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RELATIVE INVARIANTS AND b-FUNCTIONS OF
PREHOMOGENEOUS VECTOR SPACES

(G X GL(dh ] dr)’ ;51: M(n9 C))
YASUO TERANISHI

Introduction

Let G be a connected linear algebraic group, p a rational represen-
tation of G on a finite-dimensional vector space V, all defined over C.

A polynomial f(x) on V is called a relative invariant, if there exists
a rational character X : G — C* satisfying

flo(g)-x) = X()f(x), for any g€ G and xe V.

The triplet (G, p, V) is called a prehomogeneous vector space (abbrev.
P.V.), if there exists a proper algebraic subset S of V such that V— S
is a single G-orbit. The algebraic set S is called the singular set of
(G, p, V) and any point in V — S is called a generic point of (G, p, V).

Let GL(d,, ---,d,) be a parabolic subgroup of the general linear
group GL(n,C) defined by (1.1) in Section 1, p: G — GL(n,C) be an
n-dimensional representation of G. In this paper, we shall be concerned
with the triplet (G X GL(d,, ---, d,), §;,, M(n, C)), where g, is defined by

pl(g, a)x = p(g)xa_l «g’ a) € G X GL(dl’ Tty d1)9 xe M(na C)) .

Assume that (G X GL(d,, ---,d,), g, M(n,C)) is a P.V. We shall
introduce the b-function of (G X GL(d,, - - -, d,), §;, M(n, C)), after M. Sato,
in Section 3. Theorem 3.1 gives an explicit form of the b-function. In
Section 4, we shall be concerned with triplets {(G X B,, §;, M(n, C))} where
G is a semi-simple connected linear algebraic group, B, is the upper
triangular group and p is an irreducible representation on an n-dimensional
vector space V. We shall determine all prehomogeneous vector space
{(G x B,, p,, M(n, C)}, and construct their relative invariants.
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Norations. C, C* and Z, are the complex number field, the group of
non-zero complex numbers and the set of non-negative integers, respectively.
GL(n,C), B, and B; are the complex general linear group, the complex
upper triangular group and the complex lower triangular group.

§1. A generalization of castling transform

Let G be a connected linear algebraic group, V an m-dimensional
vector space, and p a rational representation of G on V, all defined over
the complex number field C. By choosing a basis of V, we may identify
V with C™ Let d,, ---, d, be positive integers and set

n=d1+"'+drandd(t)=dl+“'+di (1§i§7‘).

We denote by GL(d,, ---,d,) the parabolic subgroup of the general
linear group GL(n, C) consists of all matrices of the form

81 82 8ir
(11) g = 0 8o g:ZT
6 0 ... g:rr

where g,, € GL(d,;,C) A1 <i<r).

We may identify the vector space (—T} V with the vector space M(m, n, C)
consists of all m by n matrices and identify the vector space M(m, n, C)
with it’s dual vector space by the inner product

(x,y) =Tr ty'x (x,yeM(m; n, C))'

Let gy, g, o and gF denote representations lof G X'GL(d,, ---,d,) on
M(m, n, C) defined as follows:

018, a)x = p(g)xa™’
(8, A)x = p(g)x'a
g (g, a)x = *p(g) 'x'a
(g, a)x = 'o(g) 'xa™

where g€ G and a e GL(,, ---, d,).

LemmA 1.1. The following conditions are equivalent.
(1) The triplet (G X GL(,, ---,d,), p,, M(m, n,C)) is a P.V.
(ii) The triplet (G X GL(d,, - - -, d)), p, M(m, n, C)) is a P.V.
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1
Proof. Put A = . A € GL(n, C), then it is easy to check that
!
x,€ M(m,n, C) is a generic point of the triplet (G X GL(d, ---,d.), g,
M(m, n, C)) if and only if x,-A is a generic point of (G X GL(d,, ---, d,),
02 M(m, n, ). Q.E.D.

