A NOTE ON THE DIOPHANTINE EQUATION $x^{2}+q^{m}=c^{n}$

NOBUHIRO TERAI

(Received 4 September 2013; accepted 3 October 2013; first published online 26 November 2013)

Abstract

Let q be an odd prime such that $q^{t}+1=2 c^{s}$, where c, t are positive integers and $s=1,2$. We show that the Diophantine equation $x^{2}+q^{m}=c^{n}$ has only the positive integer solution $(x, m, n)=\left(c^{s}-1, t, 2 s\right)$ under some conditions. The proof is based on elementary methods and a result concerning the Diophantine equation $\left(x^{n}-1\right) /(x-1)=y^{2}$ due to Ljunggren. We also verify that when $2 \leq c \leq 30$ with $c \neq 12,24$, the Diophantine equation $x^{2}+(2 c-1)^{m}=c^{n}$ has only the positive integer solution $(x, m, n)=(c-1,1,2)$.

2010 Mathematics subject classification: primary 11D61.
Keywords and phrases: Diophantine equation, integer solution.

1. Introduction

In 1956, Sierpiński [S] showed that the equation $3^{x}+4^{y}=5^{z}$ has only the positive integer solution $(x, y, z)=(2,2,2)$. Jeśmanowicz [J] conjectured that if a, b, c are Pythagorean numbers, that is, positive integers satisfying $a^{2}+b^{2}=c^{2}$, then the Diophantine equation

$$
a^{x}+b^{y}=c^{z}
$$

has only the positive integer solution $(x, y, z)=(2,2,2)$. As an analogue of Jeśmanowicz's conjecture, the author [T] proposed the following conjecture.

Conjecture 1.1. If $a^{2}+b^{2}=c^{2}$ with $\operatorname{gcd}(a, b, c)=1$ and a even, then the Diophantine equation

$$
x^{2}+b^{m}=c^{n}
$$

has only the positive integer solution $(x, m, n)=(a, 2,2)$.
In [T], we proved that if p and q are primes such that (i) $q^{2}+1=2 p$ and (ii) $d=1$ or even if $q \equiv 1(\bmod 4)$, then the Diophantine equation $x^{2}+q^{m}=p^{n}$ has only the positive integer solution $(x, m, n)=(p-1,2,2)$, where d is the order of a prime divisor of (p) in the ideal class group of $\mathbb{Q}(\sqrt{-q})$. Conjecture 1.1 has been verified to be true in

[^0]many special cases:

- $\quad b>8 \cdot 10^{6}, b \equiv 5(\bmod 8), c$ is a prime power $(\operatorname{Le}[\operatorname{Le} 1])$;
- $\quad b^{2}+1=2 c, b \not \equiv 1(\bmod 16), b, c$ are both odd primes (Chen and Le [CL]);
- $\quad b \equiv 7(\bmod 8)$, either b is a prime or c is a prime (Le [Le2]);
- $\quad c \equiv 5(\bmod 8), b$ or c is a prime power (Cao and Dong [CD]);
- $\quad b \equiv \pm 5(\bmod 8), c$ is a prime (Yuan and Wang [YW]).

Cenberci and Senay also showed that the Diophantine equation $x^{2}+b^{m}=c^{n}$ has only the positive integer solution $(x, m, n)=(a, 2,4)$ in the following two cases:

- $a^{2}+b^{2}=c^{4}, c \equiv 5(\bmod 8), c$ is a prime power [CS1];
- $\quad b^{2}+1=2 c^{2}, b, c$ are both odd primes, $d=1$ or even [CS2].

In this paper, using elementary methods, when $q^{t}+1=2 c^{s}$ with q prime and $s=1$, 2 , we prove the following theorems.

