p = \ or p = 2 when dn=\j{\ — r)drdO. The Riesz-Thorin interpolation
theorem [3] implies that T is a bounded linear operator from I" to Lp(A,/i) for all
p e [ l , 2 ] . Hence (1) holds and the proof is complete.

Corollary 2. If (a.) el', pe[l,2] and /(z)=£B%<vn, zeA

I

S(\-t)»k-1\fk\teie)\''dt<+oo (5)
o

/or fe = 1,2,... and almost every 6.

Proof. This follows directly from (1) by using Tonelli's theorem.

Theorem 3. 7 / p e [ l , 2 ] , (an)elp, k=l,2,..., kp>\ and /(z)=Xn°°=o«nZn, zeA, then

(6)

for almost every 9.

Proof. Choose 0e[O,27i] so that (5) holds. Given e>0 for this 6 there exists roe(0,1)
so that

(7)
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for all r>r0. It follows easily from (7) and Holder's inequality that

J \flk)(teie)\llk dt£ f f \flk)(te">)\llk dt] + e (8)
j \l-l/p*O / j \ l- l /pk\0 /

for all r>r0. It is clear that (8) implies (6) for this 9 and, since (5) holds for almost every
9, this completes the proof.

Remarks. When p = l we have $r
o\f

n\teie)\dt = 0(l) and fo f{k)(teiB)\llkdt =
r))1-1/* for all fc_-2 and almost every 9. For p=2 we have Jo f{k)(teie)l'kdt =
r))1"1'2* for fc=l,2,... and almost every 9. When k=l, this last result (p=2)

was obtained by A. Zygmund in [2, p. 196].
We note that when p = 1 both (1) and (5) and hence (6) can be sharpened by replacing

|/<V)|bymax|2 |=t |/<*>(z)|.
When pe[l ,2], /(z) = £"=o<vn and (an)elp then it follows essentially from the

Hausdorff-Young theorem that feHq when l/p+ l/q= 1 [1, Theorem 6.1]. Hence / has
nontangential limits at em for almost every 9. It follows [2, p. 181-182] that
(1 — r)kflk)(z)-*0 as z = reiB tends nontangentially to em° for fc = l,2,... and almost every
90. For such an / it is easy to prove that $r

0\f
ik)(te")\xdt = o(l/(l-r)ik-1) for

k=l,2,...,k>l/k and almost every 9. It can be proved that given pe[l ,2], e(r) a
positive function defined on [0,1) and satisfying limP_ l- e(r) = 0 then there exists
f(z) = Y*=oanz" holomorphic in A such that (an)elp and

lira v ' — J min \f(k)(z)\x dt = + oo for k = 1,2,... and each 9.
r - l " e ( r ) 0|z |=(

We now finish by proving that (6) is sharp in a strong sense.

Theorem 4. Let pe[l ,2] and e(r), 0 g r < l be a positive function satisfying
limr^!-e(r) = 0. Then there exists a holomorphic function f(z)=Y,?=oanz" in A witn

(an)elp such that

_ ]min\fm{z)\llkdt
lim 0 | z | = l = + o o (9)

for each k > l/p.

Proof. The function / will be constructed in the form
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f(z)=fj(nl2'r1"' f Z22'"(ZGA) (10)
1=1 B = m + 1

with a suitably chosen increasing sequence (n,) of positive integers. Let «t = 2 and if
n1,n2,...,n,^1 are already selected then let n, be such that

e ( l _ 2 - 2 l + 1"')^ ̂  (11)

and

%l 2— 1 i - i 2«
2, "S2 "'g-(n,2) 2 "'. (12)

s= 1 '

Clearly such a choice is possible. It is obvious that the sequence of Taylor coefficients of
/ belongs to /".

Let

: : - ^ l - | z | g - ^ form = :
m m)

Let us fix a positive integer k such that k > 1/p. First we prove that if / is sufficiently
large then

\Z)\ \l-J)

for n,+ 1 ^n^2n, and zeA2
2'*.

To this end it is enough to prove that

\(nl2Yllp(z22ykflk^2\f(k\z)-{nl2'rl^(z22'yk)\1/k (14)

with n and z as in (13).
The left hand side of (14) can be estimated from below on A2

2'" as follows (we assume
here that 22'>k):

(15)

where <5,->0 as /-»+ oo.
To estimate the right hand side of (14) from above on A2

2'" we note that

https://doi.org/10.1017/S0013091500004879 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004879


ON RADIAL VARIATION OF HOLOMORPHIC FUNCTIONS

where

A =
//-I

( Z ( »
\ s=l

s2
1/p

2J* , ._v*>
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(16)

and

It follows that

n>m£2ni

(fc)

i - i i/t

(17)

where the last inequality follows from (12). Also we have

' n i (
m = 0

2'n (18)

To estimate C1'* note that the exponents corresponding to s>l are all different and all
of the form 22'"1 with some m > 2n,. Therefore

22'>-l
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j = 2"

(19)

where y,-»0 and 0,-*O as /-» + oo. It follows from (15), (16), (17), (18) and (19) that (14)
holds. Hence (13) also holds for all sufficiently large values of /. Now fix such an / and
set r= 1 -2~2 ' + l 1" . Then we have from (13) that

r 2n, I_2-Jl"

$min\fk\z)\ilkdt^ X I min|/(l[)(z)|1/'Idt
0 | z | = ( n = n,+ l i _2 - i ' - * 1 | z | = f

where (5,->0 as 1-* + oo.
It follows from (11) and (20) that

"2'"

2 n = ni

\ °l-r

since /21/p*~2(c"2/([ + 5,)-> + oo as /-+ + oo we see that (21) implies (9) and this completes
the proof.

Remark. We note that for p = 2, (9) is a sharpening of Theorem 3 in [2, p. 196].
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