LeMMA 1.2. There exists a one-to-one correspondence between relative
invariants of (G X GL,, ---,d,), g1, M(m, n, C)) and (G X GL(,, ---,d,),
P~2> M(m9 n’ C))'

Proof. For a polynomial f(x) on M(m, n, C), define the polynomial &(f)
by

(1.2) (f)(x) = f(x-A).

Then the mapping f+— @(f) gives a one-to-one correspondence between
relative invariants. Q.E.D.

LEmma 1.3. When m > n, the following conditions are equivalent.

(i) The triplet (G X GL,, ---,4d,), p;, M(m, n,C)) is a P.V.

(ii) The triplet (G X GL(m — n,d,, ---,d,), p¥, M(m,m — d,,C)) is a
P.V.

Proof. For a matrix x in M(m, n, C), denote by x' the i-th column
vector of x (L < i< n). Let W denote an algebraic variety whose points
are matrices x in M(m, n, C) such that column vectors x!, x% --- and x™
are linearly independent. Then the group G X GL(d,, ---,d,) acts on W,
and (G X GL(d,, ---,d,), W) has an open orbit if and only if the triplet
(G X GL@,, ---,d,), p1, M(m, n, C)) is a P.V., since the Zariski closure of
W is M(m, n, C). Let Flag(d, ---,d,) be the flag variety defined by

V., € Grassg,,....4,(C™) and}

Flag(d,, ---,d,) = {(V“ Voo Vi g cyiencv

where Grass,(C™) is the Grassmann variety consists of all d-dimensional
subspaces of C™.

For a matrix x in the variety W, let u(x) denote the flag(V,, ---, V,)
in Flag(d,, - - -, d,) such that V, is the subspace of C™ spanned by the flrst
d,+ --- +d, column vectors of the matrix x (1<i<7r). Then the
mapping p: W Flag(d,, - - -, d,) is surjective, G X GL(d,, - - -, d,) equivalent
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morphism. Since GL(d,, ---,d,) acts on Flag(d,, ---, d,) trivially and it
acts on each fibre homogeneously, the triplet (G X GL(d,, ---,d,), j,
M(m, n, C)) is a P.V. if and only if Flag(d, - - -, d,) is G-prehomogeneous.

For a flag(V,, V,, -+, V,) in Flag(d, ---,d,), let (V,, V,, ---, V) be
the flag in Flag(m — n, d,, - - -, d,) defined by

V, = {yeM(m, n, C)|(y,x) = 0 for any x in V,_,.,).

Then G acts on the flag variety Flag(m — n,d,, - --, d,) contragrediently
and Flag(m — n,d,, ---, d,) is G-prehomogeneous if and only if Flag(d,,
.-+, d,) is G-prehomogeneous.

Since the triplet (G X GL(m — n,d,, ---, d,), §f, M(m,m — d,, C)) is a
P.V. if and only if the flag variety Flag(m — n,d,, - - -, d,) is G-prehomo-
geneous, we obtain our assertion. Q.E.D.

Remark. This construction is a natural generalization of the castling
transform in the theory of prehomogeneous vector space [2].

LEMMA 1.4. When m > n, there is a one-to-one correspondence between
relative invariants of the triplet (G X GL(d,, ---,d,), g, M(m, n, C)) and
relative invariants of the triplet (G X GL(m — n,d,, - - -, d,), §,, M(m, m — d,,
o).

Proof. Let f(x', - - -, x") be a relative invariant of the triplet (G X GL
«, ---,d,), g, M(m, n, C)), where x° is the i-th column vector of an mXxn
matrix x 1 <i< n). For x=(x, -+, x") e M(m, n, C), put

xil xicl
Xil...ik=det(f ) Agksnand 1<, <---<i, Em).

Then by the first main theorem for the group GL(d,, ---, d,), there exists
a polynomial F satisfying
f(xl, Sty xn) = F(Xil---idls Xj1--~jd1+d2’ A Xkl'--kdl-(-..,.p.z,)

(1 é il’ Tty idnju o '9jd1+d2’ kl’ Tty kdl+--'+dr = m) ’

since f(x) is a relative invariant of the group GL(,, - -, d,).

