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THE CLOSURE OF CONVERGENCE SETS FOR CONTINUED
FRACTIONS ARE CONVERGENCE SETS

by LISA LORENTZEN

(Received 9th March 1992)

We prove that if O is a simple convergence set for continued fractions K(aJbJ), then the closure fi of (I is also
such a convergence set. Actually, we prove more: every continued fraction K(ajbn) has a "neighbourhood"
{®n}"-i; ®n = {zeC; \z—an|gr,,} x{zeC; jz — fcn|^sn} where rn>0 and sn>0, with the following property:
Every continued fraction from {&„} converges if and only if K(ajb,) converges.

1991 Mathematics subject classification: 40A15.

1. Definitions and natation

We consider continued fractions

, a2

b2+

;aneC\{0},fcneC. (1.1)

We say that K(ajbn) converges/diverges if its sequence of classical approximants Sn(0)
converges/diverges in C = Cu{oo}, where Sn is the linear fractional transformation

and {An} and {Bn} are solutions of the linear recurrence relation

Xn = bnXn.1+anXn.2 forn = l,2,3,... , (1.3)

with initial values A_! = \, A0=0, B_t=0 and Bo = 1. (See for instance [4, p. 20].) Since
all aB#0, it follows that Sn is non-singular. It is useful to introduce the corresponding
quantities {A™} and {Bj,*1} for the kth tail of K(an/bn), which is the continued fraction

forfc6N0 = Nu{0}. (1.4)
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40 L. LORENTZEN

With this notation we have An = Al°) = a1^n
lll and Bn = Bj,0)-

A sequence {tn}?=0 of elements from C is a tail sequence for K(ajbn) if

tn-i=aj(bn + tn) forn=l ,2,3, . . . . (1.5)

Then to = Sn(tn) for all n, and thus tn = S~l(t0). Hence, every toeC gives a tail sequence
{tn} for K(ajbn), and if {tn} and {t'n} are two tail sequences with to^t'o, then tn±t'n for
all «. Therefore there always exists a tail sequence {ttt} for K(ajbn) with all tB # oo. Note
that if follows by (1.5) that if all tn#oo, then all t n#0 and (fcn + t n ) /0 .

We shall consider continued fractions K(ajBtt) close to K(ajbn). We shall use Xn, Bn,
A^\ Bj,*' and fn to denote the corresponding quantities for K(an/Bn). We adopt the usual
convention that an empty product is equal to 1 and an empty sum is equal to 0.

2. Main results

Convergence criteria for continued fractions K(ajba) are often stated in terms of
simple convergence sets Q. That is, flcCxC, and every continued fraction K(ajbn)
from Q (i.e. all (an, bn) e $2) converges. For instance, the Worpitzky disk Q = {a e C: \a\ ^
1/4} x{l} is a convergence set for continued fractions K(aJ\), and the Sleszynski-
Pringsheim criterion says that Q = {(a,ft)eCx C: |b|^|a| + l} is a convergence set for
continued fractions K(ajbn). In both these examples the convergence set Q was a closed
set. The question we address in this paper is whether this is always so. Or to be more
precise: whether we always can take the closure & of fi in C x C as a convergence set, if
Q is a convergence set. The answer turns out to be yes.

Theorem 2.1. IfQ is a simple convergence set for continued fractions K(ajbn), then so
is its closure flmCxC.

The proof of Theorem 2.1 is based on the following result which has its own value:

Theorem 2.2. Let K(ajbn) be a given continued fraction. Then there exist sequences
{rn} and {sn} of positive numbers such that each continued fraction K(ajBn) satisfying

\an-an\^rn and \Bn-bn\^stt forn= 1,2,3,... (2.1)

converges if and only if K(ajbn) converges.

This is the result announced in the abstract. The sequences {rn} and {sn} define a
neighbourhood in which every continued fraction has the same convergence behaviour
as K(ajbn). It continues the idea of nearness of two continued fractions which was
described in [2]. The emphasis in [2] was on describing how large these rn and sn could
be chosen without disturbing the conclusion of Theorem 2.2, and the results were
restricted to certain classes of continued fractions K(an/bn). Theorem 2.2 shows the
existence of such sequences {/•„} and {sn}, without restrictions on K(ajbn).

In recent years the concept of separate convergence has received some attention:
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CLOSURE OF CONVERGENCE SETS 41

K(ajbn) converges separately if the limits lim(I_aoCn^n a n d limn-.«,£„!*,, exist in C for
some "simple" sequence {C}. (See for instance [7].) We shall prove:

Theorem 23. Let {tn} be a tail sequence for K(ajbn) with all tn # oo, and let
Cn = Y\m=i(bm + tm)~l for all neN. Further let M>0 . Then there exist sequences {rn} and
{sn} of positive numbers such that every continued fraction K(ajb~n) satisfying (2.1) has the
following properties:
A. The sequences {(An + An_ltn)Cn} and {(Bn + Bn_1(n)Cn} converge to finite values A and
Basn^co, where \A-aj{bx +tj\^M and \B-l\<LM.
B. Sn(tn) converges to a finite value.
C. The sequences {An/Y^,=0(-tm)} and {BH/Y\n

m=0(-tm)} converge as n->co if and only
ifK(an/bn) converges in C.

3. Proofs

We shall use the following formulas and lemmas (notation as in Section 1 and 2):

A-i- (3-1)

This formula can be proved by manipulating the recurrence relation (1.3) for Bn and the
corresponding recurrence relation for Bn. (See [5].) Both this formula and the following
ones require that the tail sequence {tn} of K(an/bn) has only finite elements.

n (*-+«J n ( -o \ (3.2)
n=l m=k+l /

This one can be proved by induction on n, using the recurrence formula (1.3). (See [3].)

