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Abstract

We provide sufficient conditions for the following types of random variable to have the
increasing-failure-rate (IFR) property: sums of a random number of random variables;
the time at which a Markov chain crosses a random threshold; the time until a random
number of events have occurred in an inhomogeneous Poisson process; and the number
of events of a renewal process, and of a general counting process, that have occurred by
a randomly distributed time.
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1. Introduction and summary

The increasing-failure-rate (IFR) property is a well-known and useful concept in reliability
theory, dynamic programming, and other areas of applied probability and statistics (see Shaked
and Shanthikumar (1994) and Barlow and Proschan (1975)). In much of the literature, it appears
as a condition that enables one to prove inequalities, to show structural results of optimal policies
in models of manufacturing systems, and so on.

In this paper, we consider a variety of models in applied probability and focus on finding
conditions under which certain random variables of interest have the IFR property (or ‘are
IFR’).

In Section 2, we define the notation used throughout the paper, give definitions of relevant
stochastic orderings, and list some useful results related to these concepts, which can be found
in Shaked and Shanthikumar (1994). Kijima (1989) considered a Markov chain having the
property that the larger is the current state then the larger, in the sense of reversed hazard rate
order, will be the next state. Starting from a minimum state of such a chain, Kijima showed that
the time at which the chain first crosses a fixed state is IFR (see also Shaked and Shanthikumar
(1988) and Li and Shaked (1997)). This result implies that the number of events of a renewal
process before a fixed time is IFR whenever the underlying interarrival time has a decreasing
reversed hazard rate (DRHR) distribution. In Section 3, we prove a general theorem which
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implies that a renewal process having a DRHR interarrival distribution has the property that
the number of its events occurring before a random IFR-distributed time (independent of the
renewal process) is itself IFR.

In Section 4, we give a Markov chain application of this theorem. Specifically, we show that
if the next state of the Markov chain, as a stochastic function of the current state, is increasing
in the sense of reversed hazard rate order, and if the increment from the current state to the
next state is increasing in the sense of stochastic order, then, starting from a minimum state of
the chain, the time that the chain first crosses a random IFR-distributed state is itself IFR. The
same condition was used in Li and Shaked (1997) to demonstrate a different result.

For a parallel system of identically distributed items, it is well known that the number of
item failures before a fixed time is IFR (specifically, it is binomially distributed). In Section 5,
we show that the number of failures before a random time is also IFR, provided that the ratio
of the hazard rate functions of this random time to the underlying item lifetimes is increasing.
We also consider inhomogeneous Poisson processes in Section 5. Whereas it is known that the
number of arrivals before a fixed time is IFR (specifically, it is Poisson distributed), we show
that the number of arrivals before a random time is IFR provided that the ratio of the hazard rate
function of the random time to the intensity function of the inhomogeneous Poisson process is
increasing.

In Section 6, we prove IFR results in two models. In the first model, an urn contains target
balls, each of which has weight w, and nontarget balls, each of which has weight 1. Balls are
randomly withdrawn in a manner such that the probability that any remaining ball is the next
to be removed is given by its weight divided by the sum of the weights of all balls that remain.
The withdrawals continue until all the target balls have been removed. For this model, we prove
that the total number of nontarget balls that are removed from the urn is IFR. The second model
is a coalescing model, in which a specified number of balls are put into boxes, with each ball’s
box being both independently chosen and equally likely to be any of the boxes. All balls falling
into the same box are then coalesced (or merged) into a single ball, and the process repeats
itself (possibly with fewer balls). We show that the number of balls that remain after k stages
is IFR and that the number of repeats until all balls have coalesced into one ball is IFR.

Barlow and Proschan (1975) showed that the sum of a fixed number of independent IFR
random variables is IFR, Shanthikumar (1988) showed that the sum of a geometric number of
independent, identically distributed decreasing-failure-rate (DFR) random variables is DFR,
and Kijima (1992) showed that, for a renewal process with independent, identically distributed
and DFR or IFR interarrival times whose distribution is of continuous phase type with two
phases, the associated renewal density is respectively decreasing or increasing. In Section 7, we
show that the sum of a random IFR-distributed number of heterogeneous exponential random
variables is IFR provided that the rates of the exponential random variables are increasing.
Similarly, the sum of a random DFR-distributed number of heterogeneous exponential random
variables is DFR provided that the rates of the exponential random variables are decreasing.
Therefore, an IFR-distributed sum of a sequence of heterogeneous IFR random variables may
be strictly DFR (note that geometric and exponential random variables are both IFR and DFR).

