3rd Immunonutrition Workshop, 21-24 October 2009, Girona, Spain

Effects of arachidonic and eicosapentaenoic acid derived eicosanoids on polymorphonuclear transmigration

J. J. Moreno

Departamento de Fisiología, Facultad de Farmacia, Universidad de Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona and Instituto de Investigación en Nutrición y Seguridad Alimentaria (UB)

The *n*-3 polyunsaturated fatty acids contained in fish oil provide it with anti-inflammatory effects on different inflammatory diseases^(1,2). Several mechanisms can be involved in the influence of the degree of unsaturation of dietary fatty acids on the development of inflammatory diseases⁽³⁾. The beneficial effects of fish oil on inflammatory diseases have been attributed to the EPA/docosahexaenoic acid (DHA) content. EPA is also substrate for AA cascade enzymes, but induced the production of alternative eicosanoids such as 3-serie prostanoids and 5-serie leukotrienes that are considered to be less pro-inflammatory compared with AA metabolites. Thus, fish oil diet reduced AA mobilization and the subsequent prostaglandin (PG)E₂ synthesis⁽⁴⁾. However, the molecular basis of beneficial effect of EPA supplementation is poorly understood as well as the comparative biological effects of AA and EPA metabolites.

Leucocyte recruitment to inflamed areas is a pivotal event in the development of the inflammatory processes⁽⁵⁾. In this work, we studied the effects of PGE_2 and PGE_3 on endothelium permeability, the effects of leukotriene B_4 (LTB₄) and LTB₅ on endothelium permeability as well as mononuclear adhesion and migration.

Endothelial monolayer permeability to albumin was measured in ECV304 cell cultures using the Casnocha *et al.* methodology⁽⁶⁾. Polymorphonuclear (PMN) granulocytes were isolated from human blood samples using Histopaque-1077. ECV304 cell confluent cultures were plated with PMN in the presence of eicosanoids and allowed to attach at 37°C for 3 h. Non-adherent cells were removed, cultures were fixed and PMN adhered to ECV304 monolayer were counted under a phase-contrast microscope. LFA-1 and MAC-1, and E-selectin and ICAM-1 expression on PMN and ECV304 surface, respectively, were analysed with a fluorescein-activated cell sorter analyser using the corresponding antibodies to each adhesion molecule. PMN chemotaxis was measured using the modified Boyden chamber technique⁽⁷⁾ and a locomotion index was calculated using Maderazo and Woronick method⁽⁸⁾. Results are means \pm se of three independent experiments performed in duplicate. Student's *t* test was used to determine the significance.

Our results show that both prostaglandins (PGE₂ and PGE₃, 0.1–100 nM) increased *trans*-endothelial Evans blue-albumin (EBA) permeability in a concentration-dependent manner, reaching a maximum plateau effect at 100 nM. Interestingly, the effect of PGE₃ (increased $115\pm3\%$ v. control) (P<0.001) was slight higher than PGE₂ (90±4%) (P<0.001) action and both were significantly antagonised by EP₁ (SC19200, 1µM) and EP₂ (AH6809, 1µM) antagonist, but not by EP₃ and EP₄ antagonist. LTB₄ and LTB₅ presented a slight effect on EBA extravasation (32±2% and 21±1.5%, respectively.

LTB₄ (1–100 nM) caused significant increases in the number of PMN cell adhering to endothelial cells $(280\pm13\%-405\pm21\%)$ (*P*<0.001 in all concentrations), whereas LTB₅ was not able to induce an appreciable effect. This effect of LTB₄ was mediated through the enhancement of adhesion molecules such as LFA-1 and MAC-1 on PMN surface and E-selectin and ICAM-1 expression on surface of endothelial cells. Finally, we observed that LTB₄ (10–100 nM) is a highly potent chemoattractant (migration index 1.25±0.05 and 1.68±0.1 v. migration index of 1 in control condition) (*P*<0.05 and *P*<0.001, respectively), whereas LTB₅ presents a weak effect (migration index of 1.15±0.06 at 100 nM).

In conclusion, the summation of these differences in the LTB_4/LTB_5 effect on PMN transmigration may contribute to explain the beneficial impact of omega-3 in inflammatory processes.

This work was supported by the Ministerio de Ciencia y Tecnología (BFU2004-04960/BFI and BFU2007-61727/BFI) and the Generalitat de Catalunya (2005SGR0269).

- 1. Kremer JM (1996) Lipids 31, S243-S247.
- 2. Soyland E, Funk J, Pajka G et al. (1993) N Engl J Med 328, 1812-1816.
- 3. Moreno JJ & Mitjavila MT (2003) J Nutr Biochem 14, 182–195.
- 4. Moreno JJ, Carbonell T, Sáncehz T et al. (2001) J Nutr 131, 2145-2149.
- 5. Lloret S & Moreno JJ (1995) Biochem Pharmacol 50, 347-353.
- 6. Casnocha SA, Eskin SG, Hall ER et al. (1989) J Appl Physiol 67, 1997–2005.
- 7. Boyden S (1962) J Exp Med 154, 453-466.
- 8. Maderazo EG & Woronick CL (1978) Clin Immunol Immunopathol 11, 196-211.