Theorem 1.2. Let q be a prime with $q \equiv 3,5(\bmod 8)$. Let c be a positive integer such that $q^{t}+1=2 c$, where t is a positive integer. Then the Diophantine equation

$$
\begin{equation*}
x^{2}+q^{m}=c^{n} \tag{1.1}
\end{equation*}
$$

has only the positive integer solution $(x, m, n)=(c-1, t, 2)$.
Theorem 1.3. Let q be an odd prime. Let c be a positive integer such that $q^{2}+1=2 c^{2}$ and $c \equiv 5(\bmod 8)$. Then (1.1) has only the positive integer solution $(x, m, n)=$ ($c^{2}-1,2,4$).
Theorem 1.4. Let q be an odd prime. Let c be a positive integer such that $q+1=2 c^{2}$ and $c \equiv 3(\bmod 4)$. Then (1.1) has only the positive integer solution $(x, m, n)=$ ($c^{2}-1,1,4$).

We note that the relations on q and c in Theorems 1.2-1.4 yield the following identities, respectively:

$$
\begin{aligned}
q^{t}+1=2 c & \Longrightarrow(c-1)^{2}+q^{t}=c^{2}, \\
q^{2}+1=2 c^{2} & \Longrightarrow\left(c^{2}-1\right)^{2}+q^{2}=c^{4}, \\
q+1=2 c^{2} & \Longrightarrow\left(c^{2}-1\right)^{2}+q=c^{4} .
\end{aligned}
$$

In Section 3, combining Theorems 1.2-1.4 with Proposition 3.2, we also verify that when $2 \leq c \leq 30$ with $c \neq 12$, 24, the Diophantine equation

$$
x^{2}+(2 c-1)^{m}=c^{n}
$$

has only the positive integer solution $(x, m, n)=(c-1,1,2)$.

2. Proof of Theorems 1.2-1.4

We use the following lemma to prove Theorems 1.2-1.4.

Lemma 2.1 (Ljunggren [Lj]). The Diophantine equation

$$
\frac{x^{n}-1}{x-1}=y^{2}
$$

has no solutions in integers x, y, n with $|x|>1$ and $n \geq 3$, except for $(n, x, y)=$ $(4,7,20),(5,3,11)$.
2.1. Proof of Theorem 1.2. Let (x, m, n) be a solution of (1.1).

In view of $q \equiv 3,5(\bmod 8)$ and $q^{t}+1=2 c$, we see that $(2 / q)=(c / q)=-1$, where $(* / *)$ is the Jacobi symbol. Hence n is even from (1.1). Put $n=2 N$. Then, from (1.1),

$$
q^{m}=\left(c^{N}+x\right)\left(c^{N}-x\right) .
$$

Since q is an odd prime and $\operatorname{gcd}\left(c^{N}+x, c^{N}-x\right)=1$,

$$
q^{m}=c^{N}+x, \quad 1=c^{N}-x,
$$

So

$$
\begin{equation*}
q^{m}+1=2 c^{N} \tag{2.1}
\end{equation*}
$$

Our goal is to show that (2.1) has only the solution $(m, N)=(t, 1)$. Note that N is odd from (2.1), since $(2 / q)=(c / q)=-1$.

Now we show that $m \equiv 0(\bmod t)$. It follows from $q^{t}+1=2 c$ that $q^{t} \equiv-1(\bmod c)$, so q has order $2 t$ modulo c. From (2.1), we have $q^{m} \equiv-1(\bmod c)$ and hence $q^{2 m} \equiv 1$ $(\bmod c)$. Thus we see that $2 m \equiv 0(\bmod 2 t)$, that is, $m \equiv 0(\bmod t)$. Put $m=t M$. Since $q^{t}+1=2 c$, (2.1) can be written as

$$
\begin{equation*}
(2 c-1)^{M}+1=2 c^{N} . \tag{2.2}
\end{equation*}
$$

Taking (2.2) modulo $2 c$ implies that $(-1)^{M}+1 \equiv 0(\bmod 2 c)$ and so M is odd. If $N=1$, then we obtain $M=1$ from (2.2). Thus we may suppose that M and N are odd and greater than 1 . Then (2.2) leads to

$$
\frac{(-2 c+1)^{M}-1}{(-2 c+1)-1}=\left(c^{(N-1) / 2}\right)^{2} .
$$

It follows from Lemma 2.1 that the above equation has no solutions. This completes the proof of Theorem 1.2.
2.2. Proof of Theorem 1.3. Let (x, m, n) be a solution of (1.1).

