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Abstract. Assuming that the torsional oscillation is driven by the Lorentz force of the magnetic
field associated with the sunspot cycle, we use a flux transport dynamo to model it and explain
its initiation at a high latitude before the beginning of the sunspot cycle.
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1. Introduction
The small periodic variation in the Sun’s rotation with the sunspot cycle, first discov-

ered on the solar surface by Howard & LaBonte (1980), is called torsional oscillations.
Helioseismology has now established its existence throughout the convection zone (see
Howe et al. 2005 and references therein). Its amplitude near the surface is of order 5
m s−1 or about 1% of the angular velocity. Apart from the equatorward-propagating
branch which moves with the sunspot belt, there is also a poleward-propagating branch
at high latitudes. One intriguing aspect of the equatorward-propagating branch is that it
begins a couple of years before the sunspots of a particular cycle appear and at a latitude
higher than where the first sunspots are seen. The top panel of Fig. 1 shows the torsional
oscillations at the solar surface with the butterfly diagram of sunspots. If the torsional
oscillation is caused by the Lorentz force of the dynamo-generated magnetic field as gen-
erally believed, then the early initiation of this oscillation at a higher latitude does look
like a violation of causality! Our main aim is to explain this which could not be explained
by the earlier theoretical models (Durney 1980; Covas et al. 2000; Bushby 2006; Rempel
2006). The details of our work can be found in a recent paper (Chakraborty, Choud-
huri & Chatterjee 2009a, hereafter CCC). Please note that this paper has an erratum
(Chakraborty, Choudhuri & Chatterjee 2009b).

2. Theoretical model
The flux transport dynamo model first developed by Choudhuri, Schüssler & Dikapti

(1995) appears to be the most promising model for explaining the sunspot cycle. We
use the model presented by Chatterjee, Nandy & Choudhuri (2004). Some details of
the model with the basic equations can be found in Choudhuri (2011). In order to model
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Figure 1. The time-latitude plot of torsional oscillation on the solar surface with the butterfly
diagram of sunspots superposed on it. The upper panel is based on observational data of surface
velocity vφ measured at Mount Wilson Observatory (courtesy: Roger Ulrich). The bottom panel
is from our theoretical simulation.

torsional oscillations, in addition to the basic equations of the dynamo, we simultaneously
have to solve the Navier–Stokes equation in the form

ρ

{
∂vφ

∂t
+ Dv [vφ ]

}
= Dν [vφ ] + (FL )φ , (1)

where Dv [vφ ] is the term corresponding to advection by the meridional circulation, Dν [vφ ]
is the diffusion term, and (FL )φ is the φ component of the Lorentz force. If the magnetic
field is assumed to have the standard form

B = B(r, θ, t)eφ + ∇× [A(r, θ, t)eφ ], (2)

then the Lorentz force is given by the Jacobian

4π(FL )φ =
1
s3 J

(
sBφ, sA

r, θ

)
, (3)

where s = r sin θ. On the basis of flux tube simulations suggesting that the magnetic
field in the tachocline should be of order 105 G (Choudhuri & Gilman 1987; Choudhuri
1989; D’Silva & Choudhuri 1993), it is argued by Choudhuri (2003) that the magnetic
field has to be intermittent in the tachocline. Hence the full expression of Lorentz force
involves a filling factor as explained by CCC.

Our theoretical model incorporates a hypothesis proposed by Nandy & Choudhuri
(2002), which is essential for explaining the early initiation of the torsional oscillation
at high latitudes. According to this Nandy–Choudhuri (NC) hypothesis, the meridional
flow penetrating in stable layers below convection zone causes formation of toroidal field
in high latitude tachocline. Sunspots form a few years later when this field is advected to
lower latitudes and brought inside convection zone. We also assume that the stress of the
magnetic field formed in the tachocline is carried upward by Alfven waves propagating
along vertical flux concentrations conjectured by Choudhuri (2003).
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Figure 2. The depth-time plot of torsional oscillations at latitude 20◦. The left panel from
Vorontsov et al. (2002) is based on SOHO observations, whereas the right panel from CCC is
based on our theoretical simulation. The solid and dashed lines in the right panel indicate the
Lorentz force (positive and negative values respectively).

3. Results of simulation
The incorporation of the NC hypothesis in our theoretical model causes magnetic

stresses to build up at higher latitudes before sunspots of the cycle appear, leading to
the early initiation of torsional oscillations. The bottom panel of Fig. 1 shows theoretical
results of torsional oscillations at the surface with the theoretical butterfly diagram.
This bottom panel can be compared with the observational upper panel in Fig. 1. Our
theoretical model also gives a satisfactory account of the evolution of torsional oscillations
within the convection zone. The depth-time plot of torsional oscillations at a certain
latitude given in Fig. 3 of CCC compares favourably with the observational plot given
in Fig. 3(D) of Vorontsov et al. (2002). This is reproduced in Fig. 2 for completeness.
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