For an inhomogeneous Poisson process with intensity function λ(t), let R(t) = ∫ t

0 λ(s) ds.
Pellery et al. (2000) showed that if R(t) and λ(t)e−R(t) are both log-concave, then the epoch
time of a fixed number of arrivals is a random variable with the increasing likelihood ratio
(ILR) property, which is a stronger property than IFR. Also, Kochar (1990) showed that if λ(t)

is increasing, then the epoch time of a fixed number of arrivals is IFR. We generalize this to
show that if λ(t) is increasing, then the epoch time of a random IFR-distributed number of
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arrivals is IFR. Similarly, if λ(t) is decreasing then the epoch time of a random DFR-distributed
number of arrivals is DFR.

2. Preliminaries

In this paper, we assume all random variables to be nonnegative, and write X
d= Y to indicate

that the random variables X and Y have the same distribution. For any random variable X, we
define

FX(x) = P(X ≤ x), x ≥ 0,

F̄X(x) = 1 − FX(x), x ≥ 0,

F−1
X (u) = sup{y : FX(y) ≤ u}, u ∈ [0, 1].

The following lemma is a known result.

Lemma 2.1. For any random variable X, if U is a uniform[0, 1] random variable then

F−1
X (U)

d= X.

If X is a continuous random variable, we use fX(·) to denote its probability density function.
If X is a discrete random variable, we use (pX(·)) to denote its probability mass function. We
will use f (x) ↑ x to mean that the function f is nondecreasing in x from below, and f (x) ↓ x

to mean that f is nonincreasing in x from below.

Definition 2.1. For any continuous random variable X, we define its hazard rate function and
reversed hazard rate function as

rX(x) = fX(x)

F̄ (x)
and qX(x) = fX(x)

FX(x)
,

respectively. We say that X is IFR if rX(x) ↑ x, DRHR if qX(x) ↓ x, DFR if rX(x) ↓ x, and
ILR if fX(x) is log-concave in x.

Definition 2.2. For any continuous random variables X and Y , we define the following stochas-
tic orderings.

(a) X ≤st Y if F̄X(x) ≤ F̄Y (x) for all x ∈ R
+.

(b) X ≤lr Y if fY (x)/fX(x) ↑ x.

(c) X ≤hr Y if rX(x) ≥ rY (x) for all x ∈ R
+.

(d) X ≤rh Y if qX(x) ≤ qY (x) for all x ∈ R
+.

If we use the variable i with domain Z
+ to replace x with domain R

+, and use pX(·) to
replace fX(·), we can define the same rate concepts and stochastic orderings for discrete random
variables.

Suppose that {Xr}r∈S is a set of random variables, where S is an ordered set. In the following,
we will write Xr ↑ r to indicate that Xr1 ≤ Xr2 almost surely for all r1 < r2, and write Xr ↑st r

to indicate that Xr1 ≤st Xr2 for all r1 < r2 (i.e. Xr is nondecreasing in r in the ‘st’ ordering
sense). Other ordering notation is similarly defined. We use [X | A] to denote the random
variable X conditioned on A.
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Chapter 1 of Shaked and Shanthikumar (1994) contains proofs of the following four lemmas.

Lemma 2.2. For a random variable X, that X is ILR implies that X is both IFR and DRHR,
and X is IFR if and only if [X − x | X > x] ↓st x.

It is easy to check that geometric and exponential random variables are ILR and, thus, that
they are both IFR and DRHR.

Lemma 2.3. For random variables X and Y , if X ≤lr Y then X ≤hr Y and X ≤rh Y .
Furthermore, if X ≤hr Y or X ≤rh Y then X ≤st Y .

Lemma 2.4. For random variables X and Y ,

X ≤st Y ⇔ F−1
X (u) ≤ F−1

Y (u) for all u ∈ [0, 1]
⇔ there exist an X̄

d= X and a Ȳ
d= Y such that X̄ ≤ Ȳ almost surely

⇔ E f (X) ≤ E f (Y ) for all f (x) ↑ x.

Lemma 2.5. For any random variable X, we have [X | X ≤ x] ↑st x, and for random
variables X and Y , if X ≤rh Y then [X | X ≤ x] ≤rh [Y | Y ≤ x] for all x.

