CIRCUMRADIUS-DIAMETER AND WIDTH-INRADIUS RELATIONS FOR LATTICE CONSTRAINED CONVEX SETS

Рон Wah Awyong and Paul R. Scott

Let K be a planar, compact, convex set with circumradius R, diameter d, width w and inradius r, and containing no points of the integer lattice. We generalise inequalities concerning the 'dual' quantities ($2 R-d$) and ($w-2 r$) to rectangular lattices. We then use these results to obtain corresponding inequalities for a planar convex set with two interior lattice points. Finally, we conjecture corresponding results for sets containing one interior lattice point.

1. Introduction

Let \mathcal{K}^{2} denote the set of all planar, compact, convex sets. Let K be a set in \mathcal{K}^{2} with circumradius $R(K)=R$, diameter $d(K)=d$, inradius $r(K)=r$, and width $w(K)=w$. Let K^{o} denote the interior of K and let $\Lambda_{R}(\mathbf{u}, \mathbf{v})$ be a rectangular lattice generated by the vectors $\mathbf{u}=(u, 0)$ and $\mathbf{v}=(0, v), u \leqslant v$. In the case where $u=v=1$, we have the integral lattice, denoted by Γ. Let $G(K, \Lambda)$ denote the number of points of lattice Λ in K. A number of results concerning the 'dual' quantities $(2 R-d)$ and ($w-2 r$) have been obtained by Scott [2, 3, 4] and Awyong [1]. In particular, Awyong [1] proves

Theorem 1. Let K be a set in \mathcal{K}^{2} having $G\left(K^{o}, \Gamma\right)=0$. Then

$$
\begin{aligned}
& 2 R-d \leqslant \frac{1}{3} \\
& w-2 r \leqslant \frac{1}{6}(2+\sqrt{3})
\end{aligned}
$$

with equality when and only when $K \cong E_{0}$ (Figure 1).

Figure 1: The equilateral triangle E_{0}.

[^0]The purpose of this paper is to generalise Theorem 1 to rectangular lattices and to use the result to obtain the corresponding inequalities for a set $K \in \mathcal{K}^{2}$ having $G\left(K^{o}, \Gamma\right)=2$. We prove the following results:

THEOREM 2. Let K be a set in \mathcal{K}^{2} with $G\left(K^{o}, \Lambda_{R}\right)=0$. Then

$$
\begin{align*}
& 2 R-d \leqslant \frac{2}{3}(2-\sqrt{3})\left(\frac{\sqrt{3}}{2} u+v\right) \tag{1}\\
& w-2 r \leqslant \frac{1}{3}\left(\frac{\sqrt{3}}{2} u+v\right)
\end{align*}
$$

with equality when and only when $K \cong E_{R}$ (Figure 2).

Figure 2: The equilateral triangle E_{R}.
Corollary 1. Let K be a set in \mathcal{K}^{2} with $G\left(K^{o}, \Gamma\right)=2$. Then

$$
\begin{aligned}
& 2 R-d \leqslant \frac{1}{3}(5-2 \sqrt{3}) \approx 0.512 \\
& w-2 r \leqslant \frac{1}{3}\left(2+\frac{\sqrt{3}}{2}\right) \approx 0.955
\end{aligned}
$$

with equality when and only when $K \cong E_{2}$ (Figure 3).

2. Proof of Theorem 2

In [1], it was proved that for a set $K \in \mathcal{K}^{2}$,

$$
\begin{equation*}
2 R-d \leqslant \frac{2}{3}(2-\sqrt{3}) w \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
w-2 r \leqslant \frac{w}{3} \tag{4}
\end{equation*}
$$

Figure 3: The equilateral triangle E_{2}.
with equality when and only when K is an equilateral triangle.
By applying a result by Vassallo [6] to rectangular lattices, we have the result that if K is a set in \mathcal{K}^{2} with $G\left(K^{o}, \Lambda_{R}\right)=0$, then

$$
\begin{equation*}
w \leqslant \frac{\sqrt{3}}{2} u+v \tag{5}
\end{equation*}
$$

Theorem 2 follows immediately by combining inequality (5) with (3) and (4).

3. Proof of Corollary 1

Let K now be a set satisfying the conditions of Corollary 1. Without loss of generality, we may assume that the origin O is one of the lattice points. Let L denote the other lattice point contained in K^{o} and let the coordinates of L be $\left(z_{1}, z_{2}\right)$, where without loss of generality, $z_{1} \geqslant 0, z_{2} \geqslant 0$. By a reflection about $y=x$ if necessary, it suffices to consider those cases for which $z_{1} \geqslant z_{2}$. Since K^{o} contains no other lattice points, the open line segment $O L$ contains no lattice points. Hence we may assume that either $z_{1}=1$ and $z_{2}=0$ or else z_{1} and z_{2} are relatively prime.