B«*> = (Bk+n-Bk_ t n" ( - tj) FI (bm + tm)- \ (3.3)
\ m=k / m=l

This is a consequence of (3.2). (See [6].) Combining (1.5), (3.1) and (3.3) gives:

Bk—bk ^t+i

4=1 n (bm+tj *n (i

-(fi(-o)i:
\m=0 J t=l fi(-«

m = l

n (-o
m = l

"k * - i - (3-4)
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Lemma 3.1. Let A > 0, ck ̂  0, dk ̂  0 and

n - l

* = 1

Then

n - l / n - l \
cn^A Y[ (l+dk)^Aexpl Y, dk\ for n = 1,2,..., N.

*=I \*=i /

This result, which essentially can be found in [1, p. 455], is easily proved by
induction. The last inequality follows since exp(d)^ 1 +d for d^O.

Lemma 3.2. Given K(ajbn) with tail sequence {tn} such that all tn # oo. Then K(ajbn)
converges in C if and only if

i n ̂  (3-5)
fc = 0 m=l ~lm

converges in C as H-KX>.

This follows simply from dividing

An — Bnt0= J~[ ( — tm) (proved by induction)
m = O

by Bn as given by (3.2). (See [8].) By induction it also follows that

n ( - « J and Bn + Bn^tn= f\ (bm + tm). (3.6)
m = l m = l

Lemma 3.3. Let

Dn= max |Bt|, />„= max f[ W for n= 1,2,3,...,
m = 0

and

(. / m = l / m = l J

7/(2.7)
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CLOSURE OF CONVERGENCE SETS 43

\Bn\^Dnexp((Dn + Pn) £ yk(rk + sk)\

Proof. From (3.4) we find that

+ Z (skyk + rk+lyk+l
* = i

)\Bk.l\} + Pa £

t_1| form=l,2,...,«.

Hence, by Lemma 3.1 we get

(Dn (skyk + rk+1yk+1)\

which is less than or equal to the bound in (3.7).

(3.7)

•

Proof of Theorem 23.

A. Let us first consider the Bn-expression. From (3.4) we find that

5B + 1—an + 1

n (- n<-*.
m = l

B»

where ( [ l i . -o ( -0 )A r l i f - 1
1 ( - f l J ) = Cj+i by (1.5). Hence, division by

(= £ , ' by the second expression in (3.6)) leads to

" (3-8)
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Let first {Rk} and {Sk} be sequences of positive numbers such that

£ ?*(** +S4)gl,
t=i

where yt is as given in Lemma 3.3, and let all rk^Rk and sk^Sk. Then, by Lemma 3.3,

Let further {R'k} and {S'k} be positive numbers such that

and let

rk^min{Rk,MRk}, sk^tnin{Sk,MSk} (3.9)

for each k. Then the series in (3.8) converges absolutely to a value B', \B'\<M, as n->oo,
and the last term in (3.8) vanishes as n-»oo. Finally, B = B' +1.

To prove the convergence of the ,?„-expression, we observe that

where e ^
m = 2

The arguments above applied to the first tail of K(ajbn) prove the existence of {rk} and
{sk} such that if (2.1) holds, then UmBi1ll/Y\l=2(bm + tJ = B(1), where |J3( 1 )- l |gM1 for
any Mt>0. Hence the result follows.
B. This follows immediately from the results in part A, since Sn(tn) =
(An + Zn-1tn)CJ((Bn + Bn-1tn)tin), and the limit B of the denominator expression is ^0 if

C. Again we first consider the Bn-expression. From (3.2) we find that Bn/n!!i=i( —O c a n

be written as (3.5). Hence, by Lemma 3.2, K(ajbn) converges if and only if
Bn/Y[m=o( — tm) converges in C as n-*co. From (3.4) we find that

Bn _ Btt

n (-o n (-
m=0 m=0

- E n (-
m = 1

n (-«J
(3.10)
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We recognize the first series in (3.10) from (3.8). Hence it converges to a finite value B if
(2.1) holds with the choice (3.9) for rk and sk. In particular, with M< 1 in (3.9), we know
that \B— l |< l , which means that B is non-zero. The second series in (3.10) also has
terms bounded by (styk + fn+iyn + JlBn-il. Hence it converges absolutely, and the result
follows.

The proof for the An-expression follows similarly, since

Anlf\ (-O=(-a1A0)fe,/fl (-o\ •
/ m = 0 \ / m=l /

Proof of Theorem 2.2. Let {rn} and {sn} be chosen such that (3.9) holds with an
M< 1. Then the assertions of Theorem 2.3 hold. Now,

.-.8.--M.-, -.0,(l+-

"ff (-o n (*«+o
m=0 m=1

where the first factor in the denominator converges in C if and only if K(ajbn)
converges, and the second factor converges to a finite value #0. Since Sn(tn) also
converges to a finite value, the result follows if the numerator converges to a finite
value #0. This holds if we, in addition to (3.9), also make sure that £Vm/|am|<oo when
we choose {?•„}. •

Proof of Theorem 2.1. Assume that K(ajbn) is a divergent continued fraction from
Cl. Then there exist sequences {rn} and {sB} of positive numbers such that every
continued fraction K(djBn) with \an — an\^rn and \Sn — bn\^sn diverges. This is imposs-
ible since every such neighbourhood contains elements from Q, and Q is a convergence
set. Hence, all continued fractions from & converge. •
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