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ON CAYLEY-DICKSON RINGS 

BY 

DANIEL J. BRITTEN 

M. Slater has shown that a prime alternative (not associative) ring R such that 
3Ry£0 is a Cayley-Dickson ring, [7], That is, if jPis the field of quotients of the 
center, Z, of R then F ®z R is a Cayley-Dickson algebra. 

If J=H(Rn,Ja) is a prime Jordan matrix algebra of characteristic 7*2 with 
n>3 and Ja is a canonical involution, then R is an involution prime alternative 
ring whose symmetric elements are in its nucleus (see [3], Theorem 1, page 127 
and Theorem 2, page 129). We shall prove that any involution prime alternative 
(not associative) ring R whose symmetric elements are in its nucleus is a Cayley-
Dickson ring. This result is of interest since it allows us to obtain a Jordan ring of 
quotients for a prime Jordan ring J=H(R3, Jn) where R is alternative (not associ­
ative). Our result is independent of characteristic and its proof is "elementary" 
in the sense that it is basically an application of a theorem due to E. Kleinfeld 
([4], page 728, Lemma 5), and one due to W. S. Martindale, [6], but we also use the 
fact that a simple alternative (not associative) ring is a Cayley-Dickson algebra, 
[1], [5]. 

THEOREM (KLEINFELD). If R is an arbitrary prime alternative {not associative) 
ring then its nucleus is equal to its center. 

THEOREM (MARTINDALE). Let R be a nonassociative ring with involution *. 
R is *-prinie if and only if R contains a prime ideal P such that P n P*=0 . 

Martindale's proof was for associative rings. Although the proof for the non-
associative case shall not be included, one may obtain it from Martindale's proof 
by changing certain products of ideals to their intersection, [2]. 

Finally, we shall prove an analogue of the Faith Utumi Theorem for Cayley-
Dickson rings. 

We shall assume throughout that R is an alternative (not associative) rings 
with involution *. An ideal, A, of R is a *-ideal if A*=A. An ideal, Q of R is 
prime (*-prime) if AB^ Q implies A^Q or B^ Q for ideals (*-ideals) A, B of R. 
R is said to be involution prime or *-prime if 0 is a *-prime ideal. The nucleus of 
R is the set N= {xeR: (x9 y, z)=(xy)z—x(yz)=0 for ally, z e R}: the center of R 
is the set Z={x G N: xy=yx}; the set of symmetric elements in R is H={x e R: 
x*=x}. 
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LEMMA. If R is *-prime and A is a nonzero *-ideal of R, then A C\ H^O. 

Proof. Suppose A n H=0, so that for all x in A we have xx*=0 and x+x*=Q 
which implies x 2 =0 for all x in A. Thus, A is anti-commutative. 

It is easy to see that JR has characteristic. If the characteristic of R is 2, then 
x*=x for all x in A so that A^H. Therefore, we assume that the characteristic 
of R is not two. For x, y, w, z in A, we have (xy)(zx)=z(yz)x= — x(x(yz))=0, 
by a Moufang identity, so that by anti-commutativity (ab)(cd)=0 for a, b, c, din 
A whenever two arguments in different factors are the same. Hence for x, y, w, z in 
A we have 0=((x+w)y)((x+w)z)=(xy)(wz)+(wy)(xz) and 0=(x(y+z))((y+ 
z)w)=(xy)(zw)+(xz)(yw)= — (xy)(wz)+(wy)(xz). By adding the two equations, 
we get 2(wy)(xz)=0. Thus A2A2=0 so that A=0 which is contrary to the assump­
tion. 

THEOREM If R is any involution prime alternative {not associative) ring R whose 
symmetric elements are in its nucleus then R is a Cayley-Dickson ring. 

Proof. Assume JR is *-prime and H^N. Then R is a sub-direct sum of prime 
alternative (not associative) rings and N^Z so that H is an associative integral 
domain. Let K be the field of quotients of H. It is easy to see that K ®H R is 
*-prime with involution defined, (yt_1®r)*=fc_1(x)r*. By our Lemma, it follows 
that K (g)H -R is *-simple. Therefore, K ®H R is simple or it contains an ideal / 
which is simple such that K (g)H R is the direct sum / + / * . The latter case implies 
that R is associative. Hence K ®H R is simple and therefore, a Cayley-Dickson 
algebra. It is easy to see that K @H R is isomorphic to F ® z R. 

THEOREM IfR is a Cayley-Dickson ring and F is the field of quotients of the center, 
Z, of R so that R'=F ®z R is a Cayley-Dickson algebra, then if given any basis 
Vi,.. . , v8 of Rr over F, there exists an integral domain I^Z such that 2 Iv^R 
and if V is the field of quotients of I then I'=F. (Here we are identifying R with 
1®R.) 

Proof. Every element in R is of the form 2 aivi where Û̂  is in F. Since v{ is an 
element of R', we have v^z^Ç^a^Vj), summing over y for some choice of zt 

in Z and 2 auvi i n ^ Hence z ^ is in R9 so that, letting I=(zx • • • z8)Z, Iv^R 
for i = l , . . . , 8. zj1 is in / ' , because zi1=((z1 • • • z8)z?)~1((z1 • • • z8)Zi). Thus 
f=F, since Z is contained in / ' . 
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