If z_{1} and z_{2} are both odd, we consider the sublattice

$$
\Gamma^{\prime}=\{(x, y): x+y \equiv 1(\bmod 2)\} .
$$

Clearly, $O \notin \Gamma^{\prime}, L \notin \Gamma^{\prime}$ and $G\left(K^{o}, \Gamma^{\prime}\right)=0$. Here we have $u=v=\sqrt{2}$ and by Theorem 2

$$
\begin{aligned}
& 2 R-d \leqslant \frac{1}{3} \sqrt{2} \approx 0.4714<\frac{1}{3}(5-2 \sqrt{3}) \approx 0.512 \\
& w-2 r \leqslant \frac{\sqrt{2}}{3}\left(1+\frac{\sqrt{3}}{2}\right) \approx 0.879<\frac{1}{3}\left(2+\frac{\sqrt{3}}{2}\right) \approx 0.955
\end{aligned}
$$

If z_{1} is odd and z_{2} is even, we consider the sublattice.

$$
\Gamma^{\prime \prime}=\{(x, y): x=m, y=2 n+1, m, n, \in \mathbf{Z}\} .
$$

Clearly $O \notin \Gamma^{\prime \prime}, L \notin \Gamma^{\prime \prime}$ and $G\left(K^{o}, \Gamma^{\prime \prime}\right)=0$. In the case where z_{1} is even and z_{2} is odd, we consider the lattice

$$
\Gamma^{\prime \prime \prime}=\{(x, y): x=2 m+1, y=n, m, n \in \mathbf{Z}\}
$$

Here, we have $G\left(K^{o}, \Gamma^{\prime \prime \prime}\right)=0$. By an appropriate transformation, this is equivalent to the case where z_{1} is odd and z_{2} is even. In this case $u=1$ and $v=2$ and by Theorem 2 , we have

$$
\begin{aligned}
& 2 R-d \leqslant \frac{1}{3}(5-2 \sqrt{3}) \approx 0.512 \\
& w-2 r \leqslant \frac{1}{3}\left(2+\frac{\sqrt{3}}{2}\right) \approx 0.955
\end{aligned}
$$

Equality is attained when and only when $K \cong E_{2}$ (Figure 3).

4. A Conjecture

We now conjecture the corresponding inequalities for a set K having $G\left(K^{0}, \Gamma\right)=1$. Conjecture. Let K be a set in \mathcal{K}^{2} having $G\left(K^{o}, \Gamma\right)=1$. Then

$$
\begin{aligned}
& 2 R-d \leqslant \sqrt{2}\left(\frac{7}{6}-\frac{\sqrt{3}}{2}\right) \approx 0.425 \\
& w-2 r \leqslant \frac{\sqrt{2}}{12}(5+\sqrt{3}) \approx 0.793
\end{aligned}
$$

with equality when and only when $K \cong E_{1}$ (Figure 4).

Figure 4: The equilateral triangle E_{1}.

The difficulty which occurs here is that for a set K having $G\left(K^{o}, \Gamma\right)=1, w \leqslant$ $1+\sqrt{2}$, with equality when and only when K is congruent to the isosceles triangle shown in Figure 5 [5]. As this set of largest width is not an equilateral triangle, (3) and (4) do not give sharp inequalities.

Figure 5: The isosceles triangle I_{1}.
A simple calculation shows that the width of E_{1} is $(\sqrt{2}(5+\sqrt{3})) / 4 \approx 2.38$. Hence if $0<w \leqslant(\sqrt{2}(5+\sqrt{3})) / 4$, it follows from (3) and (4) that for this given range of w,

$$
\begin{aligned}
& 2 R-d \leqslant \sqrt{2}\left(\frac{7}{6}-\frac{\sqrt{3}}{2}\right) \approx 0.425 \\
& w-2 r \leqslant \frac{\sqrt{2}}{12}(5+\sqrt{3}) \approx 0.793
\end{aligned}
$$

with equality when and only when $K \cong E_{1}$ (Figure 4).
This leaves unresolved those cases for which $(\sqrt{2}(5+\sqrt{3})) / 4<w \leqslant 1+\sqrt{2}$. We believe that the set for which $(2 R-d)$ and ($w-2 r$) are maximal is congruent to the equilateral triangle E_{1} (Figure 4).

References

[1] P.W. Awyong, 'An inequality relating the circumradius and diameter of two-dimensional lattice-point-free convex bodies', Amer. Math. Monthly (to appear).
[2] P.R. Scott, 'Two inequalities for convex sets in the plane', Bull. Austral. Math. Soc. 19 (1978), 131-133.
[3] P.R. Scott, 'A family of inequalities for convex sets', Bull. Austral. Math. Soc. 20 (1979), 237-245.
[4] P.R. Scott, 'Sets of constant width and inequalities', Quart. J. Math. Oxford Ser.(2) 32 (1981), 345-348.
[5] P.R. Scott, 'On planar convex sets containing one lattice point', Quart. J. Math. Oxford Ser.(2) 36 (1985), 105-111.
[6] S. Vassallo, 'A covering problem for plane lattices', Geom. Dedicata 43 (1992), 321-335.

Division of Mathematics
National Institute of Education 469 Bukit Timah Road
Singapore 259756
e-mall: awyongpw@nievax.nie.ac.sg

Department of Pure Mathematics
The University of Adelaide
South Australia 5005
e-mail: pscott@maths.adelaide.edu.au

[^0]: Received 28th July, 1998
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