For x = (x', - -+, x™) in M(m, n, C), let w, = x'\---Ax* and, for ¥ =
&, -, 5™ in Mm,m —d,,C), let &, =% A---A @& * where ke
d,d+dy - dy+ - +d).

Then it follows that
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Wy = Z Xilu-ikei‘ /\ e /\ eik ,
Tyleee<lig

@y = Z le'-']'chejl /\ SRRV €lm_t (ei = 1(0 N i . O)’ 1 é i é m) ’

J1<e o <Jm—k

and we have

1ok k+1--- -
> sgn< + m)Xl...ikX = det(x}, - - -x*, &', - -E™F)

X . . .. . J1e fme—n
D<o <ig [ZICIEY ) PRI N

where

Ll Ji s Imek

sgn

denotes the signature of the permutation | . Lo . if
Vit ol Jis s Im-k

{il' . 'ikyjl' : Jm—k} = {17 2. m}

and zero, if otherwise.
Thus if we put

, 1...k,k+1...m~
Xil'--ilc = sgn| . le"'fm—k’

Lt by Jrr " Jm-k
we have

Z )(zlu,X:ltk = det(xl, ] xk, 3217 Ty &m—k) .

1< <
We define a polynomial f(&) on M(m, m — d,, C) by

f(®) = F(X,..... X}

Jiejay+ag’

; )
1000ty Xk1~~-kd+...+d, .

Then f is a relative invariant of the triplet (G X GL(m — n, d, --d), ¥,
M(m, m — d,. ©)), and the mapping f > [ gives a one-to-one correspondence
between relative invariants of them. Q.E.D.

Remark. From the construction, f is irreducible if and only if f is
irreducible.
By Lemma 1.1~1.4, we have the following proposition.

ProrositioN 1.1. When m>n, the following 4 conditions are equivalent
and there are one-to-one correspondences among relative invariants of them.

(1) The triplet (G X GL(d,, ---,d,), 3, M(m, n,C)) is a P.V.

(2) The triplet (G X GL,, ---,d,), p,, M(m, n,C)) is a P.V.
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(3) The triplet (G x GL(,, ---,d.,,m — n), §F, M(m,m — d,,C) is a
PV,

(4) The triplet (G X GL(m — n,d,, ---,d,), 35, M(m,m — d,, C)) is a
P.V.

The following two propositions are shown in a similar manner.

ProrositioN 1.2. Let G be a connected linear algebraic group and p
a linear representation of G on an n-dimensional vector space. Then the
following 4 conditions are equivalent and there are one-to-one correspond-
ences among their relative invariants

(1) The triplet (G X GL(,, ---, d,), §;, M(n,C)) is a P.V.

(2) The triplet (G X GL(@,, ---,d), g, M(n,C)) is a P.V.

(8) The triplet (G X GL(,, ---,d,), p¥, M(n, C)) is a P.V.

(4) The triplet (G X GL(d,, ---, d), 3¥, M(n,C)) is a P.V.

ProposrTioN 1.3. When m > n, the following 4 conditions are equi-
valent.

(1) The triplet (G X GL(,, ---,d,), p,, M(m, n,C)) is a P.V.

(2) The triplet (G X GL{,, ---,d), ;,, M(m, n,C)) is a P.V.

(3) The triplet (G X GL(,, - --,d,,m — n), 3¥, M(m, C)) is a P.V.

(4) The triplet (G X GL(m — n,d,, ---,d,), 3F, M(m, C)) is a P.V.

CoroLLARY. When m > n, the following conditions are equivalent.
(1) The triplet (G X GL,, ---,d,), g, M(m,n, C)) is a P.V.
(2) The triplet (G X GLd,, ---,d,,m — n), p,, M(m,C) is a P.V.