3. IFR property of counting at random times

Lemma 3.1. Suppose that V , W , and T are continuous random variables such that T is
independent of (V , W) and W ≥ V almost surely. Also suppose that Z : d= [V | T ≥ V ]
and that U1 and U2 are uniform[0, 1] random variables. Define Wx = F−1

[W−x | V =x](U1)

and T x = F−1
[T −x | T ≥x](U2). If Z, U1, and U2 are independent, then

[(W − V, T − V ) | T ≥ V ] d= (WZ, T Z).

Proof. By conditioning on the value of V in [(W − V, T − V ) | T ≥ V ], we have

P(W − V ≤ x, T − V ≤ y | T ≥ V )

=
∫

z

P(W − z ≤ x, T − z ≤ y | T ≥ z, V = z)f[V | T ≥V ](z) dz

=
∫

z

P(W − z ≤ x | V = z) P(T − z ≤ y | T ≥ z)f[V | T ≥V ](z) dz

=
∫

z

P(Wz ≤ x) P(T z ≤ y)fZ(z) dz

=
∫

z

P(Wz ≤ x, T z ≤ y)fZ(z) dz

= P(WZ ≤ x, T Z ≤ y),

from which the result follows.

Lemma 3.2. If X ≤rh Y and T is independent of (X, Y ), then [T | T ≥ X] ≤lr [T | T ≥ Y ]
and, thus, [T | T ≥ X] ≤st [T | T ≥ Y ].

Proof. The result follows directly from the densities of [T | T ≥ X] and [T | T ≥ Y ] and
the fact that, since X ≤rh Y , we have FY (x)/FX(x) ↑ x (see Theorem 1.B.14 of Shaked and
Shanthikumar (1994)).

https://doi.org/10.1239/jap/1127322028 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1127322028


On IFR random variables 801

Lemma 3.3. If X ≤rh Y and T is independent of (X, Y ), then [X | T ≥ X] ≤st [Y | T ≥ Y ].
Proof. Define T1 = [T | X ≤ T ] and T2 = [T | Y ≤ T ]. From Lemma 3.2, we obtain

T1 ≤st T2 and, thus, we can assume that T1 ≤ T2 almost surely (from Lemma 2.4). Let U be a
uniform[0, 1] random variable independent of T1 and T2, and define Xx = F−1

[X | X≤x](U) and
Yx = F−1

[Y | Y≤x](U). Thus, Xx ≤ Yx for all x (by Lemmas 2.5 and 2.4) and Yx ↑ x (by
Lemmas 2.5 and 2.1), meaning that

XT1 ≤ YT1 ≤ YT2 .

Using the method of Lemma 3.1, we can prove that [X | X ≤ T ] d= XT1 and [Y | Y ≤ T ] d=
YT2 . Then, since XT1 ≤ YT2 , we have [X | X ≤ T ] ≤st [Y | Y ≤ T ] (by Lemma 2.4).

Consider a random sequence {Si}i≥1 with Si ↑ i, and define N(t) = sup{i : Si ≤ t}. The
following lemma shows that, for a sequence of independent and IFR or DRHR interarrival
random variables, the number of arrivals up to a fixed time is nondecreasing in this fixed time
in the reversed hazard ratio ordering sense or the hazard ratio ordering sense, respectively.

Lemma 3.4. Let {Xi}i≥1 be a sequence of independent IFR or DRHR random variables, let
S0 = 0, and let Sn = ∑n

i=1 Xi, n ≥ 1. Then N(t) ↑rh t or N(t) ↑hr t , respectively.

Proof. Using the facts that Sn ≤hr Sn+1 (see Theorem 1.B.7 of Shaked and Shanthikumar
(1994)) and {N(t) < n} = {Sn > t}, we have

P(N(t1) < n)

P(N(t2) < n)
= P(Sn > t1)

P(Sn > t2)
≤ P(Sn+1 > t1)

P(Sn+1 > t2)
= P(N(t1) < n + 1)

P(N(t2) < n + 1)

for t2 < t1. From Theorem 1.B.14 of Shaked and Shanthikumar (1994), it follows that N(t2) ≤rh
N(t1). The DRHR result can be proved similarly.

We now prove an important theorem that is used extensively throughout the paper.

