
1 Introduction

1.1 Python for Scientists

The title of this book is Python for Scientists, but what does that mean? The dictionary
defines “Python” as either (a) a nonvenomous snake from Asia or Saharan Africa or (b)
a computer programming language, and it is the second option that is intended here. By
“scientist,” we mean anyone who uses quantitative models either to obtain conclusions
by processing precollected experimental data or to model potentially observable results
from a more abstract theory, and who asks “what if?” What if I analyze the data in a
different way? What if I change the model?

Given the steady progress in the development of evermore complex experiments that
explore the inner workings of nature and generate vast amounts of data, as well as the
necessity to describe these observations with complex (nonlinear) theoretical models,
the use of computers to answer these questions is mandatory. Luckily, advances in com-
puter hardware and software development mean that immense amounts of data or com-
plex models can be processed at increasingly rapid speeds. It might seem a given that
suitable software will also be available so that the “what if” questions can be answered
readily. However, this turns out not always to be the case. A quick pragmatic reason
is that while there is a huge market for hardware improvements, scientists form a very
small fraction of it and so there is little financial incentive to improve scientific soft-
ware. But for scientists, specialized, yet versatile, software tools are key to unraveling
complex problems.

1.2 Scientific Software

Before we discuss what types of scientific software are available, it is important to
note that all computer software comes in one of two types: proprietary or open-source.
Proprietary software is supplied by a commercial firm. Such organizations have both
to pay wages and taxes and to provide a return for their shareholders. Therefore, they
have to charge real money for their products, and, in order to protect their assets from
their competitors, they do not tell the customer how their software works. Thus the end
users have little chance of being able to adapt or optimize the product for their own use.

https://doi.org/10.1017/9781009029728.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.002


2 Introduction

Since wages and taxes are recurrent expenditures, the company needs to issue frequent
charged-for updates and improvements (the Danegeld effect).

Open-source software, on the other hand, is available for free. It is usually developed
by computer-literate individuals, often working for universities or similar organizations,
who provide the service for their colleagues. It is distributed subject to anti-copyright
licenses, which give nobody the right to copyright it or to use it for commercial gain.
Conventional economics might suggest that the gamut of open-source software should
be inferior to its proprietary counterpart, or else the commercial organizations would
lose their market. As we shall see, this is not necessarily the case.

Next we need to differentiate between two different types of scientific software. The eas-
iest approach to extracting insight from data or modeling observations utilizes prebuilt
software tools, which we refer to as “scientific software tools.” Proprietary examples
include software tools and packages like Matlab, Mathematica, IDL, Tableau, or even
Excel and open-source equivalents like R, Octave, SciLab, and LibreOffice. Some of
these tools provide graphical user interfaces (GUIs) enabling the user to interact with
the software in an efficient and intuitive way. Typically, such tools work well for stan-
dard tasks, but they do offer only a limited degree of flexibility, making it hard if not
impossible to adapt these packages to solve some task they were not designed for. Other
software tools provide more flexibility through their own idiosyncratic programming
language in which problems are entered into a user interface. After a coherent group
of statements, often just an individual statement, has been typed, the software writes
equivalent core language code and compiles it on the fly. Thus errors and/or results can
be reported back to the user immediately. Such tools are called “interpreters” as they in-
terpret code on the fly, thus offering a higher degree of flexibility compared to software
tools with shiny GUIs.

On a more basic level, the aforementioned software tools are implemented in a pro-
gramming language, which is a somewhat limited subset of human language in which
sequences of instructions are written, usually by humans, to be read and understood by
computers. The most common languages are capable of expressing very sophisticated
mathematical concepts, albeit often with a steep learning curve. Although a myriad of
programming languages exist, only a handful have been widely accepted and adopted
for scientific applications. Historically, this includes C and Fortran, as well as their de-
scendants. In the case of these so-called compiled languages, compilers translate code
written by humans into machine code that can be optimized for speed and then pro-
cessed. As such, they are rather like Formula 1 racing cars. The best of them are capable
of breathtakingly fast performance, but driving them is not intuitive and requires a great
deal of training and experience. This experience is additionally complicated by the fact
that compilers for the same language are not necessarily compatible and need to be sup-
plemented by large libraries to provide functionality for seemingly basic functionality.