We first show that m and n are even. Since $q^{2}+1=2 c^{2}$,

$$
\left(c^{2}-1\right)^{2}+q^{2}=c^{4} .
$$

This implies that

$$
c^{2}-1=2 u v, \quad q=u^{2}-v^{2}, \quad c^{2}=u^{2}+v^{2},
$$

where u, v are positive integers such that $\operatorname{gcd}(u, v)=1, u>v$ and $u \neq v(\bmod 2)$. From the third relation above,

$$
u=2 h k, \quad v=h^{2}-k^{2}, \quad c=h^{2}+k^{2},
$$

or

$$
v=2 h k, \quad u=h^{2}-k^{2}, \quad c=h^{2}+k^{2},
$$

where h, k are positive integers such that $\operatorname{gcd}(h, k)=1, h>k$ and $h \neq k(\bmod 2)$. Then

$$
q= \pm\left(\left(h^{2}-k^{2}\right)^{2}-(2 h k)^{2}\right)= \pm\left(h^{4}-6 h^{2} k^{2}+k^{4}\right) .
$$

Since $c \equiv 5(\bmod 8)$,

$$
\left(\frac{c}{q}\right)=\left(\frac{q}{c}\right)=\left(\frac{h^{4}-6 h^{2} k^{2}+k^{4}}{h^{2}+k^{2}}\right)=\left(\frac{8 h^{4}}{h^{2}+k^{2}}\right)=\left(\frac{2}{c}\right)=-1 .
$$

We therefore conclude that m and n are even from (1.1).
Put $m=2 M$ and $n=2 N$. Then, from (1.1),

$$
q^{m}=\left(c^{N}+x\right)\left(c^{N}-x\right)
$$

Since q is an odd prime and $\operatorname{gcd}\left(c^{N}+x, c^{N}-x\right)=1$,

$$
q^{m}=c^{N}+x, \quad 1=c^{N}-x,
$$

so

$$
\begin{equation*}
q^{m}+1=2 c^{N} \tag{2.3}
\end{equation*}
$$

Our goal is to show that (2.3) has only the solution $(m, N)=(2,2)$. Note that N is even from (2.3), since $(2 / q)=1$ and $(c / q)=-1$. Since $q^{2}+1=2 c^{2}$, (2.3) can be written as

$$
\begin{equation*}
\left(2 c^{2}-1\right)^{M}+1=2 c^{N} . \tag{2.4}
\end{equation*}
$$

Taking (2.4) modulo c implies that $(-1)^{M}+1 \equiv 0(\bmod c)$ and so M is odd. If $N=2$, then we obtain $M=1$ from (2.4). Thus we may suppose that M is odd and greater than 1 , and N is even and greater than 2 . Then (2.4) leads to

$$
\frac{\left(-2 c^{2}+1\right)^{M}-1}{\left(-2 c^{2}+1\right)-1}=\left(c^{(N-2) / 2}\right)^{2} .
$$

It follows from Lemma 2.1 that the above equation has no solution. This completes the proof of Theorem 1.3.
2.3. Proof of Theorem 1.4. Let (x, m, n) be a solution of (1.1).

We first show that n is even. Since $q+1=2 c^{2}$ and $c \equiv 3(\bmod 4)$,

$$
\left(\frac{c}{q}\right)=\left(\frac{q}{c}\right)=\left(\frac{2 c^{2}-1}{c}\right)=\left(\frac{-1}{c}\right)=-1 .
$$

We therefore conclude that n is even from (1.1). Put $n=2 N$. Then, from (1.1),

$$
q^{m}=\left(c^{N}+x\right)\left(c^{N}-x\right) .
$$

Since q is an odd prime and $\operatorname{gcd}\left(c^{N}+x, c^{N}-x\right)=1$,

$$
q^{m}=c^{N}+x, \quad 1=c^{N}-x,
$$

so

$$
\begin{equation*}
q^{m}+1=2 c^{N} \tag{2.5}
\end{equation*}
$$

Our goal is to show that (2.5) has only the solution $(m, N)=(1,2)$. Note that N is even from (2.5), since $(2 / q)=1$ and $(c / q)=-1$. Since $q+1=2 c^{2},(2.5)$ can be written as

$$
\left(2 c^{2}-1\right)^{M}+1=2 c^{N}
$$

with $M=m$. In the same way as in the proof of Theorem 1.3, we see that the above equation has only the solution $(M, N)=(1,2)$. This completes the proof of Theorem 1.4.