Theorem 3.1. The random variable N(T ) is IFR if the following conditions are satisfied:

(a) T is IFR and independent of {Si}i≥1;

(b) Si ↑rh i;

(c) [Si+1 − Si | Si = x] ≤st [Sj+1 − Sj | Sj = y] for all j > i and y ≥ x ≥ 0.

Proof. Define Zi = [Si | Si ≤ T ], i ≥ 1. Then Zi ↑st i and, so (by condition (b) and
Lemma 3.3), we can assume that Zi ↑ i (by Lemma 2.4). Let U1 and U2 be uniform[0, 1]
random variables independent of one another and {Zi}i≥1, and define

T x = F−1
[T −x | T ≥x](U1) and Sx

i+1 = F−1
[Si+1−x | Si=x](U2)

for all i ≥ 1. Then T Zi ↓ i (by condition (a) and Lemma 2.2) and S
Zi

i+1 ≤ S
Zj

j+1 for all i < j

(by condition (c) and the fact that Zi ↑ i), and, thus,

{SZi

i+1 ≥ T Zi } ⊆ {SZj

j+1 ≥ T Zj }.
However, by Lemma 3.1 we have

[(Si+1 − Si, T − Si) | T ≥ Si] d= (S
Zi

i+1, T
Zi ),

[(Sj+1 − Sj , T − Sj ) | T ≥ Sj ] d= (S
Zj

j+1, T
Zj ),
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so, for all i < j ,
rN(T )(i) := P(N(T ) = i | N(T ) ≥ i)

= P(Si+1 > T | Si ≤ T )

= P(Si+1 − Si > T − Si | Si ≤ T )

= P(S
Zi

i+1 ≥ T Zi )

≤ P(S
Zj

j+1 ≥ T Zj )

= P(Sj+1 > T | Sj ≤ T )

= rN(T )(j).

It follows that N(T ) is IFR.

The following corollary shows that if all elements of a sequence of stochastically nonde-
creasing, independent interarrival random variables have decreasing reversed hazard rates, then
the number of arrivals before an IFR random time is itself IFR.

Corollary 3.1. If Xi ↑st i and Xi is DRHR for all i, T is IFR. If {Xi}, i ≥ 1, and T are all
independent, then sup{i : ∑i

k=1 Xk ≤ T } is IFR.

Proof. Since the Xi are all DRHR, we have
∑i

k=1 Xk ↑rh i (see Theorem 1.B.25 of Shaked
and Shanthikumar (1994)). Thus, the conditions of Theorem 3.1 are all satisfied, proving the
result.

This corollary shows that, for a renewal process with DRHR interarrival distribution, the
number of arrivals till a random time is itself IFR if this random time is an IFR random variable.

All above results remain true when the Si , the Xi , and T are discrete: the proofs follow the
same steps.

4. Application to the first passage time of Markov chains

Lemma 4.1. Suppose that �1, �2, and X(θ), θ ≥ 0, are all nonnegative random variables. If
�1 ≤rh �2 and X(θ) ↑rh θ , then X(�1) ≤rh X(�2).

The proof follows from that of Lemma 2.1 of Shanthikumar (1988) by letting tij = 1{j≥i}
and t−1

ij = 1{i=j} − 1{j=i+1} (in the latter proof), where 1A is the indicator of the event A.
Let {Xi

n}n≥0 be a Markov chain with state space {1, . . . , M} (M could be infinite) and
transition matrix P , and start from state i, i.e. Xi

0 = i.

Lemma 4.2. If Xi
1 ↑rh i then

(a) �1 ≤rh �2 implies that X
�1
n ≤rh X

�2
n for all n ≥ 0, and

(b) X1
n ↑rh n.

Proof. (a) The result is trivial for n = 0. Suppose the result is true for n = k, and
define Y (i) = Xi

1. Then, by the Markov property, we have X
�j

k+1
d= Y (X

�j

k ), j = 1, 2.

Thus, X
θ1
k ≤rh X

�2
k by induction, and we obtain X

�2
k+1 ≤rh X

�1
k+1 from Lemma 4.1.

(b) Clearly, X1
0 = 1 ≤rh X1

1, so, by the result we have just proved and the Markov property,

we have X1
n ≤rh X

X1
1

n
d= X1

n+1.
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Define T = inf{n : X1
n = M} to be the time that the Markov chain first reaches the maximum

state if it started from the minimum state. Theorem 5.1 of Kijima (1989) shows that, if the
one-period end state (i.e. the state at time 1) is nondecreasing in the starting state, in the sense
of reversed hazard ratio ordering, then T is an IFR random variable. This is our next theorem,
which we prove using a new approach.