Let G be a connected linear algebraic group, p a representation on an
n-dimensional vector space V. Then, by Proposition 1.1, triplet (GX GL(1),
o®0, V) is a P.V. if and only if (GXGL(, n — 1), ,, M(n, C)) is a P.V.
We shall devote ourselves to investigate triples (G xX GL(d,, ---, d,), gy,
M(n, C)).

§2. Relative invariants

A sequence 1 = (4, 4, - -, 4,) of non-negative integers in decreasing
order;

A=l 24

is called a partition, and the sum |2] = 2, 4 --- + 4, is called the weight
of 2.
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For a partition 2, we denote by V, the vector space consists of all
polynomials f(x) on the vector space M(n, C) such that f(x) satisfies; for
any matrix ¢ in the group B,,

flet) = ttie- - Eaf(2)

t, *
t=( )eBn.
L,

Let f(x) be a polynomial on M(n, C), and for any element g in GL(n, C),
set;

where

g f(x) =f(g'x).
Then by the mapping f+> g-f, the vector space V, can be considered as
a GL(n, C)-module. As is well known, V, is a irreducible GL(n, C)-module
corresponding to the Young diagram Y(4):

We set:

L, dd+1,--,n X3t X5,
X{l...id = sgnj . .. . det : : .
iy s lay Jus " 5 Jn- + n
1 ar J1 Jn-a X.'(l'in—ld. . 'Xjn—a
Let f(x) be a relative invariant of the triplet (G X GL(d,, -- -, d,),

M(n, C). Then f(x) has the form

f(x) = F(' Y ‘Xirnz'd(v): st ')(det x)‘”lr ’
where F is a homogeneous polynomial in X;,..,.,, A<, ---,,0) < n,
1<y <r) and m, is a non-negative integer.

Denoting by m, the homogeneous degree of F with respect to X;,
for each v, define a partition 1 = (1, ---, 1,) as follows:

ceeig(v)y

A= e =g =my+ - +m,,

2dm+1= =2d(2,=m2+ ~~-+m,,
........ R

2d<r-1>+1= =2,L=m,.
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Then the relative invariant f(x) is contained in the vector space V,.
Thus to a relative invariant f(x), there corresponds the unique Young
diagram Y(2):

m, e m, m,
- L
Y
I
I, } "
Let
(2.1) () = (det X)""F(X,,...i00p0 Xjroojaay ** *s Xiveookarr—1,)

be a relative invariant of the triplet (G X GL(d,, - - -, d,), g, M(n, C)), and
define the polynomial f*(x) by

(2'2) f*(x) = (det x)mrF(X:r--id(n’ X;‘r--id(z)’ ) X;CI"‘kd(r—l)) .

Then f*(x) is a relative invariant of the triplet (G X GL(,, ---, d,), 5f,
M(n, C)). Since the mapping f~ f* is one-to-one, we have the following
proposition.

ProprosiTioN 2.1. The mapping f+— f* gives a one-to-one correspond-
ence between the relative invariants of the triplets (G X GL(d,, ---,d,), p,,
M(n, C)) and (G X GL,, ---,d,), 3¥, M(n, C)).

In general, let a triplet (G, p, V) be a P.V., S the singular set, S,, - - -,
S, the irreducible components of S with codimension one and P, - -, P,
irreducible polynomials defining S,, - - -, S, respectively. It is known that
the polynomials P,, - - -, P, are algebraically independent relative invariants
and any relative invariant P(x) is of the form.

P(x) = c-P(x)"*- - -P(x)'* (ceC, (I, ---,l,)e Zk).

Polynomials P,, ---, P, are determined up to constant factors, and
the set {P, ---, P,} is called a complete system of irreducible relative
invariants of (G, p, V).

Let (G X GL(@d,, - - -, d,), p,, M(n, C)) be a P.V., {P,, ---, P} a complete
system of irreducible relative invariants of (G X GL(,, - - -, d,), §;, M(n, C)).
Then, by Proposition 1.2, the triplet (G X GL(d,, ---, d,), g¥, M(n,C)) is a
P.V. It is easy to verify that the set {Py, - - -, P¥} is a complete system of
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irreducible relative invariants of (G X GL(d,, - - -, d,), g¥, M(n, C)). Denote
by X, - - -, X, the rational characters of the group G X GL(d,, - - -, d,) cor-
responding to P, - --, P,, respectively.