3. Conjecture on the equation $x^{2}+(2 c-1)^{m}=c^{n}$

In connection with Conjecture 1.1 and Theorems 1.2-1.4, we propose the following conjecture.

Conjecture 3.1. Let $c \geq 2$ be a positive integer. Then the Diophantine equation

$$
\begin{equation*}
x^{2}+(2 c-1)^{m}=c^{n} \tag{3.1}
\end{equation*}
$$

has only the positive integer solution $(x, m, n)=(c-1,1,2)$.
We first show the following criteria, which are easy to handle and are useful to Conjecture 3.1.
Proposition 3.2. Suppose that at least one of the following conditions holds:
(i) $2 c-1 \equiv 3(\bmod 8)$;
(ii) $2 c-1=3 p$, where p is a prime such that $p \equiv 7(\bmod 8), p \equiv 3,5(\bmod 16)$ or $p \equiv 3(\bmod 5)$;
(iii) $2 c-1=5 p$, where p is a prime such that $p \equiv 3(\bmod 8)$ and $5+p \not \equiv 0$ $(\bmod 32)$;
(iv) $2 c-1=9 p$, where p is a prime with $p \equiv 5(\bmod 8)$;
(v) $2 c-1=q$ and $c=4^{s}$, where q is a prime and s is a positive integer.

Then Conjecture 3.1 is true.

Proof. (i) Since $2 c-1 \equiv 3(\bmod 8), c \equiv 2(\bmod 4)$. If $n \geq 3$, then (3.1) leads to

$$
1+3^{m} \equiv 0 \quad(\bmod 8)
$$

which is impossible. We therefore obtain $n=2, m=1$ and $x=c-1$.
(ii) Since $2 c-1 \equiv 0(\bmod 3), c \equiv 2(\bmod 3)$. Taking (3.1) modulo 3 implies that n is even, say $n=2 N$. From (3.1), we have the following two cases:

$$
\begin{equation*}
(2 c-1)^{m}+1=2 c^{N} \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
3^{m}+p^{m}=2 c^{N} . \tag{3.3}
\end{equation*}
$$

We can solve (3.2) in the same way as in the proof of Theorem 1.2.
We now show that (3.3) has no solutions in each case.

- $p \equiv 7(\bmod 8)$: Then $c \equiv 3(\bmod 4)$. Hence m is odd from (3.3). Thus $c=$ $(3 p+1) / 2$ is divisible by an odd prime divisor r of $(3+p) / 2(\equiv 1(\bmod 4))$. This leads to a contradiction. Indeed, r satisfies $3 p+1 \equiv 0(\bmod r)$, that is, $-3^{2}+1=-8 \equiv 0$ $(\bmod r)$, which is impossible.
- $p \equiv 3(\bmod 16)$: Then $c \equiv 5(\bmod 8)$. Taking (3.3) modulo 16 implies that $2 \cdot 3^{m} \equiv 2 \cdot 5^{N}(\bmod 16)$ and so $3^{m} \equiv 5^{N}(\bmod 8)$. Hence m and N are even. Taking (3.3) modulo 3 implies that $1 \equiv 2^{N+1}(\bmod 3)$ and so N is odd. This is a contradiction.
$\bullet p \equiv 5(\bmod 16)$: Then $c \equiv 0(\bmod 8)$. Hence $2 c^{n} \equiv 0(\bmod 16)$, while $3^{m}+p^{m} \equiv$ $2(\bmod 8)$ if m is even, and $\equiv 8(\bmod 16)$ if m is odd. This is a contradiction.
- $p \equiv 3(\bmod 5):$ Then $c \equiv 0(\bmod 5)$, since $2 c-1=3 p$. Taking (3.3) modulo 5 implies that $2 \cdot 3^{m} \equiv 0(\bmod 5)$, which is impossible.
(iii) Since $2 c-1 \equiv 0(\bmod 5), c \equiv 3(\bmod 5)$. Taking (3.1) modulo 5 implies that n is even, say $n=2 N$. As in the proof of (ii), it suffices to show that