Theorem 4.1. If Xi
1 ↑rh i then T is IFR.

Proof. Without loss of generality, we assume M to be the absorbing state, i.e.

P(XM
1 = M) = 1,

and write
X̄1

n = [X1
n | X1

n ≤ M − 1].
Then, by Lemma 4.2 and Lemma 2.5, we have X̄1

n ↑rh n and, thus, X
X̄1

n

1 ↑st n by Lemma 4.2.
Hence,

P(T = n | T ≥ n) = P(X1
n = M | X1

n−1 ≤ M − 1)

= P(X
X̄1

n−1
1 = M)

= P(X
X̄1

n−1
1 ≥ M).

Since P(X
X̄1

n−1
1 ≥ M) ↑ n, this shows that T is IFR.

The following corollary shows that the number of periods elapsed until the Markov chain,
beginning from the maximum state, first reaches the minimum state is IFR, provided that the
one-period end state is increasing in starting state, in the sense of hazard ratio ordering.

Corollary 4.1. For finite M , let T̂ = inf{n : XM
n = 1}. If Xi

1 ↑hr i then T̂ is IFR.

Proof. Let X̄i
n = M + 1 − XM+1−i

n and apply Theorem 4.1 to {X̄1
n}n≥0.

Alternatively, assume that the state space is Z+ and define R = inf{n : X1
n > N}. The

following theorem shows that if the random threshold N is an IFR random variable, the one-
period state increment of the Markov chain is stochastically increasing in the starting state, and
the one-period end state is increasing in the starting state in the sense of reversed hazard ratio
ordering, then the number of periods needed to cross N is IFR.

Theorem 4.2. Let N be a random variable, independent of {X1
n}n≥0, satisfying the following

conditions:

(a) N is IFR;

(b) Xi
1 − i ↑st i;

(c) Xi
1 ↑rh i.

Then R is IFR.

Proof. From Lemma 4.2, we have X1
n ↑rh n. Since 1 is the minimum state of the Markov

chain, it follows from condition (b) that

P(Xi
1 − i ≥ 0) ≥ P(X1

1 − 1 ≥ 0) = 1;
then Xi

1 ≥ i almost surely, which implies that X1
n ↑ n. If we take Sn = X1

n and T = N in
Theorem 3.1 then, by the Markov property, we find that R − 1 and, thus, R are IFR.
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Example 4.1. Suppose that Xi
1 = i + Poisson(λi), where λi ↑ i. Then, for any IFR random

variable N independent of {X1
n}n≥0, R = inf{n : X1

n ≥ N} is also IFR.

5. Parallel systems and inhomogeneous Poisson processes

Consider a system of n items working in parallel. The items’ lifetimes, X1, . . . , Xn, are
independent and identically distributed with distribution F . Let T be a nonnegative random
variable, independent of the lifetimes, with distribution G, and denote by N(T ) the number of
item failures by time T .

Corollary 5.1. If X1 is Exp(λ) and T is IFR, then N(T ) is IFR.

Proof. Since the interfailure times of independent, exponentially distributed lifetimes are
independent and exponentially distributed, with parameter (n − i + 1)λ for the ith interfailure
time, the result follows from Corollary 3.1.

Let rF (x) and rG(x) denote the failure rate functions of F and G, respectively. Then, using
the above corollary, we can prove a stronger result: the number of item failures before a random
time is IFR if the ratio of the failure rate function of this random time to the item lifetime is
nondecreasing.

We denote by (f (x))′x the derivative of f (x) with respect to x from below.

Theorem 5.1. For arbitrary distributions F and G, if rG(x)/rF (x) ↑ x then N(T ) is IFR.

Proof. Suppose that H is the distribution function of an Exp(1) random variable; then the
H−1(F (Xi)) are also Exp(1) random variables. The number of items failing before time T

is the same as the number of Xi for which H−1(F (Xi)) is less than H−1(F (T )), so, by the
previous corollary, we need only prove that H−1(F (T )) is IFR. However, we note that

P(H−1(F (T )) > x) = P(T > F−1(H(x))) = Ḡ(F−1(H(x))),

(− P(H−1(F (T )) > x))′x = g(F−1(H(x)))
h(x)

f (F−1(H(x)))

= g(F−1(H(x)))
1 − H(x)

f (F−1(H(x)))
,

where, in the final equality, we have used h(x) = e−x = 1 − H(x). If we write F−1(H(x)) =
y(x) then 1 − H(x) = 1 − F(y(x)) and, thus, the failure rate function of H−1(F (T )) is

rG(y(x))
1 − F(y(x))

f (y(x))
= rG(y(x))

rF (y(x))
.