Since det x is an irreducible relative invariant of (G X GL({d,, ---, d,).
b, M(n, ©)), from now on, we set:

Pyx) = PF(x) = det x.

We denote by X,(G X GL(d,, ---, d,)) the group of rational characters
corresponding to relative invariants of (G X GL(d,, ---, d,), §;, M(n, C)).
The group X,(G X GL(,, ---,d,)) is a free abelian group of rank % + 1
generated by X,, - - -, X;.

Denote by Y(A®), ---, Y(A®) the Young diagrams corresponding to
relative invariants P, - - -, P,, respectively. Since each P, is irreducible,
the partition 2% is of the form

A0 = (O, 20, -, 20,00 1<i<k).

The Young diagram Y(1®) is given by

YOOy = ||t n.

Denote by xj, - -, 2¥ the rational characters defined as follows:
XF =% and X} = 17234 (A<i<k).

From the construction of the mapping [+~ f*, it follows that:
Pi(pi(g)-x) = XX (g) 'Px) 0<i<h

where g G X GL({,, ---, d,).
For a character 2 in X,(G X GL(d,, ---, d,)), let

8(0) = (@, -+, 0)), and () = (F*@y, - -+, ()

be the elements in Z**! such that

I3 k
0
A = H A3 n péaatiar
i=0 (1 7

i=0

From (2.2), we have
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(2.3) 800 = (s + 3 KB,
and
(2-4) 5(X)i = - 5*(7()1 (1 < i < k) .

§3. The b-functions
For a rational character X in X,(G X GL(d,, ---,d,)), set

P(x)r = [] Pxy®t and Py = [] PHxy"®*.
=0 i=0
If 0*(X); > 0 for all i (i.e., P*(x)* is a polynomial), we can introduce a
partial differential operator P*(grad)* in C[d/dx,;] such that
P*(grad)* exp(x, x*) = P*(x) exp(x, x*).

Similarly, if P(x)* is a polynomial, we can introduce P(grad)* in C[d/ox};
such that

P(grad)* exp(x, x*) = P(x) exp(x, x*).
For s = (s, + -+, 8,) € C**!, set
P'=[] Pt and P¥ =[P
We consider P* (resp. P**) as a function on the universal covering space
of M(n,C) — S (resp. M(n, C) — S*).

Lemma 3.1. (i) If 6%(),>0 for all i, there exists a polynomial b.(s)
in s = (s, - -+, 8,) Which satisfies, for all se C**!,

(2.5) P*(grad)*. P*(x) = b(s)P%v,

(i) If 6(X),>0 for all i, there exists a polynomial b}(s) in s=(sy, - -, S;)
which satisfies, for all s e C**,

P(grad)*- P*(x) = b}(s)P* "™,
Proof. Denoting by F(x) the left hand side of (2.5), we have:
F(p(8)-x) = 17 (2)U(g) F(x)
and

P(gi(g)-2)*° =t~ (g)x(g)'P(x)**» (ge G X GL(,, --,d.)).
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This shows that P-***®F(x) is an absolute invariant, and hence must be
a constant b,(s) depending only upon s and X. It is clear that b,(s) is a
polynomial in s. The proof of the part (ii) is similar. Q.E.D.
From the definitions of b,(s) and b}(s), it follows that:
(i) If 2 and ¢ are characters in X,(G X GL(d,, ---, d,)) such that
0*(X); > 0 and 6*(X); > 0 (0 < i < k), then

b,(8) = b(s)by(s + 3(X)) .
@i) If x and ¢ are characters in X, (G X GL(d,, ---,d,)) such that
0(0); >0 and 6(X); >0 (0 <L i < k), then
b}, (s) = bF(9)bl(s + %)) .