Since all scientific software tools are built upon compiled programming languages,
why not simply write your own tools? Well, a racing car is not usually the best choice
for a trip to the supermarket, where speed is not of paramount importance. Similarly,

https://doi.org/10.1017/9781009029728.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.002


1.2 Scientific Software 3

compiled languages are not always ideal for quickly trying out new ideas or writing
short scripts to support you in your daily work. Thus, for the intended readers of this
book, the direct use of compilers is likely to be unattractive, unless their use is manda-
tory. We therefore look at the other type of programming language, the so-called in-
terpreted languages, which include the previously mentioned scientific tools based on
interpreters. Interpreted languages lack the speed of compiled languages, but they typi-
cally are much more intuitive and easier to learn.

Let us summarize our position. There are prebuilt software tools, some of which are
proprietary and some of which are open-source software, that provide various degrees
of flexibility (interpreters typically offer more flexibility than tools that feature GUIs)
and usually focus on specific tasks. On a more basic level, there are traditional compiled
languages for numerics that are very general, very fast, rather difficult to learn, and do
not interact readily with graphical or algebraic processes. Finally, there are interpreted
languages that are typically much easier to learn than compiled languages and offer a
large degree of flexibility but are less performant.

So, what properties should an ideal scientific software have? A short list might contain:

� a mature programming language that is both easy to understand and has extensive
expressive ability,

� integration of algebraic, numerical, and graphical functions, and the option to import
functionality from an almost endless list of supplemental libraries,

� the ability to generate numerical algorithms running with speeds within an order of
magnitude of the fastest of those generated by compiled languages,

� a user interface with adequate on-line help and decent documentation,

� an extensive range of textbooks from which the curious reader can develop greater
understanding of the concepts,

� open-source software, freely available,

� implementation on all standard platforms, e.g., Linux/Unix, Mac OS, Windows.

� a concise package, and thus implementable on even modest hardware.

You might have guessed it: we are talking about Python here.

In 1991, Guido van Rossum created Python as an open-source, platform-independent,
general purpose programming language. It is basically a very simple language sur-
rounded by an enormous library of add-on packages for almost any use case imagin-
able. Python is extremely versatile: it can be used to build complex software tools or as
a scripting language to quickly get some task done. This versatility has both ensured its
adoption by power users and led to the assembly of a large community of developers.
These properties make Python a very powerful tool for scientists in their daily work and
we hope that this book will help you master this tool.

https://doi.org/10.1017/9781009029728.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.002


4 Introduction

1.3 About This Book

The purpose of this intentionally short book is to introduce the Python programming
language and to provide an overview of scientifically relevant packages and how they
can be utilized. This book is written for first-semester students and faculty members,
graduate students and emeriti, high-school students and post-docs – or simply for ev-
eryone who is interested in using Python for scientific analysis.

However, this book by no means claims to be a complete introduction to Python. We
leave the comprehensive treatment of Python and all its details to others who have
done this with great success (see, e.g., Lutz, 2013). We have quite deliberately pre-
ferred brevity and simplicity over encyclopedic coverage in order to get the inquisitive
reader up and running as soon as possible.

Furthermore, this book will not serve as the “Numerical Recipes for Python,” meaning
that we will not explain methods and algorithms in detail: we will simply showcase how
they can be used and applied to scientific problems. For an in-depth discussion of these
algorithms, we refer to the real Numerical Recipes – Press et al. (2007) and all following
releases that were adapted to different programming languages – as well as other works.

Given the dynamic environment of software development, details on specific packages
are best retrieved from online documentation and reference websites. We will provide
references, links, and pointers in order to guide interested readers to the appropriate
places. In order to enable an easy entry into the world of Python, we provide all code
snippets presented in this book in the form of Jupyter Notebooks on the CoCalc cloud
computing platform. These Notebooks can be accessed, run, and modified online for a
more interactive learning experience.

We aim to leave the reader with a well-founded framework to handle many basic, and
not so basic, tasks, as well as the skill set to find their own way in the world of scientific
programming and Python.

1.4 References

Print Resources

Lutz, Mark. Learning Python: Powerful Object-Oriented Programming. O’Reilly Me-
dia, 2013.

Press, William H, et al. Numerical Recipes: The Art of Scientific Computing. 3rd ed.,
Cambridge University Press, 2007.

https://doi.org/10.1017/9781009029728.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.002