Clearly, y(x) ↑ x and, thus, from rG(x)/rF (x) ↑ x it follows that rG(y(x))/rF (y(x)) ↑ x.
This proves that N(T ) is IFR.

From Corollary 3.1, we obtain the following result.

Corollary 5.2. If {N(t)}t≥0 is a homogeneous Poisson process andT is an IFR random variable
independent of {N(t)}t≥0, then N(T ) is IFR.

We now prove a more general result: the number of arrivals in an inhomogeneous Poisson
process before a random time is IFR if the ratio of the failure rate function to the arrival intensity
function is nondecreasing.
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Theorem 5.2. Suppose that {N(t)}t≥0 is an inhomogeneous Poisson process with intensity
function λ(t), and that T is a random variable, independent of {N(t)}t≥0, with distribution G

and failure rate rG(t). If rG(t)/λ(t) ↑ t then N(T ) is IFR.

Proof. Let m(t) = ∫ t

0 λ(t) dt and let {N∗(t)}t≥0 be a homogeneous Poisson process with
rate 1. Then {N∗(m(t))}t≥0

d= {N(t)}t≥0 and, thus, N∗(m(T ))
d= N(T ). To prove that N(T )

is IFR, it is therefore enough to prove that m(T ) is IFR, by the previous corollary. To this end,
we note that

P(m(T ) > x) = P(T > m−1(x)) = Ḡ(m−1(x)),

(− P(m(T ) > x))′x = g(m−1(x))

m′(m−1(x))
= g(m−1(x))

λ(m−1(x))
,

rm(T )(x) = (− P(m(T ) > x))′x
P(m(T ) > x)

= rG(m−1(x))

λ(m−1(x))
.

Clearly m−1(x) ↑ x, and, thus, rG(m−1(x))/λ(m−1(x)) ↑ x since rG(t)/λ(t) ↑ t . This proves
that N(T ) is IFR.

6. Ball drawing and ball dropping models

6.1. Ball drawing model

Suppose that an urn contains balls numbered 1, . . . , n+m, with ball i having weight wi . Balls
are sequentially drawn, without replacement, from the urn according to the following scheme:
the probability that a ball still in the urn is drawn next is equal to its weight divided by the sum
of the weights of all balls still in the urn. Define Ac = {1, . . . , m} and A = {m+1, . . . , m+n}.
We are interested in the number of balls in Ac, say N , that have been withdrawn once all the
balls in A have been drawn. Below, we show that this random variable is IFR.

Let N1(t), N2(t), . . . , Nm+n(t) be independent homogeneous Poisson processes with rates
w1, w2, . . . , wm+n, respectively. Denote by T i

1 the first event time in process i. If we order
the T i

1 , i = 1, . . . , m + n, by magnitude, then the ball drawing process is probabilistically
equivalent to the index process ik, k = 1, . . . , m + n (i.e. T

ik
1 is the kth smallest of the T i

1 ).
Assume that T = max{T i

1 : i ∈ {m + 1, . . . , m + n}}, in which case N
d= ∑m

i=1 1{T i
1 ≤T }.

Theorem 6.1. If w1 = w2 = · · · = wm and wm+1 = · · · = wm+n, then N is IFR.

Proof. Since T is the maximum of independent, identically distributed IFR random vari-
ables, it is itself IFR (see Example 9.24 of Ross (2000)). Hence, from Corollary 5.1 we find
that N

d= ∑m
i=1 1{T i

1 ≤T } is IFR.

In this model, it is easy to calculate the first two moments of N and, thus, using the results
of Barlow and Marshall (1964), (1965), to bound the distribution of N .

6.2. Ball dropping model (coalescing model)

In this model, m balls are dropped into n boxes independently and with equal probability.
The balls that fall in the same box coalesce into one, and the remaining balls are then removed
and the process repeated until only one ball remains. We are interested in the following random
variables:

(a) the number of balls remaining, Nm
k say, after k repetitions;

(b) the number of repetitions required before one ball remains, i.e. N = inf{k : Nm
k = 1}.
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Li and Shaked (1997) gave many nice results about this model. Here, we show that the above
random variables are both IFR.