By the co-cycle properties of b,(s) and b}(s), b,(s) and b}(s) can be defined
for arbitrary character x in X,(G X GL(d,, ---, d,)).
Let 29, ..., 2™ Dbe the partitions corresponding to P, - .-, P,, respec-
tively. For s = (s, 8y, - - -, 85) € C**+?, put
7(s) = I'(sy + 8,40 4+« + 5,2% + n)
X I'(sy+ 840 + -+ + 54 +n—1)

X I'(8y + 8,40, + <+« + 5,48, + 2)
X I'(s, + 1),

and

%) = I'(sy + 8,48 + «+ v + 5,247 + 1)
X I(sy 4+ 8,(A° — 22) + -+« + 5% —22) + n — 1)

X I'(sy + 84" — A°) + « -+ + 5, — ) + 2)
X I'(sy,+1).

Now we can state the main theorem of the present paper.

TeeEorREM 3.1. Let (G X GLW,, ---,d,), p;, M(n, C)) be a P.V., {P, - -,
P,} a complete system of relative invariants and 2, - .-, 2" the partitions
corresponding to P,, - - -, P,. Then the b-functions b,(s) and b}(s) are given by

- (O
(32) bs) = T

and
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()
3.2 b* 8) = —— 7 .,
(32) H6) = i
Proof. Let B; denote the group consisting of lower triangular n by
n matrices, and p the representation on the vector space C" defined by
P(g)v = g‘U (ge B;: U= L(vls tt Yy vn)e Cn) .

Then the triplet (B; X B,, 3, M(n,C)) is a P.V., and relative invariants
and the b-function are known ([2], p. 150). In this case, Theorem 3.1 is
true and we shall reduce the problem to this case.

For a polynomial f(x) in V, we denote by f*(x) the polynomial defined
in (2.2).

For any partition 1 = (&, - --, 4,), denoting by =, the projection
V,®---®V, —V,,
we shall introduce two GL(n, C)-homomorphisms 4, and 6,
0; VieV,—> V., (=12,

where 1 + 2’ denotes the partition (4, + A, 4, + 4, - -+, 4, + ).
For any fin V, and f’ in V,, O,(f® f’) are defined as follows;

0.(f(x) @ f'(x)) = f(2)-f"(x)

and

Ouf (%) @ (%)) = w2, ((det x)"f*(grad)f'(x)) .

The decomposition of the SL(n, C)-module V,® V. into irreducible
components contains V,,, with multiplicity one. The Schur’s lemma says
that @, and ©, must be agree up to a constant.

On the other hand, a complete system of relative invariants of
(B; X B,, g1, M(n, C)) is given by {4,(x), - - -, 4,(x)} where

xbe o

d;=det| - | A<Li<n).

For relative invariant polynomials f and f’ of the P.V. (G X GL(,, -- -, d,),
g1, M(n, C), let 2 and 2 denote the corresponding partitions, respectively.
Put, fori=1,2, ---,n,

m; = 21: - 21;4-1 (With 2n+1 = 0)
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and
m; =X — %, (with 2,,,=0).
Then [, 4M(x) and [[7., 47¢(x) are contained in V, and V,, respectively.

Therefore we have

Fe(arad) £ _ 1 AFEd ] 4
-7 i aaysens

Thus we can reduce the proof to the case of the P.V. (B; X B,, §;, M(n, C)),
and we obtain (3.1). (3.2) is shown in a similar manner. Q.E.D.

