Bull. Austral. Math. Soc. Vol. 40 (1989) [363-364]

ON A PROBLEM OF SZÁSZ

Yasuyuki Hirano

Dedicated to Professor Miyuki Yamada on his 60th birthday.

Let R be a ring with centre Z. In this note, we prove the following: If the additive group Z^+ of Z has finite group-theoretic index in R^+ , then R has an ideal I contained in Z such that R/I is a finite ring. This is a solution of a problem posed by F.A. Szász.

Throughout this note, R denotes a ring with centre Z. We write R^+ for the additive group of R, and C(R) for the commutator ideal of R.

In Problem 84 of [1], F.A. Szász asks: In which rings R has the additive group Z^+ of the centre Z, a finite group-theoretic index in R^+ ? We show that such a ring R has an ideal I contained in Z such that R/I is a finite ring.

We begin with the following

PROPOSITION 1. If Z^+ has finite index in R^+ , then C(R) is finite.

PROOF: Let n be the index of Z^+ in R^+ and $\{r_1 = 0, r_2, \ldots, r_n\}$ a complete set of coset representatives of Z^+ in R^+ . Since $[r_i + z, r_j + z'] = [r_i, r_j]$, C(R)is additively generated by $r[r_i, r_j]s$ where $r, s \in R$. But $r[r_i, r_j] = (r_k + z)[r_i, r_j] =$ $r_k[r_i, r_j] + [r_i z, r_j]$ and $[r_i z, r_j] = [r_l + z', r_j] = [r_l, r_j]$. A similar result holds for $[r_i, r_j]s$ and so C(R) is additively generated by the finite set $\{r_k[r_i, r_j], [r_i, r_j]r_l, r_k[r_i, r_j]r_l \mid 2 \leq$ $i, j, k \leq n\}$. Also each $[r_i, r_j]$ has finite additive order, otherwise there exist distinct integers n and n' such that $(n - n')[r_i, r_j] \neq 0$ but $nr_i + Z^+ = n'r_i + Z^+$. However the latter equation yields $(n - n')r_i \in Z$, so $0 = [(n - n')r_i, r_j] = (n - n')[r_i, r_j]$, a contradiction. Hence, as an abelian group, C(R) has a finite set of generators of finite order, and so is finite.

PROPOSITION 2. Assume that C(R) is finite. Then there exists a finite nilpotent ideal N of R such that R/N is the direct sum of a finite semisimple ring and a commutative ring.

PROOF: Let N be the Jacobian radical of C(R). It is easily seen that N is a finite nilpotent ideal of R. Let R' = R/N. Since C(R') is the canonical homorphic image

Received 9 November, 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

of C(R) in R/N, C(R') is a finite semisimple ring. Hence C(R') has an identity e. Since C(R') is an ideal of R', e is a central idempotent of R'. Hence $R' = C(R') \oplus S$, where $S = \{r - re \mid r \in R\}$. Clearly, S is a commutative ring.

As an immediate consequence of Propositions 1 and 2, we have

COROLLARY 1. Let R be a semiprime ring with centre Z. Then the following statements are equivalent:

- (1) Z^+ has finite index in R^+ ;
- (2) C(R) is finite;
- (3) R is the direct sum of a finite ring and a commutative ring.

The following example shows that the statements (1) and (2) are not equivalent in general.

Example. Let Z denote the ring of integers. Let R be the set of all matrices $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with $a, c \in \mathbb{Z}$ and $b \in \mathbb{Z}/2\mathbb{Z}$. In R, define addition and multiplication as in ordinary matrices. Then R is a ring. The ideal $I = \begin{pmatrix} 2\mathbb{Z} & 0 \\ 0 & 2\mathbb{Z} \end{pmatrix}$ is contained in the centre of Z and R, and R/I is a finite ring. Hence Z^+ has finite index in R^+ . However R does not satisify (3) in Corollary 1.

Now we come to our main theorem.

THEOREM 1. Let R be a ring with centre Z. Then the following statements are equivalent:

- (1) The additive group Z^+ of Z has finite index in R^+ ;
- (2) R has an ideal I contained in Z such that R/I is a finite ring.

PROOF: It suffices to prove the implication $(1) \Rightarrow (2)$. By Proposition 1, C(R) is a finite ideal. Let $f: \mathbb{Z} \to \operatorname{End}(C(R))$ be the ring homomorphism defined by f(z)(r) = rz for all $z \in \mathbb{Z}$ and $r \in C(R)$, and let $I = \operatorname{Ker} f$. Then \mathbb{Z}/I is a finite ring. Let $r_R(C(R))$ denote the right annihilator of C(R) in R. Then, $I = r_R(C(R)) \cap \mathbb{Z}$. Let $a \in I$ and $x \in R$. Then, for any y in R, we get [ax, y] = a[x, y] = 0. Hence, $ax \in \mathbb{Z}$, and so $ax \in r_R(C(R)) \cap \mathbb{Z} = I$. This proves that I is an ideal of R. Since \mathbb{Z}/I is finite and since \mathbb{Z}^+ has finite index in \mathbb{R}^+ , \mathbb{R}/I is a finite ring. This completes the proof.

References

 F.A. Szász, Radicals of Rings (John Wiley and Sons, Chichester, New York, Brisbane, Toronto, 1981).

Department of Mathematics Okayama University Okayama 700 Japan