Theorem 6.2. Nm
k , k ≥ 1, and N are IFR random variables.

Proof. At each discrete time, we drop one ball into the boxes with equal probability.
Therefore, the time at which a dropped ball first hits a nonempty box is 1, and the time between
the dropped balls hitting the j th and (j + 1)th nonempty boxes is geometric((n − j)/n),
j = 1, . . . , n − 1. This is stochastically increasing and DRHR in j . Thus, by Corollary 3.1,
the number of nonempty boxes at an IFR time is itself IFR, i.e. NT

1 is IFR for any IFR T . Thus,
Nm

1 is IFR since the number of dropped balls is deterministic in m (we can actually prove that
Nm

1 is ILR) and, by induction, we find that Nm
k

d= N1
Nm

k−1 is IFR.
Since the geometric distribution is DRHR, we obtain Ni

1 ↑hr i (by Lemma 3.4). If we treat
Nm

k as a Markov chain with time k, then, by Corollary 4.1, we find that N is IFR.

7. IFR property of random sums and random epoch times

We are now ready to prove that the sum of a random IFR-distributed number of heteroge-
neous exponential random variables is itself IFR, provided that the rates of the exponential
random variables are increasing. Similarly, the sum of a random DFR-distributed number of
heterogeneous exponential random variables is DFR, provided that the rates of the exponential
random variables are decreasing.

Theorem 7.1. Suppose that Xi has distribution Exp(λi), i ≥ 1, and that T and Xi , i ≥ 1, are
independent of one another.

(a) If λi ↑ i and T is discrete and IFR, then
∑T

i=1 Xi is IFR.

(b) If λi ↓ i and T is discrete and DFR, then
∑T

i=1 Xi is DFR.

Proof. (a) Let Sn = ∑n
i=1 Xi and N(t) = max{i : Si ≤ t}, and write T n = [T −n | T ≥ n].

Then
n+T n∑
i=n+1

Xi ↓st n

since T n, Xn ↓st n, meaning that

P

( n+T n∑
i=n+1

Xi > y

)
↓ n.

For x < z, we have N(x) ≤rh N(z) by Lemma 3.4, which gives

[N(x) | T > N(x)] ≤st [N(z) | T > N(z)] by Lemma 3.3.

Therefore, by Lemma 2.4, we have

∑
n

P

( n+T n∑
i=n+1

Xi > y

)
P(N(x) = n | T > N(x))

≥
∑
n

P

( n+T n∑
i=n+1

Xi > y

)
P(N(z) = n | T > N(z)).
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Hence, for all x < z, we have

P

( T∑
i=1

Xi − x > y

∣∣∣∣
T∑

i=1

Xi > x

)
= P

( T∑
i=1

Xi − x > y

∣∣∣∣ N(x) < T

)

=
∑
n

P

( T∑
i=n+2

Xi + (Sn+1 − x) > y

∣∣∣∣ N(x) = n, T > n

)
P(N(x) = n | T > N(x))

=
∑
n

P

( n+T n∑
i=n+1

Xi > y

)
P(N(x) = n | T > N(x))

≥
∑
n

P

( n+T n∑
i=n+1

Xi > y

)
P(N(z) = n | T > N(z))

= P

( T∑
i=1

Xi − z > y

∣∣∣∣
T∑

i=1

Xi > z

)
.

The third equality follows from the fact that

[(T − n, Sn+1 − x) | T > n, N(x) = n] d= (T n, Xn+1),

by the memoryless property of exponential random variables, and the fact that T is independent
of Sn and Xn+1. Thus,

∑T
i=1 Xi is IFR.

(b) This part can be proved similarly, except now T n ↑st n and Xn ↑st n, and the direction of
the relevant inequalities must be changed.

Example 7.1. Let X1
d= Exp(λ), Xi

d= Exp(1), i ≥ 2, T
d= geometric(p), and assume that

these random variables are independent of one another. Since [T − 1 | T > 1] d=geometric(p),
by the memoryless property of geometric random variables, it is easy to check that

[T −1∑
i=1

X1+i

∣∣∣∣ T > 1

]
d= Exp(p).