CoroLLARY. Let (G, p, V) be a P.V., {P,, --, P} a complete system of
relative invariants of (G, p, V), and d,, ---,d, degrees of P, ---, P, re-
spectively. Then (G X GL(1,n — 1), g, M(n,C)), n =dim V, isa P.V., and
the b-functions b,(s) eand b,(s) of (G X GL(1,n — 1), ,, M(n, C) are given

by
I (O o) = 1)
5O = ey ™ YO = g s
where
) =TIT(s,+ dsi+ -+ +disp, +ml(sy +n—1).--I'(s, + 1)
and

@) =1(sy +ds;+ - +ds, +ml(sy+ds,+ -+ +ds,+n—1)
< l(sy+disi+ -+ ds + DI, + 1)

§4. Prehomogeneous vector spaces (G X B,, g, M(n, C))

Let G be a connected linear semi-simple algebraic group (G +# {e}),
¢ : G—GL(V) an n-dimensional irreducible representation, all defined over
C. Let (G X B,, g, M(n,C)) be a P.V. Then, dim(G X B,) > dim M(n, C),
and hence we have:

dim G > —;—n(n —1).

Since G is semi-simple, we may assume that a triplet (G, p, V) is of the
form:
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G=G,XG, X+ X Gy,
P:P1®Pz®‘“®,0k;

and
V=Vd)®V@d)® --®V(d,) with d>d,>--->d.>2,

where each G; is a connected simple algebraic group, p; is an irreducible
representations of G; on the d,-dimensional C-vector space V(d,) 1 <i< k).
Therefore if (G X B,, p,, M(n, C)) is a P.V. we have

1) Z}idimGizédl---dk d---dy —1).

LEMMA 4.1. Assume that o triplet (G X B,, g, M(n,C)) is a P.V.
Then we have k =1 or (G, p, V) = (SL(2) X SL(2), O ® O, V(4)).

Proof. The image p,(G,) of the simple algebraic group G, is contained
in SL(d,). By (4.1), we have

SNz 1ded @eoedi— ).

If £ > 3, this inequality implies that
1> d2(2%-% — 2%t — k) + k.

It is easy to show that 2**-* > 2¥-? 4- k for k > 3. This is impossible and
hence we have 2 < 2. When k=2, we have d?+ d: > idd,(d.d, — 1).
This inequality implies that d, = d, = 2.

The following lemma can be easily proved.

LEMMA 4.2. Let G be a semi-simple linear algebraic group and p: G
— GL(V) be an irreducible representation on an n-dimensional vector space
V(n) satisfying

dim G > —;—n(n —1).

Then (G, p, V(n)) is one of:
(1) (SL(m), O, V()
(2) (SL@),[ 1, V@)

(3) (SL@), -, v

(4) (SL(2) x SL(2), O® 0O, V(4)
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(5) (Sp(m), O, V(n)) (n = 2m)
(6) (SO(m), O, V(n) (n > 3)

(1) (S, -, VE)

(for classical group, we write the Young diagram corresponding
to p).

The image of the representation ,! of Sp(2) is SO(5) and the kernel
is {£ 1}. Therefore we may identify fhe triplet (Sp(2), H, V(5)) with the
triplet (SO(5), (1, V(5)). Similarly, we identify the triplets (2)~(4) with
the triplet (6), n = 3, 6, 4, respectively.

Case 1. (G, p, V) = (SL(n), O, V(n)).

The triplet (SL(n), 01, M(n, C)) is a trivial P.V. (See [2], and the
singular set S is given by

S = {XeM(n,C); det X = 0}.

The Young diagram corresponding to the relative invariant det X is

i
i

il
By Theorem 1, the b-function is given by
b(s) =s(s+1--(s+n-—1).
Remark. The b-function of det X is well known (See [2])

Case 2. (G, p, V) = (SO(n), OO0, V(n)).

The triplet (SO(n), 01, M(n, C)) is a P.V., and the b-function of it is
known (See [2]).

We shall determine the b-function by Theorem 3.1.

For a x = [«, -- -, x"] € M(n, C), put

(xl’ xl)’ tt (xl7 xn)

Pi(x)=det( ) A<i<n—1)

(xn, xl)» T (xn’ xn)

where (x*, x*) = ‘x*.x%, and Py(x) = det x.
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Then the singular set S is S,U---US,_, with
S,={xeM(®n,C); P(x)=0 0<i<n-—1.