$$
\begin{equation*}
5^{m}+p^{m}=2 c^{N} \tag{3.4}
\end{equation*}
$$

has no solutions. Since $p \equiv 3(\bmod 8), c \equiv 0(\bmod 4)$. Thus m is odd from (3.4). Note that $\left(5^{m}+p^{m}\right) / 2 \not \equiv 0(\bmod 16)$, since $5+p \not \equiv 0(\bmod 32)$. This implies that $N=1$. Then $5^{m}+p^{m}=5 p+1$, which is impossible.
(iv) Since $2 c-1 \equiv 0(\bmod 3), c \equiv 2(\bmod 3)$. Taking (3.1) modulo 3 implies that n is even, say $n=2 N$. As in the proof of (ii), it suffices to show that

$$
\begin{equation*}
9^{m}+p^{m}=2 c^{N} \tag{3.5}
\end{equation*}
$$

has no solutions. Since $2 c-1=9 p$ and $p \equiv 5(\bmod 8), c \equiv 3(\bmod 4)$. Hence m is odd from (3.5). Since $(9+p) / 2 \equiv 3(\bmod 4)$, there is an odd prime r such that $(9+p) / 2 \equiv 0(\bmod r)$ and $r \equiv 3(\bmod 4)$. This leads to a contradiction. Indeed, r satisfies $9 p+1 \equiv 0(\bmod r)$, that is, $-9^{2}+1=-80=-2^{4} \cdot 5 \equiv 0(\bmod r)$, which is impossible.
(v) Since $2 c-1=q$ and $c=4^{s}$, (3.1) can be reduced to solving the equation

$$
q^{m}+1=2^{s n+1} .
$$

We easily see that the above equation has only the solution $(m, n)=(1,2)$ and so $x=c-1$. This completes the proof of Proposition 3.2.

Combining Theorems 1.2-1.4 with Proposition 3.2, we verify that when $2 \leq c \leq 30$ with $c \neq 12,24$, Conjecture 3.1 is true.

Proposition 3.3. Let c be a positive integer with $2 \leq c \leq 30$ and $c \neq 12,24$. Then Conjecture 3.1 is true.

Proof. Cases $c=3,5,6,7,10,13,14,15,19,22,27,30$: Our assertions follow from Theorem 1.2.

Case $c=25$: Our assertion follows from Theorem 1.3.
Case $c=9$: Our assertion follows from Theorem 1.4.
Cases $c=2,18,26$: Our assertions follow from Proposition 3.2(i).
Cases $c=8,11,20,29$: Our assertions follow from Proposition 3.2(ii).
Cases $c=$ 28: Our assertion follows from Proposition 3.2(iii).
Cases $c=$ 23: Our assertion follows from Proposition 3.2(iv).
Cases $c=4$, 16: Our assertions follow from Proposition 3.2(v).
Case $c=17$: Equation (3.1) becomes

$$
x^{2}+33^{m}=17^{n} .
$$

Taking the above equation modulo 3 implies that n is even, say $n=2 N$. As in the proof of Proposition 3.2(ii), it suffices to show that

$$
\begin{equation*}
3^{m}+11^{m}=2 \cdot 17^{N} \tag{3.6}
\end{equation*}
$$

has no solutions. Note that an odd prime divisor r of $a^{2^{k}}+b^{2^{k}}$ with $\operatorname{gcd}(a, b)=1$ satisfies $r \equiv 1\left(\bmod 2^{k+1}\right)$, since $\left(a b^{-1}\right)^{2^{k}} \equiv-1(\bmod r)$ and $\left(a b^{-1}\right)^{2^{k+1}} \equiv 1(\bmod r)$. Hence $m \neq 0(\bmod 16)$. Put $m=2^{k} s$ with s odd and $k=0,1,2,3$. But when $k=0,1,2,3$, the right-hand side of (3.6) is indivisible by $3+11=2 \cdot 7,3^{2}+11^{2}=$ $2 \cdot 5 \cdot 13,3^{4}+11^{4}=2 \cdot 17 \cdot 433,3^{8}+11^{8}=2 \cdot 107182721$, respectively.