Therefore, we have

T∑
i=1

Xi = X1 +
T −1∑
i=1

X1+i 1{T >1}
d= X1 + Ŷ 1{T >1},

where Ŷ is an Exp(p) random variable independent of X1 and T . If we assume that p 
= λ then

P

( T∑
i=1

Xi > x

)
= P(X1 + Ŷ 1{T >1} > x)

= P(X1 > x) +
∫ x

0
λe−λt P(X1 + Y > x, T > 1 | X1 = t) dt

= 1 − e−λx +
∫ x

0
λe−λt (1 − p)e−p(x−t) dt

= λ(1 − p)

λ − p
e−px + p(λ − 1)

λ − p
e−λx.
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The failure rate function of
∑T

i=1 Xi is therefore given by

p + p(λ − 1)

p(λ − 1)/(λ − p) + [λ(1 − p)/(λ − p)]e(λ−p)x
.

Since e(λ−p)x/(λ − p) ↑ x when λ 
= p, it follows from Theorem 7.1 that if λ ≥ 1, then
the failure rate function is nonincreasing, and that if λ ≤ 1, then the failure rate function is
nondecreasing.

Example 7.2. Let Xi , i ≥ 1, be independent, identically Exp(λ)-distributed random variables,
and let T be a geometric random variable independent of Xi, i ≥ 1. Then

(a) max{X1, . . . , XT } is IFR, and

(b) T max{X1, . . . , XT } is DFR.

To see this, consider a parallel system with n items whose lifetimes are X1, . . . , Xn, re-
spectively. Then max{X1, . . . , Xn} is the time until the last item failure. Since the first failure
time is an Exp(nλ) random variable and the time between the ith failure and (i + 1)th failure,
i = 1, . . . , n − 1, is an Exp((n − i + 1)λ) random variable, we have

[max{X1, . . . , XT } | T = n] d=
n∑

i=1

Yi,

where Yi is an Exp(iλ) random variable. Hence, max{X1, . . . , XT } d= ∑T
i=1 Yi and, by

Theorem 7.1(a), we find that max{X1, . . . , XT } is an IFR random variable.

Since [T Xi | T = n] d= Exp(λ/n), by using a similar argument we have

[T max{X1, . . . , XT } | T = n] d=
n∑

i=1

Zi,

where Zi is an Exp(λ/i) random variable. Hence, T max{X1, . . . , XT } d= ∑T
i=1 Zi and, by

Theorem 7.1(b), we conclude that T max{X1, . . . , XT } is a DFR random variable.

We now show that if the arrival rate of an inhomogeneous Poisson process is increasing, then
the epoch time of a random IFR-distributed number of arrivals is itself IFR. Similarly, if the
arrival rate is decreasing then the epoch time of a random DFR-distributed number of arrivals
is DFR.

Theorem 7.2. Let λ(t) be the intensity function of an inhomogeneous Poisson process
{N(t)}t≥0, and let Sn be the nth event arrival time of this process. Assume that T is a discrete
random variable independent of N(t), t ≥ 0.

(a) If λ(t) ↑ t and T is IFR, then ST is IFR.

(b) If λ(t) ↓ t and T is DFR, then ST is DFR.

The theorem can be proved using a technique similar to that used in the previous theorem,
involving the independent increment property of Poisson processes. However, the following
proof is more instructive.
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Proof of Theorem 7.2. (a) Again let m(t) = ∫ t

0 λ(t) dt , meaning that {N(m−1(t))}t≥0 is a
homogeneous Poisson process with rate 1. Thus, if S̄n is the nth arrival time of {N(m−1(t))}t≥0,
then Sn = m−1(S̄n) is the nth arrival time of {N(t)}t≥0. Therefore,

P(ST > x) = P(m−1(S̄T ) > x) = P(S̄T > m(x)),

fST
(x) = fS̄T

(x)m′(x),

rST
(x) = rS̄T

(m(x))m′(x) = rS̄T
(m(x))λ(x).

Hence, to prove the theorem, it is enough to show that rS̄T
(m(x))λ(x) ↑ x. From Theorem 7.1

we know that rS̄T
(x) ↑ x since S̄T is the sum of T Exp(1) random variables and because

m(x) ↑ x. Thus, from the assumption that λ(x) ↑ x, we find that ST is IFR.

(b) This part can be similarly proved using λ(x) ↓ x and the fact that S̄T is DFR (see
Theorem 7.1).
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