Thus the Young diagrams corresponding to relative invariants P, ---, P, ,
and P, are, respectively,

By Theorem 1, we have:
b,(s) = 1(s)[1(s — %)
where

7)) =1I(sy+ 28, + -+ + 25, + n)
X I'(sy+ 28+ -+ + 28,1 +n—1)---I(s, + 1).
Case 3. (G, p, V) =(Sp(m), O V(n)) (n=2m)

Denote by [x,y] the skew symmetric bilinear form on V(n) X V(n)
defined as follows.

Lo, ] = xy1 — %1y + -+ + X — Tndm
with x = (%, &5, + -+, X, X)) and  y = (Y, Y5 ) Yms Vi) «

For x =(x', - -, x)e M(n,C). Put
Pyx) = PH([x, xDicicr A<kE<m—1),

1<j<2k
and
P(x) = det(x)

where Pff denotes the Pfaffian.

It is easy to show that, if a point x, of M(n, C) satisfies [[77' Pi(x)
=+ 0, there exists a (g, T) € Sp(m) X B, such that gx,7-' = 1,. Therefore
the triplet (Sp(m), [1, M(n, C)) is a P.V., and the singular set S is

S=8USU---US,
with S, ={XeMn,C)|P(x) =0} 0<i<m).

The Young diagrams corresponding to relative invariants P, - - -, P, _, and
P, are, respectively,
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-

|

)

}2m—2 and | | }+2m.

Put

T(s):F(so+31+"'+3m_x+n)r(so+51+"‘+3m_1+n'—1)
XIS +8+ - +8us+n—20(,+8 4+ +8,..+n—23)
XI'(8y + Spo1 + DI(Sy + 8,y + 3)

XF(30+2)'F(30+1)-

Then, by Theorem 1, the b-function b,(s) is given by
b(s) = T1(s)[1(s — (1)) .

Now we obtain the following theorem.

THEOREM 4.1. Let (G X B,, p,, M(n,C)) be a P.V., where G is a semi-
simple connected linear algebraic group, B, the group consists of all n X n
complex triangular matrix, p : G — GL(V) an irreducible representation on
an n-dimensional vector space, all defined over C. Let {P, ---,P,} be a
complete set of irreducible relative invariants of (G X B,, ,, M(n, C)). Then
(G, p, V) is one of the following P.V.s,

(1) (SL(n), O, V(n)).
(i) =0
(i) 7(s)=I'(s,+n)---I'(s, + 1)
(i) r*@$)=I(s, +n)---I'(s, +1).
(2) (Sp(m), O, V(n)) (n=2m).
(i) k=m—1
() 1@ =I'G+si+-+8u1—nI(s+s+ +8,..+n—1)
XI(sy+ 8+ -+ + 8y +1n—2)
><F(s°+sz+---+sm_1+n—3)

XF(50+Sm1+4)F(30+3m1+3)F(so+2)r(30+1)

i) 7*6G)=I(sy+ s+ +8ua+ml(s+8+ - +s,.,+n—1)
X T(sy+ 8+ -+ + Spo+n—3)
Xr(so+31+"’+sm_z+n_4)

X I'(sy + 8, + 4 (sy + 8. + 3)[(sy + 2) (s, + 1).
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(3) (SO(m), O, V(n)).
(i) k=n-—-1
(i) 1®=TI(so+2s;+ -+ +2s,.,+n)
XI'(sy+ 28+ -+ +2s,.,+n—1)
X I(sy+ 283+ -+ +25,_, +n—2)
X I'(sy+ 28, + -~ +2s,, + n —3)

X I'(sy + 28, + 2I'(s, + 1)

@) 75(s) = I'(sy+ 261 + -+ + 28,1 + 1)
XF(30+231+"'+237L—2+”“1)
XI'(sy+ 28+ -+ + 25, ;+n—2)
X I'(sy+ 28, + -+« + 28,_, +n —3)

X I'(sy + 28, + 2)['(s, + 1).

In the next article, we shall be concerned with zeta-functions associ-
ated with prehomogeneous vector spaces (G X GL(,, - --,d,), §;, M(n, C)).
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