Case $c=21$: Equation (3.1) becomes

$$
\begin{equation*}
x^{2}+41^{m}=21^{n} . \tag{3.7}
\end{equation*}
$$

If n is even, then (3.7) has only the positive integer solution $(x, m, n)=(20,1,2)$, in the same way as in the proof of Theorem 1.2.

When n is odd, we need the following lemma due to $\mathrm{Zhu}[\mathrm{Z}]$ and Arif and Muriefah [AM].

Lemma 3.4. The Diophantine equation

$$
x^{2}+41^{m}=y^{n}
$$

has no positive integer solutions x, m, n with m odd and n odd and greater than 1.

For the proof of Lemma 3.4, see Zhu [Z] when $n=3$, and Arif and Muriefah [AM] when $n>3$. Note that the class number of the quadratic field $\mathbb{Q}(\sqrt{-41})$ is equal to eight. It follows from Lemma 3.4 that (3.7) has no solutions x, m, n with n odd.

This completes the proof of Proposition 3.3.
Remark 3.5. In the cases $c=12,24$, we could not show that (3.1) has no solutions x, m, n with m, n odd. The difficulty is that $h(\mathbb{Q}(\sqrt{-23}))=3, h(\mathbb{Q}(\sqrt{-47}))=5$, and $23 \equiv 47 \equiv 7(\bmod 8)($ that is, $c \equiv 0(\bmod 4))$, where $h(\mathbb{Q}(\sqrt{-d}))$ denotes the class number of the quadratic field $\mathbb{Q}(\sqrt{-d})$.

References

[AM] S. A. Arif and F. S. Abu Muriefah, 'On the Diophantine equation $x^{2}+q^{2 k+1}=y^{n}$ ', J. Number Theory 95 (2002), 95-100.
[CD] Z. Cao and X. Dong, 'On Terai's conjecture', Proc. Japan Acad. 74A (1998), 127-129.
[CS1] S. Cenberci and H. Senay, 'The Diophantine equation $x^{2}+B^{m}=y^{n}$ ', Int. J. Algebra 3 (2009), 657-662.
[CS2] S. Cenberci and H. Senay, 'The Diophantine equation $x^{2}+q^{m}=p^{n}$, , Int. J. Contemp. Math. Sci. 4 (2009), 1181-1191.
[CL] X. Chen and M. Le, 'A note on Terai's conjecture concerning Pythagorean numbers', Proc. Japan Acad. 74A (1998), 80-81.
[J] L. Jeśmanowicz, 'Some remarks on Pythagorean numbers', Wiad. Mat. 1 (1955/1956), 196-202 (in Polish).
[Le1] M. Le, 'A Note on the Diophantine equation $x^{2}+b^{y}=c^{z}$, Acta Arith. 71 (1995), 253-257.
[Le2] M. Le, 'On Terai's conjecture concerning Pythagorean numbers', Acta Arith. 100 (2001), 41-45.
[Lj] W. Ljunggren, 'Some theorems on indeterminate equations of the form $\frac{x^{n}-1}{x-1}=y^{q}$, Norsk Mat. Tidsskr. 25 (1943), 17-20 (in Norwegian).
[S] W. Sierpiński, 'On the equation $3^{x}+4^{y}=5^{z}$ ', Wiadom. Mat. 1 (1955/1956), 194-195 (in Polish).
[T] N. Terai, 'The Diophantine quation $x^{2}+q^{m}=p^{n}$ ', Acta Arith. 63 (1993), 351-358.
[YW] P. Yuan and J. Wang, 'On the Diophantine equation $x^{2}+b^{y}=c^{z}$, Acta Arith. 84 (1998), 145147.
[Z] H. L. Zhu, 'A note on the Diophantine equation $x^{2}+q^{m}=y^{3}$ ', Acta Arith. 146 (2011), 195-202.

NOBUHIRO TERAI, Division of Information System Design,
Ashikaga Institute of Technology, 268-1 Omae, Ashikaga,
Tochigi 326-8558, Japan
e-mail: terai @ ashitech.ac.jp

[^0]: (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

