ON A PROBLEM OF SZÁSZ

Yasuyuri Hirano

Dedicated to Professor Miyuki Yamada on his 60th birthday.

Abstract

Let R be a ring with centre Z. In this note, we prove the following: If the additive group Z^{+}of Z has finite group-theoretic index in R^{+}, then R has an ideal I contained in Z such that R / I is a finite ring. This is a solution of a problem posed by F.A. Szász.

Throughout this note, R denotes a ring with centre Z. We write R^{+}for the additive group of R, and $C(R)$ for the commutator ideal of R.

In Problem 84 of [1], F.A. Szász asks: In which rings R has the additive group Z^{+}of the centre $Z ;$ a finite group-theoretic index in R^{+}? We show that such a ring R has an ideal I contained in Z such that R / I is a finite ring.

We begin with the following
Proposition 1. If Z^{+}has finite index in R^{+}, then $C(R)$ is finite.
Proof: Let n be the index of Z^{+}in R^{+}and $\left\{r_{1}=0, r_{2}, \ldots, r_{n}\right\}$ a complete set of coset representatives of Z^{+}in R^{+}. Since $\left[r_{i}+z, r_{j}+z^{\prime}\right]=\left[r_{i}, r_{j}\right], C(R)$ is additively generated by $r\left[r_{i}, r_{j}\right] s$ where $r, s \in R$. But $r\left[r_{i}, r_{j}\right]=\left(r_{k}+z\right)\left[r_{i}, r_{j}\right]=$ $r_{k}\left[r_{i}, r_{j}\right]+\left[r_{i} z, r_{j}\right]$ and $\left[r_{i} z, r_{j}\right]=\left[r_{l}+z^{\prime}, r_{j}\right]=\left[r_{l}, r_{j}\right]$. A similar result holds for $\left[r_{i}, r_{j}\right] s$ and so $C(R)$ is additively generated by the finite set $\left\{r_{k}\left[r_{i}, r_{j}\right],\left[r_{i}, r_{j}\right] r_{l}, r_{k}\left[r_{i}, r_{j}\right] r_{l} \mid 2 \leqslant\right.$ $i, j, k \leqslant n\}$. Also each $\left[r_{i}, r_{j}\right]$ has finite additive order, otherwise there exist distinct integers n and n^{\prime} such that $\left(n-n^{\prime}\right)\left[r_{i}, r_{j}\right] \neq 0$ but $n r_{i}+Z^{+}=n^{\prime} r_{i}+Z^{+}$. However the latter equation yields $\left(n-n^{\prime}\right) r_{i} \in Z$, so $0=\left[\left(n-n^{\prime}\right) r_{i}, r_{j}\right]=\left(n-n^{\prime}\right)\left[r_{i}, r_{j}\right]$, a contradiction. Hence, as an abelian group, $C(R)$ has a finite set of generators of finite order, and so is finite.

Proposition 2. Assume that $C(R)$ is finite. Then there exists a finite nilpotent ideal N of R such that R / N is the direct sum of a finite semisimple ring and a commutative ring.

Proof: Let N be the Jacobian radical of $C(R)$. It is easily seen that N is a finite nilpotent ideal of R. Let $R^{\prime}=R / N$. Since $C\left(R^{\prime}\right)$ is the canonical homorphic image

[^0]of $C(R)$ in $R / N, C\left(R^{\prime}\right)$ is a finite semisimple ring. Hence $C\left(R^{\prime}\right)$ has an identity e. Since $C\left(R^{\prime}\right)$ is an ideal of R^{\prime}, e is a central idempotent of R^{\prime}. Hence $R^{\prime}=C\left(R^{\prime}\right) \oplus S$, where $S=\{r-r e \mid r \in R\}$. Clearly, S is a commutative ring.

As an immediate consequence of Propositions 1 and 2, we have
Corollary 1. Let R be a semiprime ring with centre Z. Then the following statements are equivalent:
(1) Z^{+}has finite index in R^{+};
(2) $C(R)$ is finite;
(3) R is the direct sum of a finite ring and a commutative ring.

The following example shows that the statements (1) and (2) are not equivalent in general.
Example. Let \mathbb{Z} denote the ring of integers. Let R be the set of all matrices $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ with $a, c \in \mathbb{Z}$ and $b \in \mathbb{Z} / 2 \mathbb{Z}$. In R, define addition and multiplication as in ordinary matrices. Then R is a ring. The ideal $I=\left(\begin{array}{cc}2 Z & 0 \\ 0 & 2 Z\end{array}\right)$ is contained in the centre of Z and R, and R / I is a finite ring. Hence Z^{+}has finite index in R^{+}. However R does not satisify (3) in Corollary 1.

Now we come to our main theorem.
Theorem 1. Let R be a ring with centre Z. Then the following statements are equivalent:
(1) The additive group Z^{+}of Z has finite index in R^{+};
(2) $\quad R$ has an ideal I contained in Z such that R / I is a finite ring.

Proof: It suffices to prove the implication (1) \Rightarrow (2). By Proposition $1, C(R)$ is a finite ideal. Let $f: Z \rightarrow \operatorname{End}(C(R))$ be the ring homomorphism defined by $f(z)(r)=r z$ for all $z \in Z$ and $r \in C(R)$, and let $I=\operatorname{Ker} f$. Then Z / I is a finite ring. Let $r_{R}(C(R))$ denote the right annihilator of $C(R)$ in R. Then, $I=r_{R}(C(R)) \cap Z$. Let $a \in I$ and $x \in R$. Then, for any y in R, we get $[a x, y]=a[x, y]=0$. Hence, $a x \in Z$, and so $a x \in r_{R}(C(R)) \cap Z=I$. This proves that I is an ideal of R. Since Z / I is finite and since Z^{+}has finite index in $R^{+}, R / I$ is a finite ring. This completes the proof.

References

[1] F.A. Szász, Radicals of Rings (John Wiley and Sons, Chichester, New York, Brisbane, Toronto, 1981).

[^0]: Received 9 November